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Abstract. We present an online video segmentation algorithm based
on a novel nonparametric Bayesian clustering method called Bayesian
Split-Merge Clustering (BSMC). BSMC can efficiently cluster dynami-
cally changing data through split and merge processes at each time step,
where the decision for splitting and merging is made by approximate
posterior distributions over partitions with Dirichlet Process (DP) pri-
ors. Moreover, BSMC sidesteps the difficult problem of finding the proper
number of clusters by virtue of the flexibility of nonparametric Bayesian
models. We naturally apply BSMC to online video segmentation, which is
composed of three steps—pixel clustering, histogram-based merging and
temporal matching. We demonstrate the performance of our algorithm
on complex real video sequences compared to other existing methods.

1 Introduction

Clustering is a primitive problem widely used in many computer vision applica-
tions. While clustering algorithms have typically been invented for static data,
some applications involve dynamic data evolving over time, which often makes
the problem much more difficult; clustering results should be consistent in the
temporal domain and adaptive to the changes of existing data and the arrivals of
new data. Clustering with such constraints is called evolutionary clustering [1]
and most of existing algorithms are limited to simple extensions of standard
clustering techniques by enforcing temporal smoothness [1, 2].

In computer vision, video segmentation is an important example of evolution-
ary clustering. As a generalization of image segmentation, it aims to cluster the
pixels into related groups throughout an input video. However, video segmen-
tation is not straightforward to be handled by ordinary evolutionary clustering
techniques because natural videos often involve drastic changes and complex
cluster structures. Due to this challenge, many video segmentation algorithms
are designed in batch method, which process the entire spatio-temporal video
volume offline [3–5]. However, batch processing on the spatio-temporal volume
is generally expensive in time and space, and often intractable; the development
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of fast and robust online video segmentation algorithm would be essential for
the situations with limited resources and real-time requirements.

On the other hand, many video segmentation algorithms suffer from the choice
of the proper number of segments as it dynamically changes over time. One possi-
ble solution is using nonparametric Bayesian methods such as Dirichlet Process
Mixture (DPM) [6] based on the Dirichlet process [7]. There is a prior work
to apply the DPM to adapting the number of clusters over time in evolving
datasets [8]. For video segmentation, a DPM based algorithm was proposed by
extending the static DPM using MCMC for inference [9]. However, both gener-
alizations assume slow evolutions of data. Especially in [9], videos are assumed
to be moderately changing and relatively simple because of the limitation of the
expensive MCMC steps for inference.

In this paper, we propose an online video segmentation technique based on
a novel clustering algorithm called Bayesian Split-Merge Clustering (BSMC).
BSMC efficiently organizes clusters through split and merge processes and de-
termines the number of clusters in evolving data, based on the Dirichlet process.
It is inspired from Bayesian Hierarchical Clustering (BHC) [10]—a probabilistic
version of agglomerative hierarchical clustering. BSMC is a probabilistic version
of top-down and bottom-up split-merge clustering, where the initial clustering of
the current data is given by the model at the previous time step. The proposed
algorithm efficiently handles the temporal variations of data by incremental up-
date of clustering through split and merge operations from the initial clusters
at each time step; it maintains structural consistencies in time and adapts to
substantial changes from old clusters. Note that BHC is a bottom-up cluster-
ing algorithm, which is not easily extended for evolving data. BSMC is nicely
applied to the online video segmentation problem and efficiently handles the
drastic variations in real-world video sequences with greater accuracy compared
to other online segmentation method [9]. The advantages of our video segmen-
tation algorithm are as follows:

• Contrary to many existing algorithms, the proposed algorithm is an online
algorithm.

• It performs cluster-wise split-merge inference for clustering in contrast to
point-wise inference in DP mixture models; at each time step, it can rapidly
adapt to dynamic changes in video, while MCMC methods require many
iterations to converge to the solution.

• It sidesteps the difficult problem of finding the proper number of segments
by employing flexible nonparametric Bayesian models.

