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Abstract. Local image descriptors are generally designed for describ-
ing all possible image patches. Such patches may be subject to complex
variations in appearance due to incidental object, scene and recording
conditions. Because of this, a single-best descriptor for accurate image
representation under all conditions does not exist. Therefore, we pro-
pose to automatically select from a pool of descriptors the one that is
best suitable based on object surface and scene properties. These prop-
erties are measured on the fly from a single image patch through a set
of attributes. Attributes are input to a classifier which selects the best
descriptor. Our experiments on a large dataset of colored object patches
show that the proposed selection method outperforms the best single
descriptor and a-priori combinations of the descriptor pool.

1 Introduction

Representing local image structures is important for many computer vision tasks
such as (object) recognition, wide baseline matching and tracking. In these tasks,
a generic image descriptor is typically chosen which should be well-suited for
describing all possible image patches.

Image patch appearance is determined by combinations of material properties,
such as color and texture, with accidental scene properties such as illumination
conditions, viewpoint, scale, and so on. A successful image descriptor should
have high discriminative power between material properties, while remaining
invariant against disturbing instances of scene-accidental conditions.

Invariance, however, is inversely related with discriminative power [1, 2]. Many
excellent image descriptors have been designed [3] or optimized [4] to find
a good trade-off between invariance and discriminative power. Nevertheless, a
single descriptor cannot be optimal in all cases. Consider for example a patch
containing highlights in the top row of figure 1a. Using a highlight-invariant
descriptor would increase the matching score. On the other hand, consider the
bottom row of figure 1a. Using the highlight-invariant descriptor may actually
remove the discriminating characteristic. A similar argument holds for material
properties such as texture and color. For the example in the second row of
figure 1a it makes little sense to use a color descriptor since it becomes unstable
with little color present [1]. The conflicting demands on the degree of invariance
and between material representations cannot be resolved by a single descriptor.
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(a) (b)

Fig. 1. (a) Example input patches to our method. The rows contain corresponding
patches under a range of photometric and geometric disturbances. (b) Schematic of the
descriptor selection algorithm.

In this paper, we propose a method to select the best descriptor for a single
patch. For example, if we can detect the difference between a strong scene-
accidental highlight and a glossy material surface in figure 1a, then we can select
a suitable different descriptor in both cases. With this aim, we identify material
properties [5, 6] and scene-accidental properties [1, 3] which we will use in a
supervised learning scheme that can take mismatching costs into account. See
figure 1b for a schematic overview of our approach. While we are not aware of
any articles in which physical properties are related to descriptors on a per-patch
basis, we review relevant works in the following.

2 Related Work

A local image descriptor can be optimized discriminatively out of combined
variations of atomic operations such as smoothing, angular quantization, spatial
pooling and feature normalization [4]. Alternatively, a projection can be learned
on (sift) features to reduce descriptor size and simultaneously improve matching
performance [7] or visual word assignment in retrieval [8]. These methods take
a descriptor and improve its overall performance, resulting in a better single-
purpose descriptor for all patches. It is, however, not possible to tune a descriptor
to a single patch, as we propose in this paper.

For category-level image classification, the best image-level descriptor can
be learned for each category. When such supervised information is available,
various machine-learning techniques can learn the best descriptor combination
by boosting [9–11], multiple kernel learning [2], topographic filter maps [12],
dimension reduction [6, 13] or the Fisher criterion [14]. These methods cleverly
exploit the intra- and inter-class variance between the image categories. However,
when category labels are not available, as for example in feature tracking or
wide-baseline matching, these methods cannot be applied. We propose a generic
method that is suitable for such applications by selecting the best descriptor
based on the material properties of a single patch.
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Material recognition is a generalization of texture recognition, which is widely
studied, see e.g. [15]. Recently, more generic material classes such as glass, metal
and fabric have been proposed [6] and followed-up by [13]. These methods aim
to find the named material class of a given image, such as wood, leather or stone.
In this paper, however, we are not as much interested in the class per se, as this
would require a large database of common material classes. Alternatively, we
propose to find the best image descriptor of a patch based on its structural and
surface reflectance properties.

Surface reflection can be characterized by the bidirectional reflectance dis-
tribution function (BRDF). The BRDF represents the reflection ratio for all
surface locations under all possible illumination and viewing directions. Despite
the complexity of the BRDF, there are methods to estimate it under constraints
on object shape or illumination direction [16–18]. In this work, we are inter-
ested in unconstrained shapes and illuminations and therefore focus on simpler
features.

