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Abstract. Recent progress on Automatic Image Annotation (AIA) is
achieved by either exploiting low level visual features or high level se-
mantic context. Integrating these two paradigms to further leverage the
performance of ATA is promising. However, very few previous works have
studied this issue in a unified framework. In this paper, we propose a
unified model based on Conditional Random Fields (CRF), which es-
tablishes tight interaction between visual features and semantic context.
In particular, Kernelized Logistic Regression (KLR) with multiple visual
distance learning is embedded into the CRF framework. We introduce L,
and Lo regularization terms into the unified learning process for the dis-
tance learning and the parameters penalty respectively. The experiments
are conducted on two benchmarks: Corel and TRECVID-2005 data sets
for evaluation. The experimental results show that, compared with the
state-of-the-art methods, the unified model achieves significant improve-
ment on annotation performance and shows more robustness with in-
creasing number of various visual features.

Keywords: Automatic Image Annotation, multiple distance learning,
semantic context, alternating optimization.

1 Introduction

Automatic Image Annotation (ATA) has been an appealing research topic for
almost a decade. The challenge originates from the so called “semantic gap”,
namely the mismatch between image semantics and visual perception. A great
deal of research efforts have been devoted to bridge the semantic gap. Both low
level visual features and high level semantics are explored in previous literatures
[1-1q.

In recent years, most impressive works of ATA can be categorized into two gen-
eral classes. The first class is exploring visual feature learning techniques, such
as feature selection [L1], which combines multiple visual features to enhance
annotation performance. TagProp [12] obtains competitive result by using mul-
tiple similarity measurements learning. The second class is the semantic context
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modeling technique } In the scenario of AIA, semantic context refers to
contextual relationships between concepts that co-occur frequently. For exam-
ple, “bridge” and “water” often appear in the same image. Intuitively, for images
annotated with “bridge”, it is more likely to observe “water”. Some illustrative
images with human annotated keywords from [El] are presented in Figure [l
Probabilistic graphical model is adopted for semantic context modeling to boost
the performance of ATA ] Integrating these two paradigms to further lever-
age the performance of ATA seems very promising. However, very few previous
works have studied this issue in a unified framework.

In this paper, we propose the Kernelized Conditional Random Fields (KCRF),
a unified model that integrates semantic context modeling and sparse multiple
distance learning with tight interaction between them. To the best of our knowl-
edge, our work is the first attempt to integrate these two paradigms in a unified
framework for AIA. Within the unified framework, semantic contextual infor-
mation is directly utilized in learning the optimal multiple feature combination,
while at the same time the visual feature combination yields powerful support
for modeling the semantic context.

Our KCRF model is built on semantic level to capture the relationships be-
tween semantic keywords. Figure [ illustrates the graph structure and frame-
work of our model. In the graph model, sites (nodes) represent concepts and
edges refer to the interactions between them. To explore multiple visual feature
learning, we introduce KLR ﬂﬂ] into the site potential. Our kernel function is
based on a weighted sum of distances of multiple visual features. The parame-
ter set of our unified model is made up of distance weights (visual parameters)
and CRF parameters (semantic context parameters). Different from previous
layered approaches m, @] that separate feature learning from image labeling,
our multiple distance learning and CRF parameter estimation are conducted
simultaneously subjecting to one unified object function, resulting in close inter-
actions between the two paradigms. A pairwise L and Ly regularization term is
introduced into the unified object function. Specifically, we impose L; regulariza-
tion on the distance weight vector to obtain sparse distance combination, which
makes our model more robust when dealing with increasing number of visual fea-
tures. On the other hand, the semantic context parameters are penalized by Lo
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regularization. We use an alternating optimization approach to estimate the op-
timal distance weights and CRF parameters iteratively.

To evaluate our model, we conduct experiments on Corel [1] and TRECVID-
2005 datasets. Comparing with the state-of-the-art approaches, such as non-
contextual methods and semantic context modeling methods, our model achieves
the best performance on these two datasets with significant improvement over the
others. Particularly, the experimental results show that, with increasing number
of visual features, our model is more robust.