This paper is organized as follows. We first describe general nonparametric
Bayesian clustering in Section 2 and discuss BSMC algorithm in Section 3. Sec-
tion 4 describes the application of our algorithm to video segmentation. Our
technique is tested on synthetic data and real video sequences, and its perfor-
mance is illustrated in Section 5.
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2 Nonparametric Bayesian Clustering

2.1 Mixture over Partitions

Clustering on the input dataset X = {x1, . . . ,xN} is a task to find a mutually-
exclusive partition {X1, . . . ,XK} of X, where K can vary from 1 to N . The
number of possible partitions is O(NN ). In nonparametric Bayesian clustering
models, each partition of X is given a probability that measures how well the
partition reflects the structure of a dataset. Hence, one can write the marginal
probability of X as a mixture over partitions as

p(X) =
∑

φ∈Φ(X)

p(X, φ) =
∑

φ∈Φ(X)

p(X|φ)p(φ), (1)

where Φ(X) is a set of all partitions of X , and p(φ) is a prior distribution over
partition φ. p(X|φ) is a likelihood for X given a partition φ, which is given by

p(X|φ) =
Kφ∏

k=1

p(Xφ
k), (2)

where {Xφ
k}Kφ

k=1 is a set of Kφ clusters corresponding to φ. Each cluster is char-
acterized by its parameter θk, which defines a probabilistic model generating
the data that belong to the kth cluster.1 In non-Bayesian models, we find the
optimal parameters for all clusters by point estimation. In Bayesian models, we
place a prior distribution over parameters and integrate them out. Therefore,
the probability of cluster p(Xφ

k)—in other words, the probability that the data

in Xφ
k are independently drawn from the same model—is computed as

p(Xφ
k) =

∫ { ∏

xn∈Xφ
k

p(xn|θk)
}
p(θk)dθk, (3)

which is computed easily provided that p(θk) is a conjugate prior for p(xn|θk).
Using these probabilities, we compute a score for a partition φ by the joint
probability p(X , φ). As a result, finding the optimal partition of X reduces to
finding the partition with maximum joint probability as

φ∗ = argmax
φ∈Φ(X)

p(X, φ). (4)

Note that we do not place any hypothesis on the number of clusters, which means
that solving Eq. (4) bypasses the model selection problem. However, finding φ∗

is often impractical because of the huge search space and the intractable com-
putation of posterior p(X|φ). The most popular approach to solve the problem
is MCMC sampling, which draws indefinite number of samples from p(φ|X) and
finds reasonable partitions based on the samples.

1 For example, if the underlying probabilistic model is Gaussian, the parameter would
be the mean and covariance of a cluster.
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2.2 Prior for Partitions

To define the joint probability p(X, φ), we need a prior p(φ) that is a probability
distribution over partitions φ. One of choices for the prior is Dirichlet process
(DP) [7], which is a random measure on discrete distributions with infinite sup-
ports; Dirichlet Process Mixture (DPM) refers to the nonparametric Bayesian
models with the DP prior. Under the DP, a random partition of dataset is easily
drawn by Chinese restaurant process [6], which is a predictive distribution of DP.
Suppose that x<n = {x1, . . . ,xn−1} are partitioned into K clusters {Xk}Kk=1.
Then, for the nth point xn,

p(xn ∈ Xk, 1 ≤ k ≤ K|x<n) =
Nk

n+ α− 1
(5)

p(xn ∈ XK+1|x<n) =
α

n+ α− 1
, (6)

where Nk = |Xk|. This implies that xn may belong to the existing clusters
or create a new cluster. Here, α is a concentration parameter that controls the
tendency to create a new cluster. Using these conditional distributions, the joint
distribution of φ is given as

p(φ) =
αKφ

Γ (α)

Γ (N + α)

Kφ∏

k=1

Γ (Nφ
k ), (7)

where Γ denotes the gamma function. Note that this probability is not affected
by the ordering of the data, which is referred to as exchangeability.

2.3 Bayesian Hierarchical Clustering (BHC)

Instead of drawing indefinite number of samples from p(φ|X), one can reduce
the search space and find the optimal solution by selecting the best among the
possible partitions. BHC [10], a probabilistic version of agglomerative hierarchi-
cal clustering, reduces the search space using a tree representing the hierarchical
structure of the dataset. It computes the probability of merging based on the pos-
terior distribution of DPM and merges the pairs whose merging probability is
the largest. Unlike traditional hierarchical clustering methods, it automatically
determines whether the tree requires additional merging or not by means of the
posterior probability. Therefore, it is free from the model selection problem.

