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Abstract
Non-rigid structure from motion (NRSFM) is a classical underconstrained problem in computer
vision. A common approach to make NRSFM more tractable is to constrain 3D shape deformation
to be smooth over time. This constraint has been used to compress the deformation model and
reduce the number of unknowns that are estimated. However, temporal smoothness cannot be
enforced when the data lacks temporal ordering and its benefits are less evident when objects
undergo abrupt deformations. This paper proposes a new NRSFM method that addresses these
problems by considering deformations as spatial variations in shape space and then enforcing
spatial, rather than temporal, smoothness. This is done by modeling each 3D shape coefficient as a
function of its input 2D shape. This mapping is learned in the feature space of a rotation invariant
kernel, where spatial smoothness is intrinsically defined by the mapping function. As a result, our
model represents shape variations compactly using custom-built coefficient bases learned from the
input data, rather than a pre-specified set such as the Discrete Cosine Transform. The resulting
kernel-based mapping is a by-product of the NRSFM solution and leads to another fundamental
advantage of our approach: for a newly observed 2D shape, its 3D shape is recovered by simply
evaluating the learned function.

1 Introduction
Structure from motion (SFM) techniques have seen vast improvements over the past three
decades by relying on the assumption of object rigidity [1]. However, computer vision
applications often involve the observation of deformable objects such as the human face and
body. When the assumption of object rigidity is relaxed, and in the absence of any prior
knowledge on 3D shape deformation, computing non-rigid structure from motion (NRSFM)
becomes a challenging, underconstrained problem. Given a set of corresponding 2D points,
established over multiple images of a deformable object, the goal of NRSFM is to recover
the object’s 3D shape and 3D pose (relative camera position) in each image [2–15].

To make this largely underconstrained problem more tractable, recent research work has
attempted to define new, general constraints for 3D shape deformation. A common approach
to NRSFM is the matrix factorization method of [2], which constrains all 3D shapes to lie
within a low-dimensional linear shape space. In addition, many NRSFM techniques also
enforce smoothness constraints on camera motion and object deformation, which are
assumed to change only gradually over subsequent images [3, 6, 11–13, 15].

The recent Shape Trajectory Approach (STA) of [13], a generalization of [12], demonstrates
how gradual 3D shape deformation can be seen as the smooth time-trajectory of a single
point (object) within a low-dimensional shape space. As a result, a few low-frequency
components of the Discrete Cosine Transform (DCT) can be used as basis vectors to define
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a compact representation of 3D shape deformation. Because the DCT basis is known a
priori, the number of unknowns that need to be estimated is greatly reduced. STA has been
shown to outperform a number of state-of-the-art NRSFM algorithms when applied to the
3D reconstruction of challenging datasets. However, it was also shown in [13] that sudden
(high-frequency) deformations require the use of a large DCT basis, leading to less compact
models. In addition, if the input 2D points come from a collection of images for which no
temporal relation is known, the smoothness assumption does not hold and there is no gain in
using the DCT basis.

This paper presents a novel NRSFM approach that addresses these problems by considering
deformations as spatial variations in shape space and then enforcing spatial, rather than
temporal, smoothness. Instead of using the DCT basis, we represent the coefficients of the
linear shape model compactly using custom-built bases learned from the input data. These
bases are obtained by expressing each 3D shape coefficient as a function of its input 2D
shape, Fig. 1(left). This smooth function is learned in the feature space of a rotation
invariant kernel (RIK) [16], in terms of the input data; more specifically, we learn a compact
subspace using kernel principal component analysis (KPCA) [17]. The learned mapping
becomes a by-product of our NRSFM solution and leads to another fundamental advantage
of our approach: for a newly observed 2D shape, its 3D reconstruction is obtained via the
simple evaluation of this function, Fig. 1(right).

Finally, we also propose a novel model fitting algorithm, based on iteratively-reweighted
least squares (IRLS) [18], to extract local (sparse) modes of deformation – which are key
features in applications that analyze 3D object deformation.

Our NRSFM model is derived in Section 3. Section 4 presents our IRLS-based algorithm,
with experimental results in Section 5.