The rest of the paper is organized as follows: Section 2 reviews some related
work. Section 3 presents the model setting. Section 4 and Section 5 detail the
alternating parameter estimation and model inference respectively. Section 6
presents the experiment setup, and Section 7 provides the experimental results.
Section 8 concludes the paper.

2 Related Work

Most of the previous ATA work|19, 2,13] can be considered as propagating seman-
tic concepts from training images to unlabeled images based on visual similarity.
This idea is further developed by JEC [11] and TagProp [12]. Both methods fo-
cus on exploring optimal combination of multiple distances based on K-nearest
neighbor (KNN) technique. In [11]], the authors also tried to introduce L, regular-
ization for feature selection in logistic regression. However, due to the separation
of feature learning from image labeling, the logistic regression model does not
outperform the JEC model using equally weighted combination of various dis-
tances. Subsequently, TagProp [12] adopts metric learning in KNN and gives out
more competitive result.

Another remarkable technique is semantic context modeling. Feng and Man-
matha |15] use Markov Random Fields (MRF) and propose a framework for im-
age and video retrieval using discrete image features. Xiang et al. [13] adapted
MRF for semantic context modeling in ATA. Song et al. |[16] propose the Con-
textualized Support Vector Machine, which employs contextual information to
adjust the classification hyperplane.

Considering the effectiveness of semantic context modeling technique and op-
timal combination of visual features, it is a rational attempt to integrate them
into one consistent framework to achieve better performance. MMCRF [18§] tries
to make use of multiple visual features under Conditional Random Fields frame-
work, but the feature weights are learned independently from the image labeling.
Wang et al. [20] propose a Bi-relational Graph (BG) that combines the data
graph connecting images and the label graph connecting concepts through la-
bel assignments. Different from previous work, our model integrates semantic
context modeling and sparse multiple distance learning by using Kernel Logistic
Regression in CRF framework. Rather than resorting to a layered approach as
in |L1], our sparse multiple distance learning and CRF parameter estimation are
conducted simultaneously subjecting to one unified object function.
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3 Kernelized Conditional Random Fields

In this section we present our Kernelized Conditional Random Fields model. De-
tailed description of the kernelized site potential and edge potential is described
subsequently.

3.1 General Conditional Random Fields

Conditional Random Fields (CRF) [21] uses discriminative models for the nodes
and the interactions between nodes. Let G = (S, E) be a graph with site set
S =1{1,2,...,m} and edge set E. Let y = {y1,¥y2,...,¥m} be a set of random
variables indexed by S, and x € x be the feature vector of observed data.
Then (y,x) is said to be a conditional random field if, when conditioned on x,
the random variable y; obey the Markov property with respect to the graph:
P(yilx,ys—¢iy) = P(yilx,yn;), where S — {i} is the set of all nodes in G except
node i, N; is the set of neighbors of node i in G, and y, represents the set of
labels on nodes in the set 2. The conditional distribution over the labels y given
X is defined as,

Plyb) = pern( 30 A0+ 30 1) 1)

i€s i€S jEN;

where Z is a normalizing constant called the partition function, and -A and -7
are the site potential and edge potential respectively. Notice that in this paper
we only consider cliques of order up to two.

3.2 Kernelized Site Potential

ATA can be considered as a binary classification problem on each site of the
CRF model, i.e., y; € {—1,+1} represents the absence/presence of the i‘* con-
cept. Hence we model site potential using a local discriminative classifier which
outputs the probability of label y; conditioned on the observation x on site ¢
ignoring its neighboring sites. In order to facilitate the use of multiple image
features within the context modeling framework, we employ kernelized logis-
tic regression (KLR) [17], the nonlinear kernelized variant of 1ogistic regression,
to model the local class posterior. Given training set 7 = {(x",y")})_,, the
posterior of label y; is defined as,

