
Efficient Closed-Form Solution

to Generalized Boundary Detection

Marius Leordeanu1, Rahul Sukthankar3,4, and Cristian Sminchisescu2,1

1 Institute of Mathematics of the Romanian Academy
2 Faculty of Mathematics and Natural Science, University of Bonn

3 Google Research
4 Carnegie Mellon University

Abstract. Boundary detection is essential for a variety of computer vi-
sion tasks such as segmentation and recognition. We propose a unified
formulation for boundary detection, with closed-form solution, which is
applicable to the localization of different types of boundaries, such as in-
tensity edges and occlusion boundaries from video and RGB-D cameras.
Our algorithm simultaneously combines low- and mid-level image repre-
sentations, in a single eigenvalue problem, and we solve over an infinite
set of putative boundary orientations. Moreover, our method achieves
state of the art results at a significantly lower computational cost than
current methods. We also propose a novel method for soft-segmentation
that can be used in conjunction with our boundary detection algorithm
and improve its accuracy at a negligible extra computational cost.

1 Introduction

Boundary detection is a fundamental task in computer vision, with broad ap-
plicability in areas such as feature extraction, object recognition and image seg-
mentation. The majority of papers on edge detection have focused on using only
low-level cues, such as pixel intensity or color [1–5]. Recent work has started ex-
ploring the problem of boundary detection based on higher-level representations
of the image, such as motion, surface and depth cues [6–8], segmentation [9], as
well as category specific information [10, 11].

In this paper we propose a general formulation for boundary detection that
can be applied, in principle, to the identification of any type of boundaries, such
as general edges from low-level static cues (Figure 6), and occlusion boundaries
from motion and depth cues (Figures 1, 7, 8). We generalize the classical view of
boundaries from sudden signal changes on the original low-level image input [1–
4, 12–14], to a locally linear (planar or step-wise) model on multiple layers of
the input, over a relatively large image region. The layers can be interpretations
of the image at different levels of visual processing, which could be low-level
(e.g., color or grey level intensity), mid-level (e.g., segmentation, optical flow),
or high-level (e.g., object category segmentation).

Despite the abundance of research on boundary detection, there is no general
formulation of this problem. In this paper, we make the popular but implicit

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part IV, LNCS 7575, pp. 516–529, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Efficient Closed-Form Solution to Generalized Boundary Detection 517

Fig. 1. Our method (Gb) combines, in a unified formulation, different types of infor-
mation (first three columns) to find boundaries (right column). Top row: Gb uses color,
soft-segmentation and optical flow. Bottom row: Gb uses color, depth and optical flow.

intuition of boundaries explicit: boundary pixels mark the transition from one
relatively constant property region to another, in appropriate interpretations of
the image. We can summarize our assumptions as follows:

1. A boundary separates different image regions, which in the absence of noise
are almost constant, at some level of image interpretation or processing. For
example, at the lowest level, a region could have constant intensity. At a
higher-level, it could be a region delimiting an object category, in which case
the output of a category-specific classifier would be constant.

2. For a given image, boundaries in one layer often coincide, in terms of position
and orientation, with boundaries in other layers. For example, discontinu-
ities in intensity are typically correlated with discontinuities in optical flow,
texture or other cues. Moreover, the boundaries that align across multiple
layers typically correspond to the semantic boundaries that interest humans.

Based on these observations, we develop a unified model that can simultaneously
consider both lower-level and higher-level information.

Classical vector-valued techniques on multi-images [12,13,15] can be simulta-
neously applied to several image channels, but differ from the proposed approach
in a fundamental way: they are specifically designed for low-level input, by using
first or second-order derivatives of the image channels, with edge models lim-
ited to very small neighborhoods, as needed for approximating the derivatives.
Derivatives are very often noisy and usually do not have sufficient spatial sup-
port to indicate true object boundaries with high confidence. Moreover, even
though edges from one layer coincide with those from a different layer, their
location may not match perfectly — an assumption implicitly made by the use
of derivatives. We argue that in order to confidently classify boundary pixels
and combine multiple layers of information, one must go beyond a few pixels, to
much larger neighborhoods, in line with more recent methods [5, 9, 16, 17].