3 Descriptor Selection Using Surface and Scene
Properties

To select the best descriptor for an image patch, it is important to identify
features that can estimate material properties such as colorfulness, roughness,
shininess etc. Moreover, the pool of available descriptors to choose from has to
be diverse enough to emphasize or ignore those properties that are important for
recognition. For example, a smooth shiny patch from an apple will benefit from
keeping the shininess and perhaps not focusing on edges too much. On the other
hand, a cast shadow or the position of a strong highlight is scene accidental, and
therefore better ignored. The material properties should be able to measure and
represent such effects from an image patch whereas the image descriptors should
ideally be able to distinguish between various levels of invariance. Such levels of
invariance apply to the object’s structure, such as edge-based vs. pixel-based,
but also on photometric invariant properties such as highlights, shadows and
shading.

3.1 Photometric Representations

Photometric invariance can be modeled by the dichromatic reflection model [19].
In this model, an RGB vector f = (R,G,B)T is the vector summation of the
body reflectance with the specular interface reflectance

f = e(mbcb +mici), (1)

where e is the intensity of the light source, cb is the color of the body reflectance,
ci the color of the interface reflectance, the scalarsmb and mi depend on the sur-
face orientation and represent the magnitude of the body and interface reflection
respectively.
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Table 1. Image representations and descriptor names

Intensity Chromatic
Normalized
Chromatic

Hue

Representation O3 [O1, O2]
[
O1
O3

, O2
O3

]
O1
O2

Invariant to - Highlights Shadows Highlights
& Shadows

Descriptor name I.pix/I.grad C.pix/C.grad N.pix/N.grad H.pix/H.grad

For representing image invariants we consider the transformation to the op-
ponent color space [1, 3]. Save scaling factors, the transformation is given by

⎛
⎝

O1

O2

O3

⎞
⎠ =

⎛
⎝

R−G
R+G− 2B
R+G+B

⎞
⎠ . (2)

The opponent color components are combined in four different representations.
First, the chromatic components O1 and O2 are separated from the intensity
component O3. On itself, O3 has no invariance properties but does generally con-
tain most information regarding image structure. Due to the subtraction of RGB
components, O1 and O2 are invariant with respect to shifts in illumination such
as highlights. Nevertheless, O1 and O2 are still sensitive to illumination scalings
such as shadow and shading. To this end, we also consider intensity-normalized
chromatic components O1

O3
and O2

O3
. These intensity-normalized invariants how-

ever, are again sensitive to illumination shifts. Therefore, the set of photometric
representations is complemented with hue = O1

O2
, which is invariant to both illu-

mination scalings and shifts. The full set of photometric representations that we
consider in this paper is given in table 1. Patch descriptors and image attributes
are extracted from these representations as detailed in the following.

3.2 Image Attributes

Low-level image attributes have been used to measure a degree of objectness
in a bounding box [20], or in a functional extension of the spatial pyramid
beyond spatial information towards more generic types of pooling [21]. Here we
are interested in low-level features to identify surface structure and reflection.
Surface reflectance properties such as shiny, matte or gloss have been found to
correlate with simple image statistics [16, 22, 23]. Surface structures such as
crinkles in leather or grains in paper have been proposed to be detectable by
subtracting a bilateral filtered image from the original [6]. Further, the difference
in edge types in e.g. metal, glass, or paper can be linked to the variance of the
gradient magnitude or orientation [13]. We will evaluate and extend these low-
level surface features to link structure and reflectance surface qualities to an
image descriptor. To avoid any confusion between local image descriptors which
are also often called features we will use the term attribute for low-level image
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features that measure structural and photometric surface/scene properties. We
detail these attributes in the following.

(a) Interface reflectance. The dichromatic model in equation 1, has a term
for the object reflectance mbcb and a term for the interface reflectance, mici .
The latter term, representing gloss, matte/shininess, has been found to correlate
with the skew (third-moment) of the intensity histogram [22]. Other research
also uses the standard deviation, 10th, and 90th percentile [23] and kurtosis [16]
to represent the shape of the intensity histogram to predict interface reflectance.
The amount of interface reflection is a valuable attribute for selecting between
the highlight invariants ([O1, O2] ,

O1

O2
) and the highlight variants (O3, [

O1

O3
, O2

O3
)]).

