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Abstract. In this paper, we propose an effective locally nonlinear tone
mapping algorithm for compressing the High Dynamic Range (HDR) im-
ages. Instead of linearly scaling the luminance of pixels, our core idea is
to introduce local gamma correction with adaptive parameters on small
overlapping patches over the entire input image. A framework for HDR
image compression is then introduced, in which the global optimization
problem is deduced and two guided images are adopted to induct the
optimum solution. The optimal compression can finally be achieved by
solving the optimization problem which can be transformed to a sparse
linear equation. Extensive experimental results on a variety of HDR im-
ages and a carefully designed perceptually evaluation have demonstrated
that our approach can achieve better performances than the state-of-the-
art approaches.

Keywords: high dynamic range, tone mapping, locally nonlinear model,
guided image.

1 Introduction

HDR images can capture greater dynamic range of real world scenes than LDR
images by using 16 bit or even higher bits with floating point type. This wide
dynamic range allows HDR images to more accurately represent the intensity
levels in real world. Unfortunately, most of the modern display devices have
limited dynamic range. Hence, a number of tone mapping operators have been
proposed to compress the high dynamic range of HDR images to the displayable
range while preserve the visual contents[1–3]. These tone mapping operators are
useful not only for HDR photography but also for lighting simulation in realistic
rendering [4]. Therefore, the last three decades enjoy a boom of tone mapping
algorithms in both the computational photography community and computer
vision community [5, 4, 6–8].

In literature, the tone mapping operators can be roughly classified into two
categories: global operators and local operators. Global operators [9–13] can
be regarded as spatially uniform methods because the same mapping function
is used for all the pixels of the input HDR image. They are simple and fast.
However, they suffer from losing visual details in both bright areas and dark
regions because they compress all the structures and details without considering
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the local luminance variation. Therefore a variety of local operators which model
spatial adaptation by using locally changing functions have been proposed to
compress the dynamic range while maintain or enhance the details [6, 14, 15, 2,
3]. Most local operators decompose the input HDR image into different layers
[1] or areas [16]. Different mapping functions for each layer or area are adopted
to compress the dynamic range and final results are achieved by a combination
of these layers or scales after contrast reduction. Most of these local operators
suffer from halo effects which are critical in HDR images. Then several operators
have been proposed to improve this flaw [15, 2, 14, 3].

Although many excellent tone mapping operators have been proposed, tone
mapping algorithm is still far beyond perfection. None of the present approaches
have met the most challenging goal that an ideal tone mapping operator should
achieve perceptually natural LDR images with precise details as well as free of
any kinds of distortions or halo effect.

The main purpose of this paper is to introduce an effective tone mapping
operator which can achieve perceptually pleasing results with fine details. The
output LDR image has a high contrast and free of distortions or halo effects.
Instead of linearly scaling the luminance of pixels, we propose a new tone map-
ping algorithm based on local gamma correction with adaptive parameters. Our
method is based on the Weber-Fechner Law [17] that the human eye’s subjective
perception of brightness is related to the physical stimulation of light intensity
in a manner which is similar with the power function used for gamma correction.

Our method benefits from the following two main contributions:

(1). An effective locally nonlinear model based on the Weber-Fechner Law
[17] is proposed. Our model coincides with the nonlinear relationship between
the physical magnitudes of stimuli and the perceived intensity of the stimuli.
Compared with the locally linear model [8], our model has not only a more
reasonable physical explanation, but also a wider applicability.

(2). When solving our locally nonlinear model, we add two constraint items
into our energy function to avoid distortions and then achieve perceptually pleas-
ing LDR images. Two guided images are creatively adopted in these two con-
straint items. These two guided images are critical for a natural LDR image
which has fine details but no distortions.

2 Previous Work

Because of the great advantages over LDR images[4, 7], HDR images as well as
tone mapping algorithms are therefore drawing a world of excellent researchers’
attention [4, 15, 2, 3, 5, 1, 6].