The main advantage of our approach over current methods is the efficient
estimation of boundary strength and orientation in a single closed-form compu-
tation. The idea behind Pb and its variants [9, 16] is to classify each possible



518 M. Leordeanu, R. Sukthankar, and C. Sminchisescu

Fig. 2. Left: 1D view of our model. Right: 2D view of our boundary model with different
values of ε relative to the window size W : 2.a) ε > W ; 2.b) ε = W/2 ; 2.c) ε = W/1000.
For small ε the model is a step, along the normal passing through the window center.

boundary pixel based on the histogram difference in color and texture infor-
mation between the two half disks on each side of a putative orientation, for a
fixed number of candidate angles. The separate computation for each orientation
considerably increases the computational cost and limits orientation estimates
to a particular angular quantization, thus affecting the estimated probability of
boundary.

We summarize our contributions as follows: 1) we present a novel boundary
model with an efficient closed-form solution for generalized boundary detection;
2) we recover exact boundary normals through direct estimation rather than
evaluating coarsely sampled orientation candidates as in [16]; 3) we optimize
simultaneously over both low and mid-levels of image processing, and can easily
incorporate outputs from new image interpretation methods. This is in contrast
to current approaches [6, 7, 9] that process low and mid-level layers separately
and combine them in different ways to detect different types of boundaries. 4)
we only learn a small set of parameters, enabling efficient training with limited
data. Our approach essentially bridges the gap between model fitting methods
such as [18, 19], and recent learning-based boundary detectors.

2 Generalized Boundary Model

Given a Nx × Ny image I, let its k-th layer Lk be some real-valued array, of
the same size, whose boundaries are relevant to our task. For example, Lk could
contain, at each pixel, values from a color channel, filter responses, optical flow,
or the output of a patch-based binary classifier trained to detect a specific color
distribution, texture or a certain object category.1 Thus, Lk could consist of
relatively constant regions separated by boundaries.

We expect that boundaries in different layers may not precisely align. Given a
set of layers, each corresponding to a particular interpretation of the image, we
wish to identify the most consistent boundaries across these layers. The output of
our method for each point p on theNx×Ny image grid is a real-valued probability

1 The output of a discrete-valued multi-class classifier can be encoded as multiple
input layers, where each layer represents a given label.



Efficient Closed-Form Solution to Generalized Boundary Detection 519

that p lies on a boundary, given the information in all image interpretations Lk

centered at p.
We model a boundary point in layer Lk as a transition, either sudden or

gradual, in the corresponding values of Lk along the normal to the boundary.
If several K such layers are available, let L be a three-dimensional array of size
Nx×Ny×K, such that L(x, y, k) = Lk(x, y), for each k. Thus, L contains all the
information available for the current boundary detection problem, given multi-
ple interpretations of the image. Figure 1 illustrates how we perform boundary
detection by combining different layers, such as color, depth, soft-segmentation
and optical flow.

Let p0 be the center of a window W (p0) of size
√
NW ×

√
NW , where NW

is the number of pixels in the window. For each image location p0 we want to
evaluate the probability of boundary using the information in L, restricted to
that particular window. For any p within the window, we model the boundary
with the following locally linear approximation:

Lk(p) ≈ Ck(p0) + bk(p0)(p̂ε − p0)
�n(p0). (1)

Here bk is nonnegative and corresponds to the boundary “height” for layer k
at location p0; p̂ε is the closest point to p (projection of p) on the disk of
radius ε centered at p0; n(p0) is the normal to the boundary and Ck(p0) is a
constant over the window W (p0). Note that if we set Ck(p0) = Lk(p0) and use a
sufficiently large ε such that p̂ε = p, our model reduces to the first-order Taylor
expansion of Lk(p) around the current p0.

As shown in Figure 2, ε controls the steepness of the boundary, going from
completely planar when ε is large to a sharp step-wise discontinuity through the
window center p0, as ε approaches zero. When ε is very small we have a step
along the normal through the window center, and a sigmoid that flattens as we
move farther away from the center, along the boundary normal. As ε increases,
the model flattens to become a perfect plane for any ε greater than the window
radius. In 2D, our model is not an ideal ramp (see Figure 2), which enables it
to handle corners as well as edges. The idea of ramp edges has been explored in
the literature before, albeit very differently [20].