More specifically, let X be a dataset to be clustered. BHC computes p(X|T ),
where T is the tree composed of the elements in X. Instead of summing all
possible partitions, BHC sums over the tree-consistent partitions, which are the
partitions existing under the tree, representing the hierarchical cluster struc-
ture of the dataset. p(X|T ) is computed recursively from the bottom, where
each data point corresponds to one node. Let Xi be a set of data in the sub-
tree rooted by Ti, Xj be another node in the same level and Xk = Xi ∪ Xj .
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Initial clustering First split Second split Merge

Fig. 1. Example of clustering by BSMC. A single cluster is split and merged through
the split and merge stage to perform clustering.

There are two possible options: Xi and Xj belong to the one cluster Xk or they
are separate clusters. Therefore, p(Xk|Tk) is recursively computed as

p(Xk|Tk) = πkp(Xk|Hk) + (1− πk)p(X i|Ti)p(Xj |Tj), (8)

where Hk is a hypothesis that Xk is a single cluster and πk is a prior probability
for Hk that is recursively computed from the DP prior. (Note that p(Xk|Hk) is
equivalent to (3).) By the Bayes rule, the posterior probability for Hk is

P (Hk|Xk) =
πkp(Xk|Hk)

πkp(Xk) + (1− πk)p(X i|Ti)p(Xj |Tj)
, (9)

and p(Hk|Xk) > 0.5 means that Xi and Xj should be merged. Therefore, the
algorithm can determine the stopping level naturally while greedily merging the
pair with the largest posterior probability in Eq. (9) at each iteration.

3 Bayesian Split-Merge Clustering (BSMC)

BHC is a batch clustering algorithm that always starts its merge process from
the bottom level; it is not desirable for evolving data since previous clustering
results are ignored completely. Therefore, we propose an alternative hierarchical
clustering algorithm called Bayesian Split-Merge Clustering (BSMC). BSMC is a
probabilistic version of traditional split-merge clustering algorithm such as ISO-
DATA [11]. As its name implies, BSMC obtains the optimal partition through
split and merge procedures. The decision of splitting or merging depends on the
approximate posterior of partitions based on Bayesian clustering model. There-
fore, it can bypass the model selection problem. Moreover, BSMC is appropriate
for evolving data since it can start clustering from any intermediate level of the
propagated tree.

Given an initial partition, we recursively split clusters in so-called the split
stage as long as the probability of splitting is larger than 0.5. After that, pairs of
clusters are merged in a recursive manner as long as the probability of merging
is larger than 0.5, which is done in the merge stage. The procedure for BSMC is
illustrated in Fig. 1.
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3.1 Initial Partitions

At each time step, the initial partition φ0 is obtained from the previous clustering
result. If a new data point enters, a new cluster is created for the new data point.
If no initial partition is given—for example, at the first time step, φ0 is set to a
single cluster containing all data.

3.2 Split Stage

Let X = {x1, . . . ,xN} be a dataset, φ0 be an initial partition and φ be the
incumbent solution at a new time step. (The time index is omitted for simplicity.)

Initially, we set φ = φ0, which corresponds to {Xφ
k}Kφ

k=1. In the split stage, we
test whether any of these clusters should be split into two or more clusters. By
the Bayesian clustering model, the posterior probability of φ is given by

p(φ|X) =
p(X |φ)p(φ)∑

φ′∈Φ(X) p(X|φ′)p(φ′)
. (10)

To estimate this posterior without considering all partitions, we test the parti-
tions made by splitting current clusters. Let φs be a partition that the current
cluster Xφ

k is split into two clusters Xφs

i and Xφs

j and other clusters remain
unchanged. One can propose φs by any appropriate bisecting algorithm such as
k-means clustering, spectral clustering or graph cut. Then, we obtain

p(φ|X) <
p(X|φ)p(φ)

p(X|φ)p(φ) + p(X|φs)p(φs)
=

{
1 +

p(X|φs)p(φs)

p(X|φ)p(φ)
}−1

, (11)

which computes a loose upper bound of p(φ|X) using φs only. The upper bound
gets tighter as p(X , φs) increases. Although the bound is not tight for the accu-
rate computation of p(φ|X), it is sufficient to check the optimality of φ.