Debevec and Malik [4] proposed that a HDR image can be created from three
or more LDR images of the same scene under different exposures. With the
development of photograph technology, we can get access to HDR cameras which
can take HDR photos and videos directly now. Therefore, there is an increasing
demand for tone mapping algorithms. These tone mapping algorithms can be
roughly classified into two categories: global operators and local operators.
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The global tone mapping methods are simply mapped the input HDR image
Ih(x, y) to an output LDR image I l(x, y) = f(Ih(x, y)), where f() is a global
compression function which is spatially invariant, such as linear function, gamma
function [18], histogram based function [10] and the function adapted to tone
reproduction curves [12]. These methods are simple and fast, but always fail in
balancing between unveiling visual contents and preserving details.

Hence, local tone mapping methods are the recent literature to compress the
high dynamic range while maintain or enhance the details. Most of the local tone
mapping methods decompose the input HDR image into several layers or areas,
apply different compressing algorithm in different layers or areas and recombine
all the layers or areas into a LDR image. Similar with Durand [6], Farbman
[14] decomposed the HDR image into a base layer and a detail layer, while the
base layer is obtained by an alternative edge-reserving smoothing operator and
the detail layer is got by subtracting the base layer from the input HDR image.
Recently, Lee [16] segmented the input HDR image into different parts using
K-means algorithm and then applied automatic gamma correction in different
parts. However, how to appropriately deal with the scale decomposition, layer
separation or image segmentation is an another difficult problem. Besides, these
methods have a reputation of causing halo artifacts.

Later, Li [2] improved the condition of halo artifacts by using a symmetrical
analysis-synthesis filter bank and applying local gain control to the sub-bands.
Results illustrated that the method of Li can achieve more satisfactorily than
other multi-scale based methods. An alternative approach was also proposed by
Fattal [15]. In their framework, the gradient field of the luminance image is ma-
nipulated by attenuating the magnitudes of large gradients as well as magnifying
the small ones. Satisfactory results can be finally achieved by solving a Poisson
equation. This gradient domain method is good at preserving fine details in dark
regions and avoiding common artifacts.

More recently, Shan [8] provided us with a totally new tone mapping op-
erator that performs locally linear adjustments on small overlapping windows
over the entire input HDR image. They cast the compression task as a global
optimization problem and achieve an optimal solution by solving a sparse equa-
tion. Locally linear method can effectively suppress local high contrast even in
challenging HDR images. However, this method fails when luminance value of a
local patch changes abruptly. An another impressive tone mapping method is the
Local Laplacian filters [3]. Paris proposed a set of image filters using standard
Laplacian pyramids to achieve edge-aware tone mapping. Local Laplacian filters
can produce consistently high-quality results, especially in details manipulation.
However, the complexity of this algorithm is a little high. Another imperfect
point is that high-frequency textures are amplified by their detail-enhancing
filter so that their result does not have a natural appearance.

As analyzed above, all these local operators firstly define a local measurement
and then find a simple mapping function such as linear scaling. Although these
tone mapping operators have achieved great success in many cases, the ideal
target is still far away.
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3 Motivation and Model

3.1 Motivation

We are motivated mainly by the following facts. On the one hand, the Weber-
Fechner Law [17] states that subjective sensation is proportional to the logarithm
of the stimulus intensity. Compared with LDR image, HDR image can more
precisely model the illumination variation in the real world. Thus it implies that
the relationship between the input HDR image and the desired output LDR
image is nonlinear and can be represented in a manner that is similar to the
power function used for gamma correction. On the other hand, locally linear
hypothesis which achieves great success in LDR image can not guarantee that
it is still reasonable in HDR image because luminance value of a HDR image
may vary a lot even in a local patch. The existing locally linear operator [8] (see
Figure 1(a)) abruptly adopts locally linear hypothesis and therefore causes some
distortions when a patch is bright enough or contains both dark and bright
pixels. For instance, when a patch contains both dark and bright pixels (see
Figure 1(c)), the dynamic range of the dark pixels will be compressed at the
same rate as the bright ones, which results in losing details in this patch, as
shown in Figure 2(c) and Figure 3(d).

Hence, a new locally nonlinear operator is needed to compress the contrast
of a local patch as well as enhance the visual contents, even when luminance in
this patch changes abruptly. Local gamma correction with adaptive parameters
is therefore proposed to meet this demand, as shown in Figure 1(b). Exten-
sive experimental results on a variety of HDR images have demonstrated the
correctness of our motivation.