When the window is far from any boundary, the value of bk will be near zero,
since the only variation in the layer values is due to noise. If we are close to a
boundary, then bk becomes large. The term (p̂ε − p0)

�n(p0) approximates the
sign indicating the side of the boundary: it does not matter on which side we
are, as long as a sign change occurs when the boundary is crossed. When a true
boundary is present within several layers at the same position (bk(p0) is non-
zero and possibly different, for several k) the normal to the boundary should be
consistent. Thus, we model the boundary normal n as common across all layers.

We can now write the above equation in matrix form for all layers, with the
same window size and location as follows: let X be a NW ×K matrix with a row
i for each location pi of the window and a column for each layer k, such that
Xi;k = Lk(pi). Similarly, we define NW × 2 position matrix P: on its i-th row
we store the x and y components of p̂ε − p0 for the i-th point of the window.



520 M. Leordeanu, R. Sukthankar, and C. Sminchisescu

Let n = [nx, ny] denote the boundary normal and b = [b1, b2, . . . , bK ] the step

sizes for layers 1, 2, . . . ,K. Also, let us define the rank-1 2×K matrix J = n�b.
We also define matrix C of the same size as X, with each column k constant
and equal to Ck(p0). We rewrite Equation 1 (dropping the dependency on p0

for notational simplicity), with unknowns J and C:

X ≈ C+PJ. (2)

Since C is a matrix with constant columns, and each column of P sums to 0, we
have P�C = 0. Thus, by multiplying both sides of the equation above by P�,
we eliminate the unknown C. Moreover, it can be easily shown that P�P = αI,
i.e., the identity matrix scaled by a factor α, which can be computed since P is
known. We finally obtain a simple expression for the unknown J (since both P
and X are known):

J ≈ 1

α
P�X. (3)

Since J = n�b it follows that JJ� = ‖b‖2n�
n is symmetric and has rank 1.

Then n can be estimated as the principal eigenvector of M = JJ� and ‖b‖ as
the square root of its largest eigenvalue. ‖b‖ is the norm of the boundary step
vector b = [b1, b2, ..., bK ] and captures the overall strength of boundaries from
all layers simultaneously. If layers are properly scaled, then ‖b‖ could be used
as a measure of boundary strength. Once we identify ‖b‖, we pass it through a
one-dimensional logistic model to obtain the probability of boundary, similarly
to recent methods [9,16]. The parameters of the logistic model are learned using
standard procedures, explained in Section 3.2. The normal to the boundary n
is then used for non-maxima suppression. Note that ‖b‖ is different from the
gradient of multi-images [12, 13] that is computed from local derivatives, which
could be noisy and lack sufficient spatial support. We compute the boundary
strength by fitting a model, which, by controlling the window size and ε, can
vary from a small to a large patch and from planar to step-wise.

Additionally, we propose to weigh the importance of each pixel in a window
by an isotropic 2D Gaussian located at the window center p0. This puts more
weight on model fitting errors from data points that are closer to the window
center. The idea is implemented by multiplying each row of both X and P with
the Gaussian weight corresponding to that particular location. We mention that
the introduction of Gaussian weighting does not change the model (Equation 2),
but only the contributions of data points to the model fitting process: Ck(p0),
with its rows also multiplied by the corresponding Gaussian weights, still cancels
out and the final Equation 3 remains valid. As seen in the middle plot of Figure
3, the performance is significantly influenced by the choice of Gaussian standard
deviation σG, which confirms our assumption that points closer to the boundary
should constrain the model parameters more.