Suppose that we define the split probability psplit as

psplit = 1−
{
1 +

p(X|φs)p(φs)

p(X|φ)p(φ)
}−1

. (12)

If psplit > 0.5, p(φ|X) < 0.5 by Eq. (11). Therefore, we conclude that φ is not
optimal. The ratio in psplit can easily be computed since the terms for clusters

other than Xφ
k are canceled out. Using DP prior in Eq. (7), psplit is given by

psplit = 1−
{
1 +

αΓ (Nφs

i )Γ (Nφs

j )p(Xφs

i )p(Xφs

j )

Γ (Nφ
k )p(X

φ
k)

}−1

. (13)

If psplit > 0.5, we set φ = φs. Then, for the two split clusters Xφs

i and Xφs

j , we
repeat the same procedure recursively as long as psplit > 0.5. The recursion for
all initial clusters achieves the partition that is not desirable to split any further.
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Fig. 2. A partition that requires postprocessing. The
isolated black circle in the red cross cluster can simply
be allocated to the red cross cluster in the postprocessing
stage.

3.3 Merge Stage

In the merge stage, we determine whether any pairs of split clusters should be
merged—for example, the [blue] and the [green] clusters in Figure 1 are more

natural to be merged after split stage. Let Xφ
i and Xφ

j be a pair of clusters
under the current optimal partition. By the similar arguments in Section 3.2,
we check whether p(φ|X) is large enough by proposing a merged partition. Let

φm be a partition that merges Xφ
i and Xφ

j into Xφm

k and leaves other clusters
unchanged. Similar to the split stage, pmerge is given by

pmerge = 1−
{
1 +

Γ (Nφm

k )p(Xφm

k )

αΓ (Nφ
i )Γ (Nφ

j )p(X
φ
i )p(X

φ
j )

}−1

. (14)

If pmerge > 0.5, we conclude that φ needs to be improved. As in BHC, we compute
pmerge for all pairs of clusters and merge the pairs with the largest pmerge. We
repeat the same procedure as long as the largest pmerge > 0.5.

3.4 Quality of the Solution

We can prove that p(φ|X) always increases by the splitting and merging:

1−
{
1 +

p(X|φ′)p(φ′)
p(X|φ)p(φ)

}−1

>
1

2
⇐⇒ p(X|φ′)p(φ′) > p(X|φ)p(φ), (15)

where φ′ ∈ {φs, φm}. Although this does not guarantee the optimality, it justi-
fies the use of BSMC for the situations where good initial solutions are given,
like video segmentation. According to our observation, BSMC provides quality
solutions for complex and fast changing videos.

3.5 Postprocessing

Contrary to other point-wise inference algorithms, BSMC is a cluster-wise algo-
rithm. Although this cluster-wise operations make BSMC efficient, some point-
wise errors might occur as presented in Fig. 2. Since the overall cluster structure
is found after the split and merge stage, these errors are easily fixed by allocat-
ing each point to the clusters having the closest center. The entire procedure of
BSMC is summarized in Algorithm 1.
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Algorithm 1. Bayesian Split-Merge Clustering

Input: Initial partition φ0 and dataset X = {x1, . . . ,xN}.
Output: Optimal partition φ∗.

Initialize φ = φ0.
• Split stage
for k = 1, . . . , Kφ do

Propose φs by bisecting Xφ
k into Xφs

i and Xφs

j .
if psplit > 0.5 then

Split Xφ
k into Xφs

i and Xφs

j (Set φ← φs.)

Recursively split Xφs

i and Xφs

j .
end if

end for
• Merge stage
Compute pmerge for all pairs of split clusters.
while The maximum pmerge > 0.5 and Kφ > 1 do

Merge the maximum pmerge pair (φ← φm) and update pmerge.
end while
• Postprocessing
for n = 1, . . . , N do

Allocate xn to the cluster with the closest mean.
end for
φ∗ ← φ.

4 Video Segmentation

BSMC can be naturally applied to video segmentation in the spatio-temporal
domain. In this section, we describe three steps to accomplish video segmentation
results perceptually consistent and temporally coherent.

4.1 Pixel Clustering

We first extract RGB color values (or xy-RGB vectors to incorporate spatial con-
straints) from all pixels in the input image and cluster them. Since our method
does not suffer from the problem of choosing the proper number of segments, it
can deal with changing number of segments throughout the video. Furthermore,
we can provide the clustering result in the previous frame as an initial partition
when a new frame arrives. Then, the initial clusters are typically split near the
boundaries of moving objects and the split clusters merge to build new clus-
ters. This approach gives segmentation results that are consistent in the major
boundaries. We call this procedure pixel clustering.