Therefore we use these intensity statistics over O3 as patch attributes.
(b) Photometric stability. The invariant representations introduced in the

previous section are insensitive to various photometric transformations. However,
this comes at a price that is paid in numerical instability [1]. The hue = O1

O2

invariant is unstable for colors on the black-white axis (i.e. low saturation),
whereas the intensity-normalized O1

O3
and O2

O3
, invariants are unstable near zero

intensity. The occurrence of this instability depends on the surface reflection, and
varies per patch. Therefore, these features are well-suited attributes to determine
if an invariant representation is suitable. To this end, we use the mean intensity
μ(O3), and mean saturation μ(

√
O2

1 +O2
2) as photometric stability attributes.

Moreover, to obtain a richer representation, we compute the same statistical
values for saturation as we did for intensity in the previous paragraph.

(c) Photometric response ratio. To obtain attributes specifically tuned to
each invariant representation, we relate the response in the full-color represen-
tation to the response for each invariant. Different invariant representations will
respond differently to shadows, shading, gloss and highlights and consequently
this difference allows descriptor diversification. To this end, we compute the av-
erage gradient ratio [24] for each invariant with respect to the full color gradient,

|∇O3|
|∇[R,G,B]| and similarly for other representations.

(d) Geometric stability.We include a sense of the geometric stability of the
patch under a viewpoint change. The basic idea is that a small geometric trans-
formation on a stable patch should lead to a small differences in the descriptor.
Large differences may indicate high sensitivity to the disturbance. This is also a
structured attribute since it gives a sense of homogeneousness. The sensitivity
is measured by a set of self-dissimilarities after applying a geometric transfor-
mation to the patch. Specifically, we depart from a centered sub patch (80%)
cropped out of the image. The region of interest is then up- and down- scaled
and translated such that a set of geometrically transformed versions of the initial
patch is obtained. We take the average descriptor distances over two scales and
eight directions as geometric stability attributes for each image descriptor.

(e) Micro-texture. The surface structure of a patch may be rough or smooth.
Metal, for example, is typically smooth, whereas fabric is fine grained. To distin-
guish between rough and smooth surfaces, we follow the approach of Liu et al. [6]
to detect micro-texture. Specifically, we subtract a bilateral smoothed version
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from the original image patch. As attributes we use the sum of the residual, and
we do this for each of the four invariant representations separately.

(f) Softness. Material may also be soft as plastic, or hard as metal. As sug-
gested in [13], we adopt the standard deviation of the gradient orientation, and
the standard deviation of the gradient magnitude to measure material softness.
The authors’ rationale is that soft materials have soft edges, with softly varying
transitions in gradient orientation and magnitude. We compute this for each of
the invariants and add the mean values to obtain a richer statistical representa-
tion.

(g) Texturedness. For a notion of material texturedness we build on the
work of [25] in which it is shown that a weibull parameterization of images
results in textural diversification. Specifically, the contrast distributions of nat-
ural images generally follow the 2-parameter integrated weibull distribution. We
compute these two parameters, β and γ in each invariant, and also compute
additional statistics by counting the number of edges above a noise threshold.

(h) Colorfulness. As a measure of colorfulness we compute a single valued
hue entropy score, −∑

(p log2 p) where p is the histogram of the hue pixels O1

O2
.

3.3 Image Descriptors

For constructing image descriptors, we use the photometric representations as
given in table 1. Besides these photometric variation, we model structure vari-
ation with multiple differential orders. Zeroth-order descriptors are histograms
extracted from pixels per color channel, whereas first-order (sift) descriptors are
based on the per-channel gradient orientations [3]. Note that the order of differ-
entiation affects the invariance properties of the descriptor. We do not consider
higher order representations. Spatial pooling of the descriptors is obtained by
aggregating features in a 4 × 4 cell grid as originally proposed by Lowe. For
zeroth-order descriptors we compute 8-bin histograms of pixel values. For first
order descriptors the gradient orientations are quantized in 8 bins. Furthermore,
feature contributions are weighted by a Gaussian window centered on the im-
age patch. Finally, the descriptors are normalized to unit length. The invariance
properties and the names of the descriptors are given in the bottom row of
table 1, where pix denotes zeroth-order, and grad indicates first-order.