In our experiments we used a window radius equal to 2% of the image diag-
onal, ε = 1 pixel, and Gaussian σG equal to half of the window radius. These
parameters produced the best F-measure on the BSDS300 training set [16] and



Efficient Closed-Form Solution to Generalized Boundary Detection 521

Fig. 3. Evaluation on BSDS300 test set by varying the window size (in pixels), σG

of the Gaussian weighting (relative to window radius) and ε. One parameter is varied,
while the others are set to their optimum (learned from training images). Left: windows
with large spatial support give a significantly better accuracy. Middle: points closer to
the boundary should contribute more to the model, as evidenced by the best σG ≈
half of the window radius. Right: small ε leads to better performance, confirming the
usefulness of our step-wise model.

were also near-optimal on the test set, as shown in Figure 3. We draw the fol-
lowing conclusions about our model: 1) a large window size leads to significantly
better performance as more evidence can be used in reasoning about boundaries.
Note that when the window size is small our model becomes similar to meth-
ods based on local approximation of derivatives [4, 12, 13, 15]. 2) the usage of a
small ε produces boundaries with significantly better localization and strength.
It strongly suggests that boundary transitions in natural images tend to be sud-
den, not gradual. 3) the Gaussian weighting is justified: the model is better fitted
if more weight is placed on points closer to the boundary.

3 Algorithm

Before applying the main algorithm we scale each layer in L according to its
importance, which may be problem dependent. We learn the scaling of layers
from training data using a direct search method [21] to optimize the F-measure
(Section 3.2). Algorithm 1 (termed Gb) summarizes the proposed approach.

The pseudo-code presented in Algorithm 1 gives a description of Gb that di-
rectly relates to our boundary model. Upon closer inspection we observe that el-
ements of M can also be computed exactly by convolving each layer Lk twice,
using two different kernels: Hx(x− x0, y − y0) ∝ g(x− x0, y − y0)

2(xε − x0) and
Hy(x− x0, y− y0) ∝ g(x− x0, y− y0)

2(yε − y0), and then combining the results.
Here g(x− x0, y − y0) is the Gaussian weight applied at location (x− x0, y − y0)
and (xε, yε) = pε. This observation leads to a straightforward implementation.2

Note the analytic difference between our filters and Derivative of Gaussian filters
(i.e., Gx(x − x0, y − y0) ∝ g(x − x0, y − y0)(x − x0)), which could be used for
computing the gradient of multi-images [13]. While Gaussian derivatives have the
computational advantage of being separable, when used for computing the gradi-
ent of multi-images they produce boundaries of inferior quality (see Table 2).

2 Code available online at: http://www.imar.ro/clvp/code/Gb

http://www.imar.ro/clvp/code/Gb


522 M. Leordeanu, R. Sukthankar, and C. Sminchisescu

Fig. 4. Left: Edge detection run times on a 3.2 GHz desktop for our MATLAB im-
plementation of Gb vs. the publicly available code of Pb [16]. Right: ratio of run time
of Pb to run time of Gb. Each algorithm runs over a single scale and uses the same
window size, which is a constant fraction of the image size. Here, Gb is 40× faster.

Algorithm 1. Gb: Generalized Boundary Detection

Initialize L, scaled appropriately.
Initialize w0 and w1.
Pre-compute matrix P
for all pixels p do

M← (P�Xp)(P
�Xp)

�

(v, λ)← principal eigenpair of M
bp ← 1

1+exp(w0+w1

√
λ)

θp ← atan2(vy , vx)
end for
return b, θ

3.1 Computational Complexity

The overall complexity of Gb is straightforward to derive. For each pixel p,
the most expensive step is computing the matrix M, which has O((NW + 2)K)
complexity, where NW denotes the number of pixels in the window and K the
number of layers. M is a 2 × 2 matrix, so computing its eigenpair (v, λ) is a
closed-form operation, with small fixed cost. Thus, for a fixed NW and a total
of N pixels per image the overall complexity is O(KNWN). If NW is a fraction
f of N , then complexity becomes O(fKN2).

The running time of Gb compares favorably to that of Pb [9, 16]. Pb in its
exact form has complexity O(fKNoN

2), where No is a discrete number of can-
didate orientations. Both Gb and Pb are quadratic in the number of image
pixels. However, Pb has a significantly larger fixed cost per pixel as it requires
the computation of histograms for each individual image channel and orienta-
tion. In Figure 4, we show the run times for Gb and Pb (publicly available
code) on a 3.2GHz desktop in MATLAB, on the same images, using the same
window size and a single scale. While Gb produces boundaries of similar quality



Efficient Closed-Form Solution to Generalized Boundary Detection 523

(see Table 2), it is consistently faster than Pb (about 40×), independent of the
image size (Figure 4, right plot). For example, on 0.15 MP images the times are:
19.4 sec for Pb vs. 0.48 sec for Gb; to process 2.5 MP images, Pb takes 38 min
while Gb only 57 sec.