4.2 Second Merge Stage by Histogram Feature

Since pixel clustering employs local features only, clustering results may not be
consistent temporally due to the jitters in the regions involving complex textures
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and coherent with human perception that often treats semantically related but
textured areas as a single segment.

To overcome such limitations, we adopt the idea of region-based segmentation
proposed in [4]. We run the second merge stage, based on histogram features
obtained from regions resulting from the pixel clustering. Using these histogram
features, the similarities between regions are measured by color distributions of
the regions. Therefore, two textured regions with similar color distributions may
have high probability of merging. To define the similarity between histograms,
we introduce a probabilistic model for histograms. Let h = [h1 . . . hK ]� be a
K-bin color histogram. Following [12], we use the multinomial distribution for
the likelihood of histograms, which is given by

p(h|β) = M !
∏K

k=1 hk!

K∏

k=1

βhk

k , (16)

where M =
∑

k hk is a normalization constant2, β = [β1 . . . βK ]� is a parameter
that defines the probability of each bin. We use the Dirichlet distribution for β
that is a conjugate prior of multinomial distribution as

p(β|π) =
Γ
(∑K

k=1 πk

)

∏K
k=1 Γ (πk)

K∏

k=1

βπk−1
k , (17)

where π is a hyperparameter for Dirichlet distribution. Now, we can define pmerge

under these probabilistic models. Denoting two sets of histograms by Hi =
{hi,1, . . . ,hi,Ni} and Hj = {hj,1, . . . ,hj,Nj}, which represent two clusters of
regions, the probability of merging these two clusters is given by

pmerge = 1−
{
1 +

Γ (Ni +Nj)p(H i ∪Hj)

αΓ (Ni)Γ (Nj)p(Hi)p(Hj)

}−1

. (18)

We iteratively merge regions as long as the maximum pmerge is greater than
0.5. Note that we can restrict candidates pairs to be adjacent to each other to
incorporate spatial constraints.

4.3 Matching Clusters between Frames

Since our algorithm is based on the splitting and merging process, maintaining
segment identities across frames is not straightforward . We present a simple
solution to match clusters between adjacent frames to maintain cluster identity.
Suppose that Ht and Ht+1 are the sets of histograms extracted from the regions
made by clustering at the frame t and t + 1, respectively. We perform another
merge stage on Ht ∪Ht+1; if ht,i and ht+1,j belong to the same cluster, they
are matched and identified as a same segment. An additional benefit of this
strategy is improved temporal coherency; erroneously separated segments in Ht

can be merged using additional information given by Ht+1. The entire process
of segmentation is summarized in Fig. 3.

2 We normalize h and multiply M to compare regions with different sizes.
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Fig. 3. Video segmentation process. 1. Passing initial partition 2. Pixel segmentation
using BSMC 3. Histogram-based merging. 4. Matching two frames.

5 Experiments

5.1 Clustering Simulation

To evaluate the solutions by BSMC, we compared BSMC with collapsed Gibbs
sampler for DPM [13], BHC [10] and DPChain [8] on a synthetic dataset.
The dataset is composed of 16 frames evolving over time where points in each
frame are generated from a Gaussian mixture model (Fig.4(a)). Throughout the
sequence, the characteristics of data including the number of clusters change
drastically over time, which violates the assumption of temporal smoothness in
evolutionary clustering.

For all algorithms, we used the Gaussian likelihood and Gaussian-Wishart
prior as parameters:

p(x|μ,Λ) = N (x|μ,Λ−1) (19)

p(μ,Λ) = N (μ|m, (τΛ)−1)W(Λ|W , ν) (20)

where μ is the mean of a cluster, Λ is a precision and {m, τ, ν,W } are hyperpa-
rameters. In all experiments, we set m and W to the sample mean and precision
of the dataset and fixed τ = 0.01 and ν = 15. BSMC employed k-means clus-
tering for bisection. We iterated 100 times for the collapsed Gibbs sampler and
DPChain. For DPChain, initial labels are given by the result of the previous
time step. We controlled the smoothness parameter λ to 0.5 (DPChain1) and 1
(DPChain2). Smaller λ means more temporal smoothness. For all algorithms ex-
cept BHC, we conducted clustering 10 times and averaged the results to handle
randomness.
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Fig. 4. (a) Synthetic dataset generated using Gaussian mixture models with moving
centers. (b) Average computing time in seconds.