3.2 Model

In this part, we introduce our local gamma correction model. Given an input
HDR image with radiance map I, we compute the radiance map J of the out-
put LDR image through J = f(I), where f(·) is a local compression function
which should satisfy the local monotonic constraint. Considering a local patch
Ωt centering at pixel t, the local gamma correction model is

j(i) = αti(i)
βt i ∈ Ωt, (1)

where j is a vector of luminance values in the local patch Ωt of the output LDR
image J and i is a vector of luminance values in the same local patch of the
input HDR image I. j(i) denotes the i-th element of j and the same with i(i).
Parameter αt and βt are constant values in each local patch, while αt denotes
the multiplier and βt is the index value. From the image’s perspective, α and β
are named guided images in this paper, as shown in Figure 3(e) and Figure 3(f)
respectively, which we will introduce in details in Section 4.3.

Note that the locally linear model is a particular case of our locally nonlinear
model. Actually, when parameter β equals 1, our model turns into the locally
linear model.
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Fig. 1. Illustration of the locally linear model and our locally nonlinear model. (a) the
locally linear model. (b) locally nonlinear model. (c) a local patch of the input HDR
image, the left are relevant digital numbers and the right are luminance values. (d) the
output local patch after tone mapping using our locally nonlinear method.

Fig. 2. Comparisons with the locally linear model [8]. (a) input HDR image. (b) result
of Shan(β1=0.7). (c) result of Shan(β1=0.9). (d) our result.

Following we illustrate the advantage of our locally nonlinear model over the
locally linear model in details. Instead of linearly compressing the contrast of a
patch in an input HDR image, we adopt the local gamma correction strategy
which can not only effectively compress the bright pixels but also enhance the
dark ones in one hit even in challenging patches, as shown in Figure 1(d) and
the sky-leaves part in Figure 3(h). The locally linear model usually fails when
luminance value of a local patch changes abruptly, as shown in Figure 2(d)
and Figure 5(c). In this situation, the dark pixels will turn bright because of
q(intercept item of local linear model [8]) which determines the base radiance
level (see Figure 1(a)). That is the reason why we adopt a new constraint item
of q. Meanwhile, the dynamic range of the dark region will be compressed at
the same rate as the bright pixels, which results in losing details in this patch.
These flaws can be witnessed in the black area of the cow in Figure 2(c) and
the sky-leaves in Figure 3(d). That is another reason why we introduce locally
nonlinear model instead of locally linear model.
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4 Algorithm and Implementation

4.1 Model Transformation

When dealing with nonlinear model, we generally transform them to another
domain in which nonlinear model turns to be linear model. After applying log-
arithmic transformation on both sides of Eq. (1),we get:

log j(i) = βt log i(i) + logαt i ∈ Ωt. (2)

Set y(i) = log j(i), x(i) = log i(i), wt = βt, bt = logαt, we get

y(i) = wtx(i) + bt i ∈ Ωt. (3)

Comparing Eq. (3) with Eq. (1), we find that locally nonlinear model in image
domain is equivalent to linear compression in logarithmic domain.

4.2 Model Solution

The most common way to solve the parameters of linear regression problem can
be described as

min
wt,bt

∑

i∈Ωt

(‖y(i)− wtx(i)− bt‖2 + λ‖wt‖2
)
. (4)

However, the optimal solution of problem (4) are not so good, as shown in
Figure 3(b). Therefore, inspired by [8], we adopt some prior information which
are presented as the guided images to guide parameter wt and bt. In order to get
no distortion results, we add a new constraint item in which b∗ (namely the α
image) is adopted to constrain the variation of parameter bt. We also introduce
a new approach to calculate w∗ (namely the β image) to guide parameter wt.
These two guided images will be discussed in details in Section 4.3. As a result,
the question now turns into minimize the local regression error et as follows

min
wt,bt

et, (5)

where
et = ‖yt − wtxt − bt‖2 + λt‖wt − w∗

t ‖2 + τt‖bt − b∗t‖2). (6)