1
Ploib, o) = 1+ exp(—yif(x, o))’ ®
where
F(x, o) Z o' K (x,x™ (3)
m=1
N is the number of training images, a; = (o}, a2, ...,a¥)T is the parameter for

site 7 and kernel K is the dot product matrix in a feature space. The construction
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of kernel will be explained in section 3.4. Finally the site potential is modeled

as,
1

1+ exp(—yif(x, o)) ) @
where u; is the parameter controlling the contribution of site potential to the
overall conditional distribution. Larger value of u; indicates stronger effect of
site potential. We use a spherical Gaussian prior with expectation value 1 for u;,
which will be described later. Note that the logarithm transformation ensures
that our model degenerates into KLR if u; = 1 and the edge potential in Eq[I]
is set to zero.

A(yi, x) = uilog(P(yilx, o)) = uilog(

3.3 Edge Potential

Using a linear discriminative model, we define edge potential as,

I(yi, y5, %) = vijyay; Py;]%), (5)

where v;; is the parameter on edge (i,j) to be estimated, and P(y;|x) is the
conditional probability of label y; given observation x. The edge potential is
designed to favor identical labels at a pair of sites. When v;; > 0, equal values
of y; and y; will raise the conditional probability Eq[Il with confidence P(y;|x),
while different value will cause punishment. In our experiment we use kernel
logistic regression [17] described in Section 3.2 to generate P(y;|x) before the
training procedure of our model. For each label y;(j = 1,...,m), a KLR model
is learned and then used to obtain P(y;|x). Hence, P(y;|x) can be regarded as
a constant in Eq[El

3.4 Kernel Construction

Through the use of Kernel our model is able to utilize multiple visual features
yielding stronger support to capture semantics. Specifically, a Gaussian radial
basis kernel is used on distance metric,

K(x,%') = exp(—dw(x,%x")/207%), (6)

where ¢ is the width of the Gaussian kernel. The distance metric d,, (x,x’) is
defined as a weighted sum of distances of image x and x’ on different features,

T
dw(x,x") = Z wydy (x, %), (7)

where T' denotes the number of features, d;(x,x’) is the distance on the "
feature, and w = (w1, wa, ..., wr) is the feature weight vector. A larger value of w;
indicates higher importance of the corresponding feature, whereas a non-relevant
feature will be assigned with zero value. As a result, the whole parameter set of
our unified model consists of two parts, i.e., the conventional CRF parameters
{(0u, us,vi5)jen, ies on sites and edges, and the feature weight vector w.
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3.5 Concept Graph

The concept graph of our model is constructed based on concept co-occurrence
in the training set 7 = {(x",y")}Y_;, where x" denotes the n'" image, y" =
(Y, v%, ..., yi) is the corresponding label vector with y' € {—1,+1} indicating
the absence or presence of the i*" concept, and N is the size of the training set. If
two keywords appear in the same training image, they are treated as associated,
and an edge between them is added to the graph G = (S, E). Accordingly, the
neighborhood of site i is defined as N; = {j|j € S A (i,j) € E}. We extract
a subgraph from G for every site to capture the semantic relationship more
precisely. The subgraph contains only the site in concern and its neighboring
sites as well as all the edges connecting them.

4 Alternating Parameter Estimation

Maximum likelihood is a widely used approach for CRF parameter estimation.
But the computation of the partition function in Eq[llis a generally NP-hard
problem. To avoid this, we resort to the pseudo-likelihood scheme, which uses a
factored approximation on every site such that

P(ylx) = [ P(yily: )Hzllewp< i x)+ > I(yiy;, %) > 8)

ies ies 7t JEN;

Then the negative log pseudo-likelihood on the training set T is defined as,

zz{uz e+ 3 vyl P zogzy}mmmw,

n=1ieS JEN;
9)

where F'(yP',x", a;) is defined as,

F(yi',x", ai) = log(1/{1 + exp(—f(x", ai)yi’)}), (10)
where f(x", a;) is defined in EqBl The partition function for site i on the n'”
observation is,

n

Y;

where z(y?,x", a;) is defined as

Ay X" ) = eoplwF (X" 00) + 3 v PO (g
JEN;