According to our experiments, the accuracies of all algorithms are almost
identical. However, in terms of running time, BSMC is faster at least by three
orders of magnitude than all other algorithms (Fig. 4(b)). The computing time of
BSMC is dominated by the bisecting algorithm due to its cluster-wise inference.
Therefore, provided that the bisecting algorithm is efficient, BSMC would be
significantly faster while maintaining comparable clustering performance.

5.2 Video Segmentations

We tested our algorithm on real world video sequences, which include dynamic
movements and complex patterns. We compared our method with a offline al-
gorithm, hierarchical graph-based video segmentation (EHGBVS) [4], and an
online algorithm, Bayesian order-adaptive clustering (BOAC) [9].

For pixel clustering, we used k-means clustering in the split stage, and the
Gaussian likelihood and Gaussian-Wishart prior for underlying probabilistic
models. For color histograms in histogram merging, we employed 3D color his-
tograms. For the BOAC, we used 4-bin RGB histograms for each channel and
set the window radius to 2. We iterated 100 times for the first frame and 2 ∼ 5
times for the rest of frames. For EHGBVS, we used the default settings provided
in the project website.3

Qualitative Comparison. We tested five sequences: skating (180 × 320, 185
frames), jump (224 × 352, 157 frames), sprint (320 × 480, 442 frames), matrix
(272 × 480, 171 frames) and earth (170×400, 98 frames).4 Note that, contrary to
the online algorithms such as BSMC and BOAC, EHGBVS is a batch algorithm

3 http://neumann.cc.gt.atl.ga.us/segmentation/
4 All videos are downloaded from YouTube except the earth sequence, which is ob-
tained from http://cpl.cc.gatech.edu/projects/videosegmentation/ [4].

http://neumann.cc.gt.atl.ga.us/segmentation/
http://cpl.cc.gatech.edu/projects/videosegmentation/
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128 128 128 128 128
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433 433 433 433 433
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166 166 166 166 166

48 48 48 48 48
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Fig. 5. Comparison of three video segmentation algorithms. From top to bottom, skat-
ing, jump, sprint, matrix and earth sequence are presented. From left to right, original
sequence and the results by BSMC, BSMC with spatial constraints, BOAC and EHG-
BVS are illustrated. Frame numbers are shown at upper-left corners.
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Fig. 6. Average ARI and NMI values of three algorithms for five sequences

that performs a global optimization for segmentation. Also, it can maintain seg-
ment identities in 3D spatio-temporal volume and has advantage to visualize
results with less flickering. However, our algorithm still demonstrates visually
good performance compared to EHGBVS with consistency in region boundaries
while BOAC produces many noisy segments (Fig. 5). As the tested videos in-
volve nontrivial patterns and drastic motions, BOAC requires many iterations for
convergence. BSMC was approximately 4 ∼ 8 times faster than BOAC in our
MATLAB implementation; for the skating sequence, ours took 207 secs while
BOAC took 1647 secs. EHGBVS is implemented and run on a completely dif-
ferent systems with parallel architecture; direct comparison of running time is
unavailable.

Quantitative Evaluation. We compared three algorithms quantitatively based
on ground-truths manually constructed by five people. We evaluated the seg-
mentation result by Adjusted Rand Index (ARI) [14] and Normalized Mutual
Information (NMI) [15] for randomly selected frames from each sequence. We
emphasize again that EHGBVS is an offline method which is expected to out-
perform online methods since it clusters past, present and future frames simulta-
neously. BSMC outperforms the BOAC except for the matrix sequence for both
ARI and NMI, while being comparable to EHGBVS as illustrated in Fig. 6.

6 Conclusion

We proposed a novel on-line clustering algorithm called Bayesian split-merge
clustering. BSMC can cluster evolving data efficiently and flexibly, while pre-
serving temporal consistency and adapting to drastic changes. We applied our
algorithm to online video segmentation through three steps—pixel clustering,
merge by histogram, and temporal matching—and obtained good segmentation
results with significantly improved efficiency.
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