3.4 Descriptor Selection

We relate attributes to descriptors in a supervised learning setup. Our setup is
similar to [4]. However, where they learn the best single-descriptor parameters
over a training set, we leverage the patch attributes to learn the best descriptor
for a single patch. We start with a ground truth set which has for each patch
a corresponding transformed version of the same patch (under homography or
photometry, more details below) and 100 randomly sampled non-matches. Such
a set allows the computation of a matching score in average precision (AP) for
each descriptor type per patch. The attributes of the patch are the input for our



178 I. Everts, J.C. van Gemert, and T. Gevers

supervised setup whereas our goal is to select the descriptor that gives the best
average precision score.

Let X = {x1, x2, . . . , xn} be the patch ground truth data set containing n
patches, where xi is a p-dimensional vector containing the p attribute values.
The corresponding average precision scores Yi = {yi1, yi2, . . . , yid} for patch i are
computed by ranking all retrieved patches according to each descriptor distance
for all d descriptors. We aim to find a learning model L that maximizes the
average precision for a patch, i.e., L(xi) = argmaxi(Yi). Note that the cost of
misclassification is not uniformly distributed over the descriptor classes since
each descriptor typically gives a different average precision score. The misclassi-
fication cost ci of selecting a descriptor for a patch i is the score of the selected
descriptor minus the score of the best possible (oracle) descriptor in the pool,
ci = YL(xi) − Yarg maxi(Yi). To take non-uniform misclassification costs into ac-
count, we adopt the cost-sensitive support vector machine (SVM) approach by
Zadrozny et al. [26]. This formulation incorporates the misclassification costs ci
directly in the SVM optimization problem. Note that the classes are descriptor
types. For each binary g-vs-h sub-class problem (e.g. I.grad vs H.pix, see table 1)
this becomes

minimize
w, ξ, k

1

2
wTw + C

n∑
i=1

ciξi

subject to bi(w
T xi + k) ≥ 1− ξi, ξi > 0,

where bi =

{
+1 if yig > yih;
−1 otherwise.

(3)

Thus, bi denotes +1 if the average precision score of xi of descriptor g is higher
than the average precision of xi of descriptor class h; and −1 otherwise. If two
patch descriptors have the same average precision score (yig = yih) in the training
phase, we assign the patch to both descriptor classes (the misclassification cost
ci will subsequently be 0). We use class voting to obtain the multiclass label
from all 1-vs-1 class-pairs. In the case of equal votes we assign the sample to the
descriptor with the highest a-priori score on the training set.

Note that our 1-vs-1 setup allows us to utilize the full dataset for each de-
scriptor class-pair. If we first assign the best descriptor to each patch, a binary
descriptor-pair classifier could only train on those samples where the global max-
imum is obtained by one of the two classifiers. Because we use the pair-wise
maximum bi for each descriptor-pair, we do not suffer from this problem.

4 Experiments

It is our hypothesis (fig. 1b) that the best descriptor is dependent on two fac-
tors: the accidental scene properties and the patch’s surface material properties.
To evaluate this hypothesis we create a separate dataset for each factor. The
influence of the surface material is tested by extracting attributes from a clean,
canonical, patch without any distortions. This allows us to judge the influence of
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the surface alone. Alternatively, to evaluate the influence of the scene, we extract
attributes from a photometric/geometric distorted patch. In this case, however,
it cannot be helped that the surface will also have some influence. We refer to
the patch used for prediction as the query patch, and the aim is to match the
same patch in a set of non-matching patches.

In our experimental setup we use pairs of matching patches. For every match in
the database, we sample 100 random non-matches, which is repeated 10 times.
Retrieved patches are ranked based on the Euclidean distances to the query
patch of the respective descriptors. From this we compute the average precision
for measuring retrieval performance per descriptor. One half of the dataset is
used for training, and the other half is used for testing. Note that a patch is
exclusively in the train or in the test set.

4.1 Synthetic Dataset

We start with a synthetic dataset to evaluate the descriptors and attributes under
controlled circumstances. The synthetic dataset is generated from the work of
Barnard et al. [27] where measurements of 1995 surface reflection spectra and
287 illumination spectra are provided. The camera sensitivity function allows
computation of RGB values given the surface albedo and illumination spectrum.
We create ’Mondrian’-style images by inserting colored blocks of random size at
random locations on a 64x64 image lattice. We keep the illuminant color fixed,
rotate the colored blocks by a random degree, and introduce some skew and
noise, so as to reflect a more diverse range of image content.