Ry and Rogrp are pairwise regularization terms on feature weight w and the
CRF parameters {(o,ui, vij)jen; fies respectively. As these two parts of pa-
rameters have different effect on our model, we impose different kinds of penalty
on them. Specifically, to prevent our AIA model from overfitting, we use Lo
regularization for Rorp. L1 regularization is adopted for Ry, to perform sparse
multiple distance learning, which encourages non-relevant feature’s weight to be
Zero.
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4.1 Alternating Parameter Estimation Procedure

An alternating procedure is proposed for parameter estimation. In CRF pa-
rameter estimation stage, the algorithm fixes w and optimizes (o, us, vij)jen;,
while in the sparse multiple distance learning stage, with fixed (o, us, vij)jen;,
it searches for the optimal w. At each stage of the algorithm, the regularization
term of fixed parameters is omitted, as it remains constant through the opti-
mization process. Consequently, the object functions of each stage differ slightly
with regularization terms. Detailed description of the object functions will be
given in subsequent sections. Before the training process, for each site 4, we build
a training set T; = {(x", y”)}ﬁil from the original training set 7' by randomly
selecting more balanced positive and negative samples. In our experiments the
parameter estimation procedure converge rapidly after two or three times of
parameters update alternations.

4.2 CRF Parameter Estimation

To optimize {(a,u;,vij)jen, tics, we fix w and omit the corresponding regu-
larization. The estimation task is then reduced to the same problem as learn-
ing CRF parameters. Since there are no shared parameters among all sites,
(o, us, vij)jen; can be trained per site. The negative log pseudo-likelihood of
site ¢ is,

N
L=-% {uiﬂyf,xn, o)+ 3 vyl P ") — ZogZ;L} T Ripp. (13)
JEN;

n=1

In practice, edge parameters tend to be overestimated that we need to penalize
them more. Hence we introduce piecewise Lo regularization terms on «;, u; and
v; Tespectively,

frr = ol Kat 2 s =124 20 3 o (14)

JEN;

where K is the kernel matrix calculated using Eqlflon the Training set T', A1, Ao
and A3 are constants controlling the strength of the penalty, which are chosen
empirically. Notice that the regularization term on ¢; is the same as KLR. The
regularization for u; forces it to stay around 1. The derivatives of EqI3 with
respect to «a; equals to

oL;

— KM, + M Kay, 1
da, u +MKa (15)

where M; = (M}, M2, ..., MM)T is a coefficient vector with each of its component
defined as

y; 1 y;
M = * — z(y, x", oy ! .
C ltenp(ypf(xmen)  Zp ; & )1y exp(yp f(x", a;))

(16)
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The derivatives of Eq[I3 with respect to w; is

N
oL; 1
auz = - Z {F(yznaxnaal) - gn Z'Z(yzlvxnvai)F(y:’vanaai)} + )\Q(Ui - 1)
v n=1 i

yi'
(17)
By differentiating EqI3] with respect to v;;, we will get
oy > YrPR X" () - zn D oura(yp X" en)) ¢+ Asvyy. (18)
n=1 yr

To minimize Eq[I3 we set its derivatives EqI5 EqlI7 and EqI8 to zero. EqI3
is concave when A1, A2 and A3 are given and can be easily minimized using a
projected gradient algorithm.