2 Related Work and Basic Formulation
We first summarize the notation used in the following: matrices and column vectors are
denoted using upper-case and lower-case bold letters, respectively; In is the n × n identity
matrix; A ⊗ B is the Kronecker product of two matrices; A† denotes the Moore-Penrose
pseudo-inverse of A; ||A||F is the Frobenius norm; z* is the Hermitian of complex vector z;
and δi,j is the Kronecker delta.

For a NRSFM problem with T images (cameras), the n input 2D point tracks are given in an
input matrix W ∈ ℝ2T×n; [xt,j, yt,j]T is the 2D projection of the jth 3D point observed on the
tth image, t = 1, 2, …, T, j = 1, 2, …, n. For clarity of presentation, assume for now that: (i)
W is complete, meaning that no 2D points became occluded during tracking; and (ii) its
mean column vector t ∈ ℝ2T has been subtracted from all columns, making them zero-mean.
With orthographic projection and a world coordinate system centered on the observed 3D
object, t gives the observed 2D camera translations in each image.

The matrix factorization approach of [2] models W = MS as a product of two matrix factors
of low-rank 3K, M ∈ ℝ2T×3K and S ∈ ℝ3K×n,
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(1)

Factor M = D (C ⊗ I3) comprises a block-diagonal rotation matrix D ∈ ℝ2T×3T and a shape

coefficient matrix C ∈ ℝT×K. Let  be the tth row of C. The unknown 3D shape of the tth

image is modeled as the matrix function

(2)

that is, a linear combination of K basis shapes Ŝk ∈ ℝ3×n as described by the shape
coordinates ct,k. The camera orientation (object pose) at image t is given by R̂t ∈ ℝ2×3, a 3D
rotation followed by an orthographic projection to 2D.

The factors M and S are computed from the singular value decomposition

, with all but the largest 3K singular values in Σ set to
zero. This non-unique solution is defined only up to a rank-3K ambiguity matrix Q ∈
ℝ3K×3K. To recover D and C, an Euclidean upgrade step [11] finds a corrective Q for the
solution W = (M̄Q)(Q−1S̄) = MS.

To further constrain the reconstruction process above, many authors assume that the
observed 3D shape deformation is only gradual over time t = 1, …, T [3, 6, 12, 13]. Here,

we summarize STA [13], which is closely related to our new method. STA considers 
as a single K-dimensional point describing a smooth time-trajectory within an unknown
linear shape space. This means that each shape coordinate ct,k varies smoothly with t. The
shape trajectory is then modeled compactly using a small number d of low-frequency DCT
coefficients,

(3)

With d ≪ T, X ∈ ℝd×K represents C ∈ ℝT×K compactly in the domain of the truncated DCT
basis matrix Ωd ∈ ℝT×d. The fth column of Ωd is the fth-frequency cosine wave [12, 13].
Because the DCT matrix is known a priori, the number of unknowns in C is significantly
reduced with STA.

The optimization stage of STA considers that S = M†W is a function of M and W. The goal
is then to minimize the 2D reprojection error,

(4)

With M = D(ΩdX ⊗ I3), a coarse initial deformation model (X = IK) [12] is first used to
compute D. Then higher-frequency DCT coefficients in X are estimated using a Gauss-
Newton algorithm to minimize (4) in terms of X only.
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3 NRSFM with RIKs
In this section, we propose a new kernel-based solution to NRSFM. Our goal is to derive a
function that estimates the coefficient matrix C and is not restricted to cases of smooth
deformations over time. As a result, we will also learn a custom-built basis B from the input
data, providing a compact representation C = BX. To this end, we first need to establish a
relationship between C and the observed data in W. More especially, we learn a function f(·)
that estimates vector  – representing an unknown 3D shape as a point within the shape
space – given the corresponding input 2D shape wt ∈ ℝ2×n observed on the tth image,

(5)

This mapping becomes a by-product of the NRSFM solution and leads to a fundamental
advantage of our approach. Given a new image with a previously unseen 2D shape, the
estimation of the corresponding 3D shape is readily achieved.