Here λt = μw∗
t
−2 and τt = νb∗t

−2 are regularization parameters in which μ =
ν = 0.1. Denote yt = [y(1), y(2), . . . , y(K)]T and xt = [x(1), x(2), . . . , x(K)] in
which K is the pixel number in each window. Extend xt = [xt;1] ∈ R2×K ,

wt = [wt, bt]
T ∈ R2×1, w∗

t = [w∗
t , b

∗
t ]

T ∈ R2×1, Dt =

[
λt, 0
0, τt

]
∈ R2×2, we get

et = ‖xt
Twt − yt‖2 + 1

2
(wt −w∗

t)
TDt(wt −w∗

t). (7)

The second term in Equation (7) is a variation of typical manifold regulariza-
tion [19]. Similar with classical optimization of manifold learning, we can solve
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Equation (7) in derivation or iterative forms. Here we adopt the derivation form
[20]. By taking the partial derivatives of et with respect to wt and setting it to
zero, we have

wt = (xtxt
T +Dt)

−1(xtyt +Dtw
∗
t), (8)

Substituting Eq. (8) into (7) and then taking the partial derivatives of et with
respect to yt, we can get

det
dyt

= (It − xt
T (xtxt

T +Dt)
−1xt)yt − xt

T (xtxt
T +Dt)

−1Dtw
∗
t , (9)

where It ∈ RK×K is an identity matrix. Then the total regression error of the
input HDR image can be evaluated as

E(Y) =
∑

t

et. (10)

Note that yt is just a subvector of the target LDR luminance image Y. Define a
selection matrix St ∈ RK×N (N is the total number of pixels in the input HDR
image) as

St(i, j) =

{
1 if yt(i) is the j-th element of Y,
0 otherwise.

So yt = StY. By taking the derivatives of Eq. (10) with respect to t and setting
it to zero we get

UY = V, (11)

where
U =

∑

t

St
T
(
It − xt

T (xtxt
T +Dt)

−1xt

)
St, (12)

and
V =

∑

t

St
Txt

T (xtxt
T +Dt)

−1Dtw
∗
t . (13)

Now we conclude that the optimal compression can be computed by solving a
sparse linear Eq. (11). After we get the LDR luminance image Y in logarithmic
domain, we can achieve the LDR luminance image J in image domain by setting
J = exp(Y).

As mentioned earlier, our method operates on the input HDR image’s lumi-
nance channel I. In order to reconstruct the RGB channels, we adopt an approach
similar to method of Schlick[21]

Jc =

(
Ic
I

)s

J c ∈ {r, g, b}, (14)

where Ic and Jc denote one of the RGB color channels before and after tone
mapping. The parameter s is the saturation factor. Our results show that s ∈
[0.5, 0.8] works well for most HDR images.

The matrix U ∈ RN×N in Eq. (12) is symmetric and sparse, and the number
of nonzero elements of each row is (2

√
K − 1)2. The computation complexity of

constructing matrix U is about O(NK2).
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Fig. 3.Guided images and its affection. (a) input HDR image. (b) Shan’s result without
guidance map. (c) Shan’s guidance map[8]. (d)Shan’s result. (e) our α image. (f) our
β image. (g) result of local linear model with our two guided images. (h) our result.

4.3 Guided Image

In order to guide the modification of local contrast, Shan [8] proposed the concept
of guidance map. With the help of guidance map, they can get more satisfactory
result, as shown in Figure 3(b), (d). Bright regions in the guidance map indicate
that the same areas of the input HDR image should be enhanced, otherwise
should be compressed.

However, their approach usually fails when pixel values in a patch is bright
enough, as shown in Figure 2(b),(c) and Figure 5(b),(c). Therefore we add a
new contraint item b∗ (namely guided image α) to constrain the variation of
our intercept item b. From Figure 3(e), we can see that the guided image α
has given a reasonable restriction to our intercept item b which denotes the
luminance base. Figure 3(g) is achieved by the locally linear model with our two
guided images. Compared with Figure 3(d), Figure 3(g) is free of the distortions
caused by improper intercept item, as shown in sky parts in the rectangle.