4.3 Sparse Multiple Distance Learning

At this stage we fix the CRF parameters and optimize the feature weight vector
w. Regularization term on CRF parameters is left out. We penalize w with L
regularization. The object function becomes,

T
Z Z {uz yz aX az + Z VijY; ynP |Xn) - lOgZin} + CZ |wt|’

n=14i€8 JEN; t=1
(19)

where C' is the coefficient controlling the level of sparsity of w. In practice
it is chosen empirically. As the absolute value function is not differentiable at
the zero value point, solving optimization problem Eq[I9 is harder than solving
differentiable optimization problems. Here we take the sub-gradient [22] of the
second term in Eq[I9 with respect to w; at zero,

X i 1 07} .
Z Z{ Lt emnl y?f(i‘n) o)~ 20 o, } + Csign(w,),  (20)

n=14eS

where sign(w;) = 1 if wy > 0, sign(wy) = =1 if wy < 0, and sign(w;) = 0 if
wy =0, and g(x™, a;) is defined as,

(x", o) Zamz{x XM (—dy (x™, x™) /20%), (21)

and the derivative of Z* in Eq[20 is,

8Zzn n n RV n . n 1
awt - zﬂ:z(yz ,X aaz)ulg(x aal)(yi 1 +el,p(7y;n,f(xn’az))) (22)

Yi

Using the method in [22], we compute the pseudo-gradient of the L1 penalty to
the extent that it does not change its sign. The limited memory BFGS algorithm
is adopted to obtain the optimization of the weight parameters.
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5 Model Inference

The inference problem of KCRF is to find the optimal label configuration y given
an image x:

y* « argmax P(y|x), (23)
y

where P(y|x) is defined in Eq[ll The iterative conditional modes (ICM) algo-
rithm is employed in our model. In the (k+ 1) iteration, given the observation

x and labels on neighboring sites yﬁv) obtained in the last iteration, the algo-

rithm sequentially updates each yi(k) to yi(kH) that yields maximal conditional

probability P(yi|y(k'3,x) defined in Eq The update rule can be written as
follows

(24)

?

. k k
St _ [ L P = 1y %) > Plys = ~1y) %)
—1, otherwise.

The ICM algorithm starts with the initial configuration that all labels are set to
be -1 and runs until convergence when two label vectors of consecutive iterations
are the same. If it does not converge after 10 iterations, the process will be
stopped. Ultimately it outputs the approximate result of the most probable
label configuration of the observation.

6 Experiment Setup

6.1 Experimental Datasets

Our experiments are conducted on two commonly used datasets: Corel 5k
Dataset: [1] is an important benchmark for AIA performance evaluation. It
contains 5000 images, where 500 of them are used for testing and the rest for
training. The whole vocabulary consists of 260 unique words with each image
annotated with 1-5 keywords; TRECVID-2005 Dataset contains about 108
hours broadcast news, which can well represents the real world scenario. A total
of 69,901 keyframes are extracted from these videos. It consists of 39 keywords.
For computational efficiency, we select training images from 90 videos and test-
ing images from the other 47 videos. For each keyword (concept), no more than
500 and 100 positive samples for training and testing respectively are included.
Finally 6,657 keyframes are used for training and 1,748 keyframes for testing.

6.2 Feature Extraction

22 visual features are utilized in the experiments, where 15 feature provided
by [12] are included. Apart from these features, we also extract Texture Co-
occurrence, Scalable Color, HarrWavelet, Edge Histogram, Color Moments, Color
Layout, and Color Correlogram according to MPEG7. All features except Gist
[23] are L1-normalized. Following previous work on distance calculation, we use
L2 metric for Gist, L1 for color histograms and x2 for the rest.
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6.3 Evaluation Measurements

For ATA performance evaluation, we use recall, precision and F1 measure. For a
given query word w, let |W¢g| be the number of images with label w in the test
set, |[Was| be the number of annotated images by our model with the same label,
then recall, precision and F1 are defined as recall = |WC|JV[r)GV|VIV1" precision =

We W 2 isi .
We MWl qnd F1 = 2xrecallxprecision o compute recall and precision for each
[War| recall+precision

keyword and then average them to measure the overall annotation performance.
F1 is calculated with the derived mean recall and precision.