3.1 Defining a mapping using the kernel trick
Following the well-known kernel trick [17], we first consider a nonlinear mapping of each
2D shape wt onto vector φ(wt), located within a high dimensional space where a final linear
mapping can be learned. According to the Representer Theorem, the function f(·) that we
seek can be expressed as a linear combination of a few representative φ(wt). Thus, we can

model the kth coefficient of  as

(6)

where xik are the coefficients of a linear combination of a few 2D basis shapes, . The
number of basis elements d must be sufficient as to represent the relations between C and
W, as discussed below.

In general, explicitly evaluating the mapping φ(·) can be computationally expensive or even
impossible when the image is a function in an infinite dimensional space. Thus, we perform
this mapping only implicitly by embedding it in the computation of a generalized inner
product given by a kernel function κ(·, ·),

(7)

The kernel function above must provide a similarity measure for two 2D shapes observed
from different points of view (i.e., poses); its proper definition is discussed in Section 3.3.

Considering all K coefficients of , ∀t, from (7) we obtain

(8)
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where X ∈ ℝd×K is a coefficient matrix;  is a custom-built basis matrix
that has the inner product values for all pairings of a 2D shape in W and a 2D basis shape in
Wb.

Unfortunately, selecting the best set of basis shapes with d out of the T observed 2D shapes
is an NP-complete problem. We therefore define a simple, alternative solution based on
kernel principal component analysis (KPCA) [17]. We first pre-compute a complete kernel
matrix KWW ∈ ℝT×T and its eigenvector matrix V associated with the d largest eigenvalues
in the diagonal matrix Λ, i.e., KWWV = VΛ. In the range space of mapping φ(·), we have d
eigenfunctions given by Φ(W)VΛ−1/2. By projecting each observation φ(wt) onto this
eigenfunction subspace, we can then define our new basis matrix B of C as,

(9)

The number of eigenfunctions d must be large enough as to provide a subspace that captures
a sufficient amount of the variation in the kernel matrix.

Finally, we obtain our new NRSFM model with M = D(BX ⊗ I3). A solution is achieved by
estimating the rotation matrix D and the d×K coefficient matrix X as to minimize the
reprojection error in (4). This optimization procedure is detailed in Section 4. Once the
optimal M and S = M†W have been found, we can use (2) to recover the 3D shape for the tth

image as

(10)

(11)

(12)

This new approach is referred to as NRSFM with RIKs.

3.2 Recovering the 3D shape from a newly seen 2D shape
An important advantage of NRSFM with RIKs is the ability to easily reconstruct the 3D
shape from a newly observed image that was not considered in the optimization above; let
wτ (τ > T) denote this newly observed 2D shape. Notice from (10) that the 3D shape
S(f(wτ)) associated with wτ can be easily estimated given W, M, f(·) from the optimization
above.

Once the 3D shape has been recovered, the associated rotation (pose) matrix R̂τ can also be
readily estimated by solving two simple systems of linear equations, wτ = R̂τ S(f (wτ)), then
using the SVD of R̂τ to enforce orthogonality.

3.3 Rotation invariant kernels
The kernel function must provide a similarity measure for two 3D shapes based on their 2D
projections, wt and wt′, taken from different points of view. One possible choice of the
kernel function κ(·, ·) is the RIK of [16]. This RIK calculates the rotation invariant similarity
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between two scale-normalized 2D shapes represented in the complex domain, vectors zt and

zt′ with ,

(13)

The scale (smoothness) of this RIK is defined by parameter σ. The 2D rotation invariance

property ensures that  for any rotation angle θ in the complex plane.
This is a property of the inner product in the complex domain. Although the kernel above is
not invariant to the 3D orientation of the observed shapes, we can still use it to learn the
mapping in (11) because the input 2D shapes are highly correlated with the underlying 3D
shapes – we can even use appearance features that are correlated with 3D shape [19].

Here we also propose a new kernel dubbed the affine structure from motion (aSFM) kernel.

The aSFM RIK is defined in terms of the reprojection error , of an affine, rigid SFM
solution obtained from the two observations wt and wt′,

(14)

where σ is the kernel scale and parameter α regulates how similar the 3D shapes are in
general, while also ensuring that the kernel matrix is positive semi-definite. The affine
cameras At and At′ ∈ ℝ2×3 and the affine 3D shape Sa ∈ ℝ3×n are obtained from a rank-3
approximation to wt and wt′ using SVD. If these 2D shapes are projections of two dissimilar
3D shapes, then the rigid SFM solution will provide a large reprojection error and the aSFM
kernel value will be small.