A good estimation of guided images becomes very important since they are
so critical for a satisfactory result. Fortunately, we find that there are several
proper formulations. Following we discuss two essential components in construct-
ing guided images. Since illumination is the main reason of causing the high
dynamic range problem, local mean value is needed to estimate the illumination
[5]. Local variance is critical to preserve the details because the target of tone
mapping is compressing the high dynamic range while preserving the details.
If we take these two components into consideration, the explicit formulation of
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guided image is less critical. Finally, we choose the formulation of our two guided
images as follows:

w∗
t =

1

uρ1

t + λσρ2

t

. (15)

b∗t = uρ3

t + λσρ4

t , (16)

where ut and σt denotes the mean value and variation of the local patch centering
in pixel t respectively. λ = 0.1 balances between the contribution of mean and
value and ρi(i ∈ {1, 2, 3, 4}) are parameters which need to be toned.

Compared with the guidance map of Shan [8], our guided image has two
advantages. Firstly, our approach is not sensitive to parameters. Default value
ρ1 = 0.5, ρ2 = 0.2, ρ3 = 0.25, ρ4 = 0.05 works well for most HDR images.
Secondly, our approach can achieve more natural results, as shown in Figure
3(g). From Figure 3(c),(f), we can find that our guided image is more sensitive
to illumination changes, especially at the leaves parts and the path.

5 Experimental Results

In our experiments, it takes most of the time to construct the sparse matrix U,
similarly with soft matting [20]. Therefore a multigrid method [22] is adopted to
accelerate the computation. It takes about 5 seconds to process a 600×800 pixel
image on a PC with a 2.83GHz Intel Core2 Processor using Matlab. We have
tested several window size of 3*3, 5*5, 7*7, 9*9 and found that our algorithm
was not sensitive to window size. In order to see structures of input HDR images
more clearly, most of the input images are enhanced by global linear scaling.
The codes of the compared methods are downloaded from their homepage with
default parameters recommended by their original authors.

In Figure 4, we compare our approach with three typical global operators and
locally linear method [8]. Compared with global linear scaling, global gamma
correction can enhance more details. Global gamma correction in logarithmic
domain can get a more natural result. However, all these global results are still
unpleasing because of losing details or contrast. The locally linear model can
get a high contrast result, but it sometimes causes distortions, as shown in red
rectangle of Figure 4(e). On the contrary, our method can achieve a natural high
contrast result without distortion or halo effects.

Next, we compare our method with locally linear approach in Figure 5. Locally
linear method has some distortions in white regions, such as the white area in
Figure 2(b), (c) and Figure 5(c). This kind of distortions, to some extent, can
be improved by tuning the parameters. But it is really difficult to find proper
parameters which can balance between unveiling the details in dark region and
avoiding distortions in bright areas. Locally linear method also fails in patches
which contain both dark pixels and bright pixels, for instance the sky-leaves in
Figure 3(d). We have further found that local linear model is sensitive to patch
size since the luminance value is more likely to vary abruptly in a larger window.
Our method does not have these problems.
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Fig. 4. Results compared with global operators and locally linear algorithm[8]. (a)
input HDR image. (b) result of global linear scaling. (c) result of global gamma cor-
rection (β=0.2). (d) result of global gamma correction in logarithmic domain(β=0.6).
(e) result of the locally linear method (β1=0.9)[8] (f) our result. HDR image courtesy
of Mark D. Fairchild[23].

In Figure 6 and Figure 7, we compare our method to six state-of-the-art tone
mapping operators. Both Durand’s Fast Bilateral Filtering method [6] and Farb-
man’s edge-preserving multi-scale decompositions [14] have good performance in
terms of preserving the details in bright regions. However, Farbman’s method
outperforms in details enhancing and details reproduction in dark regions. Com-
pared with these two methods, our operator is better at preserving the details
as well as getting a higher contrast, as shown in the statue part in the middle
rectangle. Kuang [23] incorporates the spatial processing models in human vi-
sual system and propose a new image appearance model which is based on the
iCAM framework. Their method does well in some other HDR images, but fails
in Figure 6(d). Their result seems a little dim. Locally linear method [8] works
quite well in the roof areas but has some distortions in the window parts. Their
image has a high contrast but is not good at unveiling the dark regions with
the recommended parameters of his paper. Li [2] compresses HDR images with
subband architectures and successfully get a quite satisfactory result. Li’s sub-
band method can get a high contrast image with precise details in most HDR
images. However, in many cases, her method does not enhance details in dark
regions very well, as shown in the roof areas in the top rectangle. Figure 7(b)
also shows that the red channel of her result is a little abnormal. Paris [3] has
proposed an impressive method of tone mapping in terms of details enhancing.
Their method also does well in unveiling the dark regions as well as preserving
the details in bright areas. Unfortunately, their result does not have a high con-
trast or a perceptually pleasing appearance. Some distortions can also be found
in Figure 7(e). Compared to those state-of-the-art approaches, our approach can
effectively compress the dynamic range of the bright areas as well as enhance
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Fig. 5. Results compared with the locally linear model. (a) input HDR image. (b) the
best results of the locally linear model balanced between compression and distortion:
β1=0.7. (c) results of the locally linear model using his recommendatory parameter:
β1=0.6,β2=0.2,β3=0.1. (d) our result. HDR image courtesy of Mark D. Fairchild[7].