7 Experimental Results and Discussions

7.1 Performance Evaluation on Corel

In this section we evaluate the annotation performance of our method. TagProp
[12] is chosen for comparison due to its state-of-the-art performance and adopting
a metric learning approach. The code we use is provided by the authors. Different
from TagProp, KCRF’s multiple distance learning is embedded with semantic
context, thus the resulted distance combination is expected to capture semantics
more precisely. We conduct 9 rounds of experiments, where we start with 14
visual features and add 1 new feature incrementally in each subsequent round
until all the 22 features are used in the last round. The F1 of all the 9 round
experiments are given in Figure Bl

0.43 040 041 041 041 0.41 0.41 041

038
\0.35 K CRF

038 - ——

033 029035 o35 0% 0 037 037 035 036 #TagProp

028 &P

14 15 1 17 18 19 20 2 22
Number of Visual Features

Fig. 3. F1 measure comparisons between KCRF and TagProp on Corel

It shows that KCRF outperforms TagProp in all cases, achieving the highest
improvement of 24.1% in F1 score when 14 features are used, where KCRF gets
0.36 while TagProp gets 0.29. Annotation accuracy increases from 14 features to
17 features are observed for both models, while KCRF is more stable producing
a smoother F1 score line. KCRF reaches the best F1 score of 0.41 with 17 fea-
tures, leading to an improvement of 10.8% over TagProp, which also reaches its
best F1 score of 0.37. F1 of KCRF remains the same afterward. But for TagProp
model, performance decrease occurs when more than 20 features are used. The
reason is that, the optimality of the distance weights is not guaranteed in Tag-
Prop, because it directly sets negative weight value to 0 to derive non-negative
weight vector |[12]. Unlike TagProp, KCRF introduces L; regularization to en-
sures sparsity of weight vector. Thus KCRF has higher stability with increasing
number of features.
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Table 1. Performance comparisons between KCRF and TagProp on Corel dataset.
N+, Length, Recall, Precision, F1 and Zero-weight denote the number of keywords
with non-zero recall value, average annotation length, average recall, average precision,
f1 score and number of features with zero weight respectively.

Models TagProp-14 KCRF-14 TagProp-18 KCRF-18 TagProp-22 KCRF-22
N+ 140 183 160 190 158 189
Length 5 5.2 5 4.9 5 5.0
Recall 0.33 0.41 0.42 0.47 0.42 0.48
Precision 0.26 0.33 0.33 0.36 0.32 0.36
F1 0.29 0.36 0.37 0.41 0.36 0.41
Zero-weight 2 6 9 9 10 10

We present some detailed statistics of 3 rounds of experiments in Table [l For
the limit of page space, we cannot give out all results. Note that in Table [ the
suffixes “-147, “-18” and “-22” in the model name denote the number of features
it uses. “KCRF-22” gives out the highest precision of 0.48 and the highest recall
of 0.36.

7.2 Evaluation of the Unified Model

In this experiment we will clarify that, the performance improvements of KCRF
given in previous sections are brought by integration of context modeling and
multiple distance learning, rather than by either one of them individually. Thus
we compare KCRF to these two separate methods: First, the candidate for mul-
tiple distance learning is obtained by removing context modeling from KCRF.
Specifically, we set the edge potentials to 0 and it becomes Kernel Logistic Re-
gression (KLR) with sparse multiple distance learning. We use KLR-l; to refer
to it in following sections. For KLR-l;, original KLR parameters and distance
weights are also estimated in an alternating fashion. Second, sparse multiple
distance learning is removed from our model, and we get the conventional Con-
ditional Random Fields (CRF) as a representative for context modeling. The
only difference between CRF and KCRF is the absence of multiple distance
learning. Distances of different features are combined with equal weight one for
CRF. The same distance metrics and kernel function are used for KCRF, KLR-I;
and CRF. Experiment is conducted on the Corel dataset. Here all the 22 fea-
tures are used. The annotation length of KLR-[; is fixed to be 5, while CRF and
KCRF can decide the length automatically.