Pairs of matching patches are generated by applying a geometric or photo-
metric disturbance to a synthetized image. Geometric disturbances encompass
a translation or rotation. Photometric disturbances are achieved by applying a
scaling (shadow and shading) or offset (highlights) to all RGB channels, see eq. 1.
The location and extent of the disturbance is governed by an anisotropic Gaus-
sian with a random location and covariance. The disturbances are progressively
increased, in five steps, where we generate a dataset consisting of 1000 matching
image pairs per disturbance level. This is repeated for increasing amounts of
foreground blocks, which denotes a basic notion of image complexity. See figure
2 for some example patches.

Matching performance per descriptor under each of the disturbances is shown
in figure 3. The figure shows that pixel-based descriptors almost always outper-
form gradient-based descriptors on this dataset. This is partly due to the fact

Fig. 2. Example patches of the synthetic dataset. The patches on the right side of a
patch-pair are distortions of the respective patches to the left side (translation, rotation,
shadow/shading, highlight, noise).
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Fig. 3. Influence of geometric and photometric disturbances on descriptor matching
performance. Mean average precision is plotted against the disturbance level on the
x-axis. Pixel-based (pix) and gradient-based (grad) descriptors are extracted from in-
tensity, chromatic, normalized chromatic and hue representations, denoted by I., C.,
N. and H (see table 1). Figures a-f are the result of matching experiments in which
the query patch is in canonical form. In figures g-l the query patch is distorted. Note
that the per-descriptor performances are averaged over all disturbances against known
numbers of foreground blocks to obtain the ‘complexity’ figures in f and l.

that the set of colors in the dataset is limited and distinct. However, as can be
seen in figures 3 a-b and g-h, it stands out that pixel-based descriptors are consid-
erably less sensitive to geometric disturbances than gradient-based descriptors.
Naturally, there is no difference between canonical or distorted query patches if
the disturbance is purely geometric, as in figures 3a, 3g and 3b, 3h.

Pixel-based intensity-only (I.pix) descriptors fail when shadows and highlights
are applied to the image (figures 3 c-d and i-j ) as expected. However, un-
der additive gaussian noise, the I.pix descriptors are superior when the patch
is presented in distorted form. Gradient-based descriptors suffer more from
noise in general. Furthermore, gradient-based opponent color descriptors are
also sensitive to shadows, while normalized opponent color descriptors appear
sensitive to highlights, which is in accordance with the respective photometric
invariance classes. Gradient-based intensity descriptors also suffer from high-
lights because most edges comprise of color transitions which may become less
prominent in the vicinity of highlights. It appears to be more difficult in gen-
eral to retrieve the canonical form based on a distorted query patch than vice
versa (see figures 3 c-e and i-k). This is because the disturbance increases
the average similarity to all patches (you may find a highlight if you look
for it). Increased image complexity (figures 3 f and l) generally results in im-
proved matching performance for all descriptors. However, pixel-based descrip-
tors (other than intensity) suffer significantly less from the absence of image
structure.

In table 2 we show classification rates when using attributes to predict a
patch’s disturbance level on the synthetic data. We evaluate each disturbance
individually, using an SVM trained on 90% of the data, and tested on 10%
in 10 random folds. The results show that attributes can reasonably detect
the disturbance levels (chance performance for the five disturbance levels is
20%).
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Table 2. Per-patch classification rates for prediction of the disturbance level

Translation: 78.5± 8.3% Rotation: 78.6 ± 14.0% Noise: 79.3 ± 10.1%
Shadow: 83.8± 6.0% Highlight: 71.3 ± 13.1% Complexity: 65.9 ± 8.0%

4.2 Aloi Dataset

The Aloi dataset [28] consists of images of 1000 objects under a variety of imag-
ing conditions. These include the illumination direction, illumination color and
object viewpoint. The recording setup consists of five light sources, positioned
on a hemisphere aslant to the object. Three cameras are positioned next to each
other underneath the light sources. Here, we consider images from the two outer
cameras that are furthest apart and use eight different light source combinations.
Thus, we consider two recordings for every of eight illumination conditions, lead-
ing to a total of 16 variations of object appearance.