A fast parallel implementation of gPb [9] is proposed in [22]. The authors im-
plement the method directly on the high-performance Nvidia GTX 280 graphics
card with a high degree of parallelism (30 multiprocessors). Local Pb is com-
puted at three different scales. The authors offer two implementations for local
cues: one for the exact computation and the other for a faster approximate com-
putation that uses integral images and is linear in the number of image pixels.
The approximation has O(fKNoNbN) time complexity, where Nb is the num-
ber of histogram bins for the different image channels and No is the number
of candidate orientations. Note that NoNb is large in practice and affects the
overall running time considerably. It requires computing (and possibly storing)
a large number of integral images, one for each combination of (histogram bin,
image channel, orientation). The actual number is not explicitly stated in [22],
but we estimate that it is in the order of one thousand per input image (4
channels × 8 orientations × 32 histogram bins = 1024). The approximation
also requires special processing for the rotated integral images of texton labels,
to minimize interpolation artifacts. The authors propose a solution based on
Bresenham lines, which further affects the discretization of the rotation angle.
In Table 1 we present run time comparisons with Pb’s local cues computation
from [22]. Our exact implementation of Gb (using 3 color layers) in MATLAB
is 8 times faster than the exact parallel computation of Pb over 3 scales on
GTX 280.

Table 1. Run times: Gb implementation in MATLAB on a 3.2 Ghz desktop vs. Catan-
zaro et al.’s parallel computation of local cues on Nvidia GTX 280 [22]

Algorithm Gb (exact) [22] (exact) [22] (approx.)

Run time (sec.) 0.473 4.0 0.569

3.2 Learning

Our model uses a small number of parameters. Only two parameters (w0, w1) are
needed for the logisic function that models the probability of boundary (Algo-
rithm 1). For layer scaling the maximum number of parameters needed is equal
to the number of layers. We reduce this number by tying the scaling for layers
of the same type: 1) for color (in CIELAB space) we fix the scale of L to 1
and learn a single scaling for both channels a and b; 2) for soft-segmentation
(Section 4) we learn a single scaling for all 8 segmentation layers; 3) for optical
flow (Section 5.2) we learn one parameter for the 2 flow channels, another for
the 2 channels of the unit normalized flow, and a third for the flow magnitude;
4) for RGB-D images (Section 5.3) we need one additional scaling for depth.



524 M. Leordeanu, R. Sukthankar, and C. Sminchisescu

Fig. 5. Soft-segmentation results from our method. The first 3 dimensions of the
soft-segmentations are shown on the RGB channels. Computation time for soft-
segmentation is less than 2 seconds per 0.15 MP image in MATLAB.

Learning the weights of layers is based on the observation that the matrix M
can be written as a linear combination of matrices Mi computed for each scaling
si separately:

M =
∑

i

s2iMi, (4)

where Mi ← (P�Xi)(P
�Xi)

� and Xi is the submatrix of X, with the same
number of rows as X and with columns corresponding only to those layers that
are scaled by si. It follows that the largest eigenvalue of M, λ = 1

2 (tr(M) +√
tr(M)2 − det(M)/4), can be computed from si’s and the elements of Mi’s.

Thus, the F-measure, which depends on (w0, w1) and λ, can also be computed
over the training data as a function of the parameters (w0, w1) and si, which
have to be learned. To optimize the F-measure, we use the direct search method
of Lagarias et al. [21], since it does not require an analytic form of the cost and
can be easily applied in MATLAB by using the fminsearch function. In our
experiments, the positive and negative training edges were sampled at equally
spaced locations on the output of Gb using only color, with all channels equally
scaled (after non-maxima suppression applied directly on the raw

√
λ). Positive

samples are the ones sufficiently close (less than 3 pixels) to the human-labeled
ground truth boundaries.