3.4 Model Analysis
Parameter setting—With the rank parameter K assumed to be known, the number of
unknowns in X ∈ ℝd×K depends on the number of columns d of B ∈ ℝT×d. A rank-3K
solution M requires d ≥ K. If d = K, then X must be full-rank (i.e., X−1 exists) and the non-
unique solution M = D(BX ⊗ I3) has an equivalent form M̄ = M(X−1 ⊗ I3) = D(BIK ⊗ I3),
with a constant X̄ = IK. By assuming d > K, we allow the rank-3K solution to consider other
important variations in the kernel matrix, leading to better results.

The discussion above suggests a deterministic initialization X0 = [IK 0]T in which the
coefficients associated with less important principal components are initially zero. Not
surprisingly, the same initialization is used in STA, with high-frequency DCT coefficients
set to zero. Note that the DCT and PCA bases are known to be closely related for certain
types of random processes.

To select d, a common approach in PCA is to choose a d-dimensional subspace that captures
about 99% of the total variance in the dataset, discarding small variations assumed as noise.
In NRSFM with RIKs, we note that d is closely related to the RIK scale parameter σ: the
larger σ is, the more smoothness is applied to the shape similarity values and the more
compact is the KPCA space. Therefore, we consider d as a user-supplied parameter that
defines the desired compactness of the model; then σ is easily chosen, automatically, as to
yield a d-dimensional KPCA space with about 99% of the data variance. In the aSFM RIK,
α is also set automatically as to yield a positive semi-definite kernel matrix.
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Comparison to related work—There are two main differences between our model
above and that of the kernel NRSFM approach in [15]. First, NRSFM with RIK models 3D
shapes within a linear space; the approach in [15] defines a non-linear model. Second, in
NRSFM with RIK the inputs to the kernel-based mapping are observed 2D shapes; in [15],
the inputs are the coefficients of the non-linear model. Nevertheless, the two approaches are
complementary: future work can use RIKs to define a mapping from observed 2D shapes
onto the coefficients of the non-linear model of [15].

4 Model Fitting
Having obtained the basis matrix B through an RIK and KPCA, as described above, the next
step is to estimate D and X in M = D(BX ⊗ I3) as to minimize the reprojection error in (4).
Two alternative algorithms are presented in this section. Here, we will assume that the
rotation matrix D has been estimated by an initialization algorithm (e.g., using rigid SFM if
some points are known to remain in a rigid configuration, or using the procedure of STA).
Thus, we focus on the iterative process for fitting our new model C = BX. If necessary, we
can later refine D and X in an alternated manner, by fixing one of these matrices.

Algorithm 1 (NRSFM with RIK)
We first consider an optimization procedure in which the computation of X is carried out
using the iterative Gauss-Newton method proposed in [14], with the DCT basis replaced by
our new basis B. This procedure is summarized in Algorithm 1.

Algorithm 2 (Iteratively-Reweighted NRSFM with RIK)
With a linear shape model, the 3D shape of a non-rigid object can be seen as comprising two
main components: a rigid (average) 3D shape and K − 1 modes of deformation. For typical
objects, these modes should reflect localized (sparse) deformations involving a small subset
of points (sub-shapes). Also, different parts of an object often present different amounts of
deformation. For instance, consider facial shapes that present larger deformation for the
mouth in comparison to the nose; other shapes may even present points that remain in a rigid
configuration.

NRSFM algorithms in general estimate shape deformation using a globally uniform least
squares criterion; the objective function is automatically tuned to points with large
deformation and is not sensitive to local deformations. Furthermore, the global solution does
not allow for the modeling of local deformations with different complexities (ranks). This
usually results in an inaccurate extraction of the rigid component and associated modes of
deformation.

To address these problems, we propose a new method based on iteratively-reweighted least
squares (IRLS) [18]. The algorithm iteratively minimizes the residual error resulting from
Algorithm 1 above. The initial step extracts the rigid shape component of the observed
object; the following steps are targeted at modeling localized modes of deformation. While
IRLS has been used to implement robustness against outliers (whose errors are allowed to
remain large), our goal here is to focus on columns that have a similar error pattern,
corresponding to a mode of deformation that was not yet reconstructed properly.