Patches are extracted in similar spirit to [4]. First, planar homographies be-
tween the cameras are computed based on correspondences between sift de-
scriptors extracted from interest points detected by the harris-laplace detector
on images from ‘canonical’ illumination condition l8 (all light sources switched
on). For this, we use a standard ransac procedure. We impose additional con-
straints based on camera vicinity, i.e. the transformation should be small and
near-translational, regardless of object geometry. Using the obtained homogra-
phy, we propagate the feature detections in the canonical image l8 to all other
images and extract rectangular image patches proportional to the detection scale.
The non-planarity of most objects causes unbiased geometric variations in the
image patches. The patches are resized to 64x64 pixels and patches outside the
range of 64±20 pixels are discarded. The dataset consists of about 200K patches.
See figure 1(a) for an example.

The descriptor pool is augmented with Osift and Csift descriptors, as these
have been shown to be the single optimal choice for a wide range of matching and
recognition tasks [3]. These descriptors follow from the descriptor pool (table 1)

by concatenation: Osift= [O1, O2, O3] and Csift=
[
O1

O3
, O2

O3
, O3

]
. Furthermore,

we include combinations of all descriptors by (concat): concatenation of the full
descriptor pool and (mul): multiplication of individual distances prior to ranking,
both suggested by [10].

Descriptor selection is evaluated in separate settings. Each setting allows
isolated analysis of attributes as representations of either object surface or
scene-accidental properties. To this end, a query patch is presented in either
canonical (can) or distorted (dis) form. We distinguish between distortions of a
geometric (g) or of a photometric nature (p), and both (pg). A pure photomet-
ric disturbance has all patches recorded by the same camera and has therefore
no geometric differences. A purely geometric disturbance considers patches for
different cameras, however only under uniform illumination. Note that for this
geometric distortion there is no difference between a disturbed or a canonical
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(a) can p (b) dis p (c) can g (d) can pg (e) dis pg

Fig. 4. Aloi matching results individually per descriptor (row 1) and per attribute
(row 2). In row 3 we show the descriptor selection performance in comparison with
the single best descriptor, all descriptors combinations (mul, concat) by multiplication
or concatenation, and the best possible descriptor from the descriptor pool (oracle).
Several scenarios are evaluated: the query patch may be in either canonical (‘can’)
or distorted form (‘dis’), while the disturbance is either photometric (‘p’), geometric
(‘g’), or both (‘pg’). See table 3 for an overview. Pixel-based (pix) and gradient-based
(grad) descriptors are extracted from intensity, chromatic, normalized chromatic and
hue representations, denoted by I., C., N. and H as given in table 1. For easy reference
we mark the score of the single best descriptor with a gray bar.

query patch. To these distinct evaluation settings we add the (most realistic)
setting in which query patches as well as database patches may arrive in either
canonical or distorted form (all). See table 3 for an overview. Matching results
in terms of mean average precision are presented in figures 4 and 5.

Individual Descriptor Performance
The results show that gradient-based descriptors generally perform (much)
better than pixel-based descriptors. However, if the disturbance is purely ge-
ometric (can g) pixel-based descriptors perform at their best. This is because
calculating image gradients requires larger spatial support than a single pixel.

Table 3. Named Aloi experiments, results in figures 4 and 5

Query patch

Disturbance type Canonical Distorted Both

Photometric can p dis p -
Geometric can g can g -
Both can pg dis pg all pg
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Fig. 5.Most realistic results where the query patch is either canonical or distorted, with
photometric and/or geometric distortion. See the caption of figure 4 for the explanation
of the symbols.

Fig. 6. Predicted and best descriptors confusion (all pg)

In accordance to other work [3], Osift is often the best performing individual
descriptor. When the distortion is purely photometric, a distorted query patch
(dis p) gives better performance for most descriptors than an undistorted query
patch (can p). When the distortion is both photometric and geometric (can pg
and dis pg) the situation is reversed. Moreover, the combined photometric and
geometric distortions (can pg, dis pg, all pg) perform significantly worse then
their single-distortion counterparts (can p, dis p, can g).

Individual Attribute Performance
Texture and geometric stability are the best performing attributes, whereas hue
rarely helps. Overall, each attribute generally increases performance. This in-
directly shows that they are helpful for descriptor selection. Interestingly, the
attributes are able to predict which material will be sensitive to a photomet-
ric distortion (can p). However, they fail completely to recognize a photometric
distortion (dis p) when it is present.