Experimental results are shown in Table 2. It can be observed that KCRF
gives out significant performance superiority over KLR~l; and CRF. Specifically,
the recall, precision and F1 for our unified model are 0.48, 0.36 and 0.41 re-
spectively. It outperforms KLR-l; by 24% and CRF by 13.9% in F1. We also
provide comparisons between distance weights of 22 features learned by KCRF
and KLR-/; in Figure @ From the figure, KCRF generates more sparse weight
vector than KLR-/; and achieves better performance. It well demonstrates that
the proposed unified model is able to find the optimal distances combination and
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Table 2. Performance comparison with 3 | 1 I

KLR-l; and CRF on Corel dataset :z Eﬂ — JJHIKCRF
(E I |

¢ P&
Models KLR-l; CRF KCRF e

R I T SR A S SN
SR EICE I D
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N+ 157 166 189 G S WS T Y W
N D &9 &
Length 5 5.6 5.0 ¢
Recall 0.37 0.41 0.48
Precision 0.31 0.32 0.36 . .
F1 0.33 0.36 0.41 Fig. 4. Feature Weights of 22 Features Pro-
zero-weight 6 0 10 duced by KCRF and KLR-I;

achieves better performance, which is not obtainable when using only the sparse
multiple distance learning. Hence, the integration of sparse multiple distance
learning and context modeling has significant advantages over the separated
methods.

7.3 Performance Comparison on Corel

To further evaluate KCRF, we compare it to the TagProp [@], the semantic
context modeling MRFA [13], and the other ATA methods such as MBRM [19],
the supervised multi-class labeling (SML) ﬂﬂ], and the Nearest Spanning Chain
(NSC) E] These models are representative techniques, and some of them achieve
the stat-of-the-art performance so far. Figure [la) gives out the experimental
results.

Precision Recall F1 Precision Recall F1
HMBRM MSML ®NSC WMRFA MTagProp M KCRF ®MBRM mI-BG = TagProp ®MMCRF mKCRF

(a) Corel (b) Trecvid

Fig. 5. Performance Comparison with Other Methods on Corel and Trecvid Datasets

It shows that our KCRF model has the best performance with significant
improvement over the others. Specifically, the average recall, precision and F1
score of KCRF are 0.48, 0.36, and 0.41, realizing improvements in F1 score of
10.8% and 24.2% over TagProp and MRFA, which give out the second and the
third highest F1 of 0.37 and 0.33, respectively. Figure [0l gives some examples
of annotation results generated by KCRF and the corresponding ground-truth.
It shows that the annotations of our model captures the semantics of images
precisely.

7.4 Performance Comparison on TRECVID-2005

As MMCRF HE] also employs multiple visual features in CRF and achieves
very competitive result on this dataset, we choose it for comparison. Besides,
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Fig. 6. Comparisons of KCRF annotation results with ground-truth annotations on
Corel dataset and TRECVID-2005 dataset

MBRM [19], Tagprop [12] and the newly proposed BG model [20] are also in-
cluded for comparison. Experimental result is given in Figure[B(b). It shows that
our model also outperforms all the other methods with significant improvement.
Specifically, KCRF gives out the highest F1 score of 0.52, realizing an improve-
ment of 8.3% over TagProp and MMCRF, whose F1 scores are both 0.48. KCRF
also achieves the highest precision of 0.58. Some annotation examples of KCRF
are given in Figure [6l compared to the ground-truth. Specially, perfect match is
reported in the second keyframes.

8 Conclusion

We propose a novel Kernelized Conditional Random Fields model for ATA prob-
lem. It integrates semantic context modeling and sparse multiple distance learn-
ing in a unified framework. We conduct the experiments on the Corel dataset
and the TRECVID-2005 for evaluation. The experimental results show that
through integrated learning of “visual” parameters and “semantic” parameters,
our model is able to leverage the annotation performance significantly. Com-
pared to the state-of-the-art metric learning based AIA work, KCRF is more
robust and achieves higher annotation accuracy, especially with a bigger feature
set.
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