Fig. 6. Results compared with six state-of-the-art approaches. (a) input HDR image.
(b) result of Durand [6]. (c) result of Li [2]. (d) result of Kuang [23]. (e) result of
Farbman [14]. (f) result of Shan(β1 = 0.6,β2 = 0.2,β3 = 0.1) [8]. (g) result of Paris[3].
(h) our result. HDR image courtesy of Paul Debevec[4].
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Fig. 7. More comparisons with Li[2] and Paris[3]. (a),(d) input HDR image. (b) result
of Li [2]. (e) result of Paris[3]. (c),(f) our result.

the details in dark regions without distortions or artifacts. From the perceptual
perspective, our result has a high contrast and looks natural.

6 User Study

Finding whether a tone mapping operator suffers from distortions or halo effects
is an easy work. However, it is quite difficult to evaluate whether this tone
mapping operator is better than that operator because there is no convincing
objective criteria. Fortunately, Yoshida[24] has done a perceptual evaluation of
tone mapping operators. Therefore, we designed a similar perceptual evaluation
of the above six state-of-the-art tone mapping operators.

The experiment was performed on the Internet with the participation of 23
human observers. The original input HDR image and output LDR images of
seven operators were displayed on four web pages. Four perceptually criteria
were tested in this experiment, namely naturalness, overall contrast, detail re-
production in dark and bright regions. The observer was asked to vote at most
two images to the displayed seven LDR results according to one of the above
four criteria. In each web page, eight images were displayed randomly in case of
interact. All of the 23 participants were graduate students and researchers of our
Lab. None of them were known for the goal of our experiment or tone mapping
operators. Table 1 shows the vote results on Figure 6. Due to the limited space,
more details about the experiments and more vote results on other tested images
will be illustrated in the supplementary.

From Table 1, we can find that our method achieved better performances than
the state-of-the-art approaches in terms of naturalness and detail reproduction
in dark regions. Methods of Shan[8] and Paris[3] did well in detail reproduction
in bright regions while Li’s approach[2] outperformed in overall contrast.
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Table 1. Perceptual evaluation of the seven tone mapping operators on Figure 6

���������Criteria
Author

Durand Li Kuang Farbman Shan Paris Our

Naturalness 2 7 1 8 1 4 15

Overall Contrast 1 15 0 4 1 4 9

Details in Dark Regions 3 2 2 4 1 8 12

Details in Bright Regions 6 2 1 3 13 10 1

Total Votes 15 26 4 19 16 26 37

7 Conclusions

In this paper, we have introduced a new local operator for HDR image compres-
sion. The main contributions of our work are from two aspects. First, we propose
an effective locally nonlinear model-local gamma correction with adaptive pa-
rameters. Our model has three properties: reasonable physical explanation, wide
applicability and easy implementation. Second, we introduced two constraint
items into our energy function and induced a close form solution by solving a
sparse linear equation. With two guided images, our algorithm can not only ef-
fectively preserve the fine details but also achieve a natural high contrast result
without any distortions or halo effects. Comparisons with six state-of-the-art
methods have demonstrated that our approach can achieve better performances
than the state-of-the-art approaches. Future work will concentrate on expanding
our locally nonlinear model and applying it to different possible applications.
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