More specifically, let W ≈ M1S1 be the output of Algorithm 1 with K = 1. The single 3D
basis shape recovered in iteration 1 describes the rigid component of the object shape. Next,
we calculate the error matrix E1 = W − M1S1 whose columns capture modes of shape
deformation. To extract local (sub-shape) deformation, we focus on a subset of the columns
of E1 corresponding to 2D points with similar motion. This is done by specifying a weight
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matrix that emphasizes columns (points) with a similar pattern of error (deformation). Let
ei,j be the jth column of Ei (in the ith iteration). We then define a Gaussian weighting mask
with nonzero diagonal elements,

(15)

where  is the average distance between ei,jmax and its 0.1n (10%) nearest neighbors. This
mask Gi assigns weight 1 to the column with largest error, ei,jmax, and slightly smaller
weights to other similar columns. It is used to project Ei onto a subspace of large error, Ẽ1 =
E1G1.

The following iterations uses Algorithm 1 to factorize Ẽi ≈ Mi+1Si+1, always using K = 1.
The error matrix Ei is updated and the iterations continue until the error ||Ei||F is sufficiently
small. Note that rotation matrix D remains constant during this iterative process and,
therefore, the recovered deformation components are aligned in 3D space. The Iteratively-
Reweighted NRSFM with RIK algorithm is summarized in Algorithm 2.

To recover the 3D shape for a new image whose 2D shape wτ has now being detected, we
now follow the iterative procedure in Algorithm 3. Each iteration estimates the coefficient
cτ,i = fi(wτ) associated with the ith 3D basis shape Si.

5 Experimental Results
We evaluate the proposed methods in three different applications. First, we compare the
solutions of NRSFM with RIK against those of STA with its fixed DCT basis (see [14] for a
comparison of STA against other NRSFM methods). Second, we provide experiments that
show the generalization performance of our NRSFM solutions to newly seen 2D shapes.
Finally, we illustrate and analyze the local modes of deformation extracted with Algorithm
2. Additional results are also available with the supplementary material at http://
cbcsl.ece.ohio-state.edu.

We consider a variety of motion capture 3D datasets, with the number of frames and 3D
points indicated as (T, n) after the dataset name: face1 (74,37) [9]; stretch (370,41), pick-up
(357,41), yoga (307,41), dance (264,75) [12]; and walking (260,55) [3]. The input W is
obtained via 2D orthographic projection.

NRSFM with RIK versus STA
Temporal smoothness, enforced by STA, does not hold when the observed shape undergoes
abrupt deformation, or when the data lacks temporal ordering. NRSFM with RIK does not
suffer such limitations because it enforces spatial smoothness of f(·) in the RIK space. From
(7), note that the same function f(·) can be learned regardless of the temporal order of the
input 2D shapes. The following experiment illustrates this property.

STA, Algorithm 1 (A1), and Algorithm 2 (A2) are first used to reconstruct 3D shapes from
temporally ordered 2D shapes wt in W. Then, 3D reconstructions are computed from an
unordered matrix Wπ, obtained with a random permutation π(t) of the input 2D shapes. To
focus on the evaluation of the different 3D shape models, all algorithms are run with the
same rotation matrix, D or Dπ, obtained from the original W as in [11].

Table 1 shows the 3D reconstruction error for each algorithm – i.e., average Euclidean
distance to the 3D points of the ground truth shapes, normalized by average shape size [13].
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Note that the performance of the RIK-based methods is unaffected by permutations in the
input data, while the performance of STA decreases significantly. When temporal
smoothness holds, the three algorithms show similar performance, with compact solutions
(small d). The similar performance presented by the aSFM and the 2D RIK shows that the
2D RIK adequately captures shape variations in the input data. Overall, the aSFM RIK often
leads to more compact solutions while the 2D RIK is faster to evaluate. Table 1 shows the
best results of STA and A1 with K = 1, 2, …, 26. While the results of NRSFM methods in
general degenerate as K increases (i.e., as the low-rank constraint is gradually relaxed), the
reconstructions obtained with the IRLS-based A2 are less sensitive to the choice of this
parameter. Fig. 2 shows that the solutions of A2 on each dataset stabilized after
approximately 15 iterations. A2 also computes sparse modes of deformation with more
meaningful information to computer vision applications, as discussed later in this section.