4 An Efficient Soft-Segmentation Method

In this section we present a novel method to rapidly generate soft image seg-
mentations. Its continuous output is similar to the eigenvectors computed by
Ncuts [23], but its computational cost is significantly lower: under 2 sec (3.2 GHz
CPU) vs. over 150 sec required for Ncuts (2.66 GHz CPU [22]) per 0.15MP im-
age in MATLAB. We briefly describe it here because it serves as a fast mid-level
representation of the image that significantly improves the boundary detection
accuracy over raw color alone. While we describe this method in the context



Efficient Closed-Form Solution to Generalized Boundary Detection 525

of color, we emphasize that it is general enough to integrate a variety of other
image features, such as texture.

The method is motivated by the observation that regions of semantic interest
(such as objects) can often be modeled with a certain, potentially complex,
color distribution: each possible color has a certain probability of occurrence,
given the region. Specifically, we assume that the colors of any image patch are
generated from a distribution that is a linear combination of a finite number of
color probability distributions belonging to the regions of interest in the image.

Let c be an indicator vector associated with some patch from the image, such
that ci = 1 if color i is present in the patch and 0 otherwise. If we assume
that the image is formed by a composition of regions with colors generated
from a few color distributions, then we can consider c to be a multi-dimensional
random variable drawn from a mixture of distributions hi: c ∼

∑
i πihi. The

linear subspace of these distributions can be automatically learned by PCA
applied to a the set of indicator vectors c, sampled uniformly from the image.
Once the subspace is discovered, for any patch P sampled from the image and
its associated indicator vector c, its generating distribution (considered to be
the distribution of the foreground) can be obtained by PCA reconstruction:
hF(c) ≈ h0+

∑
i(c−h0)

�vi. The distribution of the background is also obtained
from the PCA model using the same coefficients, but with opposite sign: thus
we obtain a background distribution that is as far as possible (in the subspace)
from the foreground: hB(c) ≈ h0 −

∑
i(c− h0)

�vi.
Having computed the figure/ground distributions, we classify whether each

location in the image belongs to the same region as the current patch P . If
we perform the same classification procedure for ns (≈ 150) patches uniformly
sampled on the image grid, we obtain ns figure/ground segmentations for the
same image. At a final step, we again perform PCA on vectors collected from all
pixels in the image; each vector is of dimension ns and corresponds to a certain
image pixel, such that its i-th element is equal to the value at that pixel in the i-th
figure/ground segmentation. Finally we use, for each image pixel, the coefficients
of the first 8 principal dimensions to obtain a set of 8 soft-segmentations which
represent a compressed version of the entire set of ns segmentations. These soft-
segmentations are used as input layers to our boundary detection method, and
are similar in spirit to the normalized cuts eigenvectors computed for gPb [9].
In Figure 5 we show examples of the first three such soft-segmentations on the
RGB color channels.

5 Experiments

To evaluate the generality of our proposed method, we conduct experiments on
detecting boundaries in image, video and RGB-D data. First, we show results
on static images using only color. Second, we perform experiments on occlusion
boundary detection in short video clips. Multiple frames, closely spaced in time,
provide significantly more information about dynamic scenes and make occlu-
sion boundary detection possible, as shown in recent work [6–8, 24]. Third, we



526 M. Leordeanu, R. Sukthankar, and C. Sminchisescu

Fig. 6. Top row: input images from BSDS300 dataset. Middle row: output of Gb using
only color layers. Bottom row: output of Gb using both color and our soft-segmentation.

experiment with RGB-D video frames and show that depth can be effectively
combined with color and optical flow to detect moving occlusion boundaries.