Descriptor Selection Performance
Our descriptor selection method is always better than the best single descrip-
tor (typically Osift). When comparing descriptor selection to feature combina-
tion methods, we perform equal, or better. Concatenating the full descriptor
pool produces a very high-dimensional descriptor yet results in poor perfor-
mance. Descriptor combinations by multiplication often improve over individual
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(a) (b) (c)

Fig. 7. Distribution of the best descriptors (all pg) on: (a) Train set (b) Test set (c)
selected by our classifier

descriptors, however, it fails when there is high variance between individual de-
scriptor performance (can p, dis p). The performance gain of descriptor selection
is most prominent in the scenario in which patches appear in either canonical or
distorted form under mixed disturbances (all pg) in figure 5.

Analysis of Descriptor Selection
In figure 6 we display the confusion matrix between predicted and best de-
scriptors. The diagonal shows that we outperform random classification perfor-
mance which for 10 descriptors is 0.1. There is a slight bias towards intensity sift
(I.grad), because this is often the best descriptor. In figure 7(a-c) we give the
distribution of the predicted and best descriptors. Pixel-based descriptors are
frequently superior in both train and test-sets, but hard to select automatically
by the classifier. The intensity sift (I.grad) is often the best descriptor, whereas
on average Osift is slightly better, as shown in figure 5.

5 Conclusion

This paper introduces a novel descriptor selection framework. Other methods
can select a single feature for a whole image, or optimize a single feature over a
dataset of patches. We, in contrast, show that the most appropriate descriptor
alternates per patch. Therefore, we propose to select the descriptor on a per-
patch basis. The selection method operates on attributes extracted from the
image, through which object surface and scene properties are measured. These
attributes are indicative for the appropriate descriptor. On a large dataset of
colored object patches, the proposed selection method is shown to outperform
existing sophisticated image descriptors that claim to be invariant to one or more
imaging conditions.
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14. Guo, Y., Zhao, G., Pietikäinen, M., Xu, Z.: Descriptor Learning Based on Fisher
Separation Criterion for Texture Classification. In: Kimmel, R., Klette, R., Sug-
imoto, A. (eds.) ACCV 2010, Part III. LNCS, vol. 6494, pp. 185–198. Springer,
Heidelberg (2011)

15. Caputo, B., Hayman, E., Fritz, M., Eklundh, J.O.: Classifying materials in the real
world. Image Vision Comput., 150–163 (2010)

16. Dror, R.O., Adelson, E.H., Willsky, A.S.: Recognition of surface reflectance proper-
ties from a single image under unknown real-world illumination. In: CVPR Work-
shop on Identifying Object Across Variations in Lighting (2001)

17. Romeiro, F., Zickler, T.: Blind Reflectometry. In: Daniilidis, K., Maragos, P., Para-
gios, N. (eds.) ECCV 2010, Part I. LNCS, vol. 6311, pp. 45–58. Springer, Heidelberg
(2010)

18. Wang, O., Gunawardane, P., Scher, S., Davis, J.: Material classification using brdf
slices. In: CVPR (2009)

19. Shafer, S.A.: Using color to separate reflection components. Color Research and
Applications 10, 210–218 (1985)

20. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows.
PAMI 99 (2012)

21. van Gemert, J.C.: Exploiting photographic style for category-level image classifi-
cation by generalizing the spatial pyramid. In: ICMR (2011)

22. Motoyoshi, I., Nishida, S., Sharan, L., Adelson, E.H.: Image statistics and the
perception of surface qualities. Nature 447, 206–209 (2007)

23. Sharan, L., Li, Y., Motoyoshi, I., Nishida, S., Adelson, E.H.: Image statistics for
surface reflectance perception. J. Opt. Soc. Am. A 25, 846–865 (2008)

24. Gijsenij, A., Gevers, T., van de Weijer, J.: Improving color constancy by photo-
metric edge weighting. PAMI (2011)



186 I. Everts, J.C. van Gemert, and T. Gevers

25. Yanulevskaya, V., Geusebroek, J.M.: Significance of the weibull distribution and
its submodels in natural image statistics. In: VISSAP (2009)

26. Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate
example weighting. In: IEEE International Conference on Data Mining (2003)

27. Barnard, K., Martin, L., Funt, B., Coath, A.: Data for colour research. Color
Research and Application (2000)

28. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The amsterdam library
of object images. IJCV (2005)


	Per-patch Descriptor Selection Using 
Surface and Scene Properties
	Introduction
	Related Work
	Descriptor Selection Using Surface and Scene Properties
	Photometric Representations
	Image Attributes
	Image Descriptors
	Descriptor Selection

	Experiments
	Synthetic Dataset
	Aloi Dataset

	Conclusion
	References