Reconstruction of newly observed 2D shapes
Another key advantage of NRSFM with RIKs is the capability of recovering 3D shapes of
newly observed 2D shapes using the learned function f(·). Considering this scenario, we
illustrate the performance of A1 and A2 using 30-fold cross-validation: the 2D shapes in W
are randomly permuted and divided into 30 validation sets. In each fold, one validation set

 with nearly 3% of the 2D shapes is left out of the input data W and f(·) is learned from
the remaining 2D shapes, with (d, K or N) set as in Table 1. Then the 3D reconstruction of
each 2D shape wτ ∈  is obtained using (10) or Algorithm 3. This process is repeated for
each validation set. The average 3D error of all these reconstructions is shown in Table 2,
for each dataset. These errors are similar to those obtained on the complete datasets (Table
1), indicating that the learned functions correctly reconstructed the new 2D shapes.

We also performed a similar experiment using 2D face shapes of a single person, taken from
the real video sequence ASL (114,77) of [14]. First, A1aSFM (K = 4, d = 0.3T) was used to
recover the 3D shapes of all 114 input 2D faces, Fig. 3(left). Then a second 3D
reconstruction was computed for each 2D shape, this time using 30-fold cross-validation as
above. Comparing these two sets of 3D shapes, we observed a very small average 3D
difference of 0.025 (0.034), relative to the average face size. As an additional experiment,
we also evaluated the learned f(·) on input 2D shapes from a separate dataset with faces of
the same person and also faces of other people. This is an example application in transfer of
facial expression across subjects, which is very useful in computer graphics and animation.
Note that, in cases of occlusion, the kernel is evaluated only on the subset of points that are
observed on both 2D shapes being compared. Fig. 3(right) shows that the recovered 3D
shapes do capture the learned deformations even when expressed by other people. As
expected, the recovered 3D shapes can only express the identity and modes of deformation
learned during the NRSFM (training) stage, using the data illustrated in Fig. 3(left).
Nevertheless, this is not a limitation of our approach because, with the removal of the
temporal smoothness assumption, the NRSFM stage can consider multiple datasets depicting
different identities and shape variations (deformations). Naturally, if the newly observed 2D
shapes differ considerably from the training shapes, 3D reconstruction may be inaccurate
due to the limitations of the shape model when used for extrapolation. Future work will
develop this capability further, considering new constraints such as ensuring cτ = f(wτ)
remains in the vicinity of the training samples within the learned shape space.

Recovered modes of local 3D deformation
A limitation of most kernel methods is the use of a unique parameter σ, defining the
smoothness of the estimated function globally. The Gaussian weighting masks Gi of A2 can
be seen as altering (customizing) σ for each column on the input error matrix Ei. This is
important in NRSFM because the observed objects often present localized deformations
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with different spatial smoothness (e.g., mouth shapes of a talking face present larger
variations than nose shapes). A2 can model these local deformations by extracting a set of
functions that correspond to sub-shape variations. The property described above is
illustrated by the extracted modes of deformation shown in Fig. 4. For face1, the local
deformation S2 represents mouth opening and closing (correlated with chin movement), S3
eye-nose distance, S4 right side jaw, S5 left side jaw, and S6 chin movements. For stretch,
the deformations are: S2 left arm, S3 right arm, S4 head and waist, S5 right hand, and S6 left
hand movements. In comparison to the standard model in NRSFM, the basis shapes above
describe more meaningful, local deformations that can be combined in different ways as to
better extrapolate new 3D shapes. Future work on A2 will explore this fact to further
improve the generalization of the learned function f(·) to shapes largely different than those
seen in the NRSFM stage.