5.1 Boundaries in Static Color Images

We evaluate Gb on the well-known BSDS300 dataset [16] (Figure 6). We com-
pare the accuracy and computational time of Gb with Pb [16], Gaussian deriva-
tives (GD) for the gradient of multi-images [15], and Canny [4] edge detectors
(Table 2). Canny uses brightness information, Gb and GD use brightness and
color, whereas Pb uses brightness, color and texture information. Gb and GD
use the same window size and Gaussian scale. For Gb we present two results,
one using color (C), and the other using both color and soft-segmentation based
on color (C+S). The total time reported for Gb (C+S) includes all processing:
computing soft-segmentations and boundary detection. Even though Pb does
not use segmentation we believe that our comparison is fair, since the total time
for Gb (C+S) is more than 6 times faster than Pb in MATLAB. Also, Pb has
the advantage of using learned textons, whereas Gb (C+S) uses only color. To
test our model’s robustness to overfitting we performed 30 different learning
experiments for Gb (C+S) using 30 images randomly sampled from BSDS300
training set and obtained the same F-measure on the 100 images test set (mea-
sured σ < 0.1%). The method of [17] obtains a higher F-measure of 0.68 on
this dataset by combining the output of Pb at three scales, but the same multi-
scale method could use Gb instead. The state of the art global Pb [9,22] achieves
an F-measure of 0.70 by using Ncuts soft-segmentations. Our formulation is gen-
eral and could easily incorporate better soft-segmentations as extra layers for



Efficient Closed-Form Solution to Generalized Boundary Detection 527

Fig. 7. Example boundary detection results on the CMU Motion Dataset

Table 2. Comparison of accuracy (F-measure) and total running time on BSDS. For
Gb (C+S), the running time includes the computation of soft-segmentations.

Algorithm Gb (C+S) Gb (C) Pb [16] GD [15] Canny [4]

F-measure 0.67 0.65 0.65 0.62 0.58
Total time (sec.) 3.0 0.5 19.5 0.3 0.1

improved performance. In fact, given a pool of figure/ground segments using
CPMC [25], we obtained higher quality soft-segmentations by applying the same
PCA reconstruction procedure from Section 4. This raised Gb’s F-measure to
0.70 [26].

5.2 Occlusion Boundaries in Video

State-of-the-art techniques for occlusion boundary detection in video are based
on combining, in various ways, the outputs of existing boundary detectors for
static color images with optical flow, followed by a global processing phase [6–8,
24]. Table 3 compares Gb against reported results on the CMUMotion Dataset [6]
We use, as one of our layers, the flow computed using Sun et al.’s public code [27].
Additionally, Gb uses color and soft segmentation (Section 4). In contrast to the
other methods [6–8, 24], which require significant time for processing and opti-
mization, we require less than 1.6 seconds on average to process 230×320 images
from the CMU dataset (excluding Sun et al.’s flow computation). Figure 7 shows
qualitative results.

5.3 Occlusion Boundaries in RGB-D Video

The third set of experiments uses RGB-D video of a moving person. We com-
bine low-level color and depth input with large-displacement optical flow [28].



528 M. Leordeanu, R. Sukthankar, and C. Sminchisescu

Fig. 8. Detecting occlusion boundaries in RGB-D by combining color, depth and flow

Table 3. Occlusion boundary detection on the CMU Motion Dataset

Algorithm Gb Sundberg et al. [7] He & Yuille [8] Sargin et al. [24] Stein et al. [6]

F-measure 0.62 0.61 0.47 0.57 0.48

Figures 1 shows an example of the input layers and the output of our method.
We learned the parameters of our model from only 3 images of human-labeled
silhouettes. Figure 8 shows qualitative results. Note that in a single formulation,
Gb detects the moving occlusion boundaries and successfully learns to ignore
most of the other ones.

6 Conclusions

We present Gb, a novel model and algorithm for generalized boundary detection.
Our method effectively combines multiple low-level and mid-level interpretation
layers of an input image in a principled manner to achieve competitive results
on standard datasets at a significantly lower computational cost than current
methods. Gb’s broad real-world applicability is demonstrated through qualita-
tive and quantitative results on detecting boundaries in natural images, occlusion
boundaries in video and moving object boundaries in RGB-D data.

Acknowledgements. This work was supported by CNCS-UEFICSDI, under
PNII RU-RC-2/2009, PCE-2011-3-0438, and CT-ERC-2012-1.

References

1. Roberts, L.: Machine perception of three-dimensional solids. In: Optical and
Electro-Optical Information Processing, pp. 159–197. MIT Press (1965)

2. Prewitt, J.: Object enhancement and extraction. In: Picture Processing and Psy-
chopictorics, pp. 75–149. Academic Press, New York (1970)

3. Marr, D., Hildtreth, E.: Theory of edge detection. Proc. Royal Society (1980)



Efficient Closed-Form Solution to Generalized Boundary Detection 529

4. Canny, J.: A computational approach to edge detection. PAMI 8, 679–698 (1986)
5. Ruzon, M., Tomasi, C.: Edge, junction, and corner detection using color distribu-

tions. PAMI 23 (2001)
6. Stein, A., Hebert, M.: Occlusion boundaries from motion: Low-level detection and

mid-level reasoning. IJCV 82 (2009)
7. Sundberg, P., Brox, T., Maire, M., Arbelaez, P., Malik, J.: Occlusion boundary

detection and figure/ground assignment from optical flow. In: CVPR (2011)
8. He, X., Yuille, A.: Occlusion Boundary Detection Using Pseudo-depth. In: Dani-

ilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314,
pp. 539–552. Springer, Heidelberg (2010)

9. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. PAMI 33 (2011)

10. Mairal, J., Leordeanu, M., Bach, F., Hebert, M., Ponce, J.: Discriminative Sparse
Image Models for Class-Specific Edge Detection and Image Interpretation. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304,
pp. 43–56. Springer, Heidelberg (2008)

11. Hariharan, B., Arbelaez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours
from inverse detectors. In: ICCV (2011)

12. Kanade, T.: Image understanding research at CMU. In: DARPA IUW (1987)
13. Di Senzo, S.: A note on the gradient of a multi-image. CVGIP 33 (1986)
14. Cumani, A.: Edge detection in multispectral images. CVGIP 53 (1991)
15. Koschan, M., Abidi, M.: Detection and classification of edges in color images. Signal

Processing Magazine, Special Issue on Color Image Processing 22 (2005)
16. Martin, D., Fawlkes, C., Malik, J.: Learning to detect natural image boundaries

using local brightness, color, and texture cues. PAMI 26 (2004)
17. Ren, X.: Multi-scale Improves Boundary Detection in Natural Images. In: Forsyth,

D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp.
533–545. Springer, Heidelberg (2008)

18. Meer, P., Georgescu, B.: Edge detection with embedded confidence. PAMI 23
(2001)

19. Baker, S., Nayar, S.K., Murase, H.: Parametric feature detection. In: DARPA Im-
age Understanding Workshop (1997)

20. Petrou, M., Kittler, J.: Optimal edge detectors for ramp edges. PAMI 13 (1991)
21. Lagarias, J., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of

the Nelder-Mead simplex method in low dimensions. SIAM Optimization 9 (1998)
22. Catanzaro, B., Su, B.Y., Sundaram, N., Lee, Y., Murphy, M., Keutzer, K.: Efficient,

high-quality image contour detection. In: ICCV (2009)
23. Shi, J., Malik, J.: Normalized cuts and image segmentation. PAMI 22 (2000)
24. Sargin, M., Bertelli, L., Manjunath, B., Rose, K.: Probabilistic occlusion boundary

detection on spatio-temporal lattices. In: ICCV (2009)
25. Carreira, J., Sminchisescu, C.: Constrained parametric min-cuts for automatic ob-

ject segmentation. In: CVPR (2010)
26. Leordeanu, M., Sukthankar, R., Sminchisescu, C.: Generalized boundaries from

multiple image interpretations. Techincal Report, Institute of Mathematics of the
Romanian Academy (August 2012)

27. Sun, D., Roth, S., Black, M.: Secrets of optical flow estimation and their principles.
In: CVPR (2010)

28. Brox, T., Bregler, C., Malik, J.: Large displacement optical flow. In: CVPR (2009)


	Efficient Closed-Form Solution to Generalized Boundary Detection
	Introduction
	Generalized Boundary Model
	Algorithm
	Computational Complexity
	Learning

	An Efficient Soft-Segmentation Method
	Experiments
	Boundaries in Static Color Images
	Occlusion Boundaries in Video
	Occlusion Boundaries in RGB-D Video

	Conclusions
	References