6 Conclusion
We propose a new kernel-based solution to NRSFM that is not restricted to cases of smooth
deformations over time. The main idea is to use a spatial, rather than temporal, smoothness
constraint. Using a RIK and KPCA, we derive a smooth function that outputs 3D shape
coefficients directly from an input 2D shape. As a result, we learn a custom-built basis to
model the shape coefficient compactly while solving NRSFM. The learned mapping
becomes a by-product of our NRSFM solution and leads to another fundamental advantage
of our approach: for a newly observed 2D shape, its 3D reconstruction is obtained via the
simple evaluation of this function. Finally, we also propose a novel model fitting algorithm
based on IRLS that computes localized modes of deformation carrying meaningful
information to computer vision applications.

NRSFM with RIK is a generic new approach that can make use of customized RIKs to build
mappings that even exploit correlations between object appearance and 3D shape. Our
approach can potentially combine the functionalities of NRSFM and 3D active appearance
models with RIKs [19]: while NRSFM is seen as the training stage, “testing” corresponds to
the evaluation of the learned mapping with a previously unseen 2D shape. These new
capabilities allow for learning deformable models in a studio, reliably (e.g., with known
camera positions in D), to reconstruct the 3D shapes of objects observed elsewhere.
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Fig. 1.
Before solving NRSFM, a basis B is computed as to compactly represent a nonlinear
mapping from the input data to the coefficients C = BX of the linear shape model: (left) B is
obtained by modeling each coefficient vector as a function f(·) of its input 2D shape; an RIK
feature space is used to learn f(·) and B based on similarities in these input shapes; (right)
with f(·) being a by-product of the NRSFM solution, the 3D reconstruction of a newly
observed 2D shape is done by simply evaluating f(·).
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Fig. 2.
Reconstruction errors of A2 versus the number of iterations: 2D RIK (left) and aSFM RIK
(right). Final reconstructions are obtained with approximately 15 iterations.
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Fig. 3.
Using the mapping f(·) learned from a real dataset: (left) sample 2D face shapes (green dots)
of a same person and NRSFM solution of A1aSFM, in two views; (right) result of evaluating
the learned f(·) on newly seen 2D face shapes from different people.
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Fig. 4.
The 3D shape bases obtained in the first 6 iterations of Algorithm 2 on face1 and stretch.
The 3D basis shapes S2, …, S6 correspond to sub-shape deformations around the rigid shape
component S1 of the first iteration. These deformations are shown as S1±2σiSi, with σi the
standard deviations of the corresponding coefficients. Note that the original motion capture
markers on stretch were not located along straight lines.
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Algorithm 1

NRSFM with RIK

1: Input: 2D shapes in W, basis size d, rank parameter K.

2: Compute the RIK matrix KWW with σ2 and α as described in the text.

3: Find d-dimensional KPCA subspace with 99% of data variance.

4: Define basis matrix B as in Eq.(9).

5: Estimate rotation matrix D.

6: Estimate d × K matrix X s.t. M = D(BX ⊗ I3) minimizes Eq.(4).

7: Refine D and X in alternation as to minimize Eq.(4).

8: Output: D, B, X, and f(·) as in Eq.(11).
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Algorithm 2

Iteratively-Reweighted NRSFM with RIK

1: Input: 2D shapes in W, basis size d, rank parameter K = 1, level of accuracy ε.

2: Initialize i = 0, E0 = W, and G0 = In.

3: repeat

4:  Calculate projected error matrix Ẽi= EiGi.

5:  Compute the factorization Ẽi ≈ Mi+1 Si+1 using Algorithm 1.

6:  Update the error matrix Ei+1 = Ei − Mi+1 Si+1.

7:  Calculate the weighting mask Gi+1 as in Eq.(15).

8:  i = i + 1.

9: until ||Ei||F < ∊

10: Compute the final, recovered 3D shapes as S3D = Σi (BiXi ⊗ I3) Si.

11: Output: S3D, D, Bi, Xi, Si, and fi(·).
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Algorithm 3

Iterative 3D Reconstruction for a newly seen 2D shape

1: Input: newly observed 2D shape wτ.

2: for i = {1, …, N} do

3:  Restore Si, and fi(·), as previously computed with Algorithm 2.

4:

 Evaluate .

5:

 Update the current 3D shape estimate, 

6:

 Update the 3D pose matrix Rτ s.t. .

7:

 Compute the 2D error .

8: end for

9:

Output: shape coefficients , 3D pose Rτ, and 3D shape .
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