Exploiting Sparse Representations for Robust
Analysis of Noisy Complex Video Scenes

Gloria Zen!, Elisa Ricci?, and Nicu Sebe!

1 DISI, University of Trento
2 DIEI, University of Perugia
{zen,sebe}@disi.unitn.it, elisa.ricci@diei.unipg.it

Abstract. Recent works have shown that, even with simple low level
visual cues, complex behaviors can be extracted automatically from
crowded scenes, e.g. those depicting public spaces recorded from video
surveillance cameras. However, low level features as optical flow or fore-
ground pixels are inherently noisy. In this paper we propose a novel
unsupervised learning approach for the analysis of complex scenes which
is specifically tailored to cope directly with features’ noise and uncer-
tainty. We formalize the task of extracting activity patterns as a matrix
factorization problem, considering as reconstruction function the robust
Earth Mover’s Distance. A constraint of sparsity on the computed basis
matrix is imposed, filtering out noise and leading to the identification of
the most relevant elementary activities in a typical high level behavior.
We further derive an alternate optimization approach to solve the pro-
posed problem efficiently and we show that it is reduced to a sequence of
linear programs. Finally, we propose to use short trajectory snippets to
account for object motion information, in alternative to the noisy optical
flow vectors used in previous works. Experimental results demonstrate
that our method yields similar or superior performance to state-of-the
arts approaches.

1 Introduction

Developing computational models able to emulate the human ability to inter-
pret complex visual scenes is one of the biggest challenges in computer vision
research. Many factors make this task difficult, e.g. the fact that humans have
a-priori knowledge, that they are able to extract and select relevant visual infor-
mations, and that they can easily resolve the strong ambiguity typical of many
visual scenes (activities associated with the same semantic information can be
performed differently while activities having a different interpretation may be
acted similarly). The complexity of semantic scene interpretation further in-
creases when many objects are present in a scene.

Despite the many difficulties, several advances have been made in the past few
years and many approaches have been proposed to extract semantic behaviors
from video scenes. Many of them explicitly focused on analyzing complex and
crowded scenes depicting public spaces in video surveillance applications [1H6].
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Visual analysis of such complex scenes faces two main problems. First of all,
as many objects are present, being able to account for spatio-temporal depen-
dencies among them poses a challenge in terms of computational complexity.
Secondly, the visual information that can be extracted in this scenario is lim-
ited to simple low level cues (e.g. background/foreground information, optical
flow) as object tracking approaches cannot be employed due to the many ob-
jects and to the several occlusions. These features are inevitably uncertain and
noisy. Recent works [1-6] have shown how powerful statistical machine learning
approaches can be used to implicitly handle noisy, uncertain visual information,
leading to excellent results in terms of salient behaviors and anomalous activities
identification. However none of the previous works have tackled explicitly this
issue, i.e. developing methods targeted to noisy data analysis.

The main contribution of this paper is a novel approach for the analysis of
complex scenes specifically tailored to cope with the uncertainty and the noise
arising in visual modeling of complex dynamic scenes. Similarly to previous
works, we follow a non-object centric perspective and compute simple features
accounting for motion and foreground /background information. However in this
paper, to calculate motion features, we do not rely on noisy optical flow vec-
tors but adopt a representation based on short trajectory snippets. Differently
from previous works [1H6], we model the task of extracting salient activities as
a matrix factorization problem and we consider as objective function the Earth
Mover’s Distance (EMD) [7], which is well-known to be a robust metric in case
of noisy histogram comparison. To further reduce the influence of noisy data we
also constrain the computed vector basis to be sparse. In a surveillance scenario
as the one considered here, where scenes have multiple temporal activity pat-
terns happening simultaneously, a sparsification procedure is crucial for semantic
scene interpretation purposes, helping to identify the atomic activities which are
distinctive of a specific high level behavior. To our knowledge, no previous works
have addressed complex video scene analysis under a sparse coding framework.
Our method has been tested on several video datasets, all of which are publicly
available. The experimental results show that our approach successfully identi-
fies high-level activities and spots anomalous patterns and it is very competitive
with respect to state-of-the-art algorithms |2, 13, 5], often outperforming them.

2 Related Works

This paper follows recent works on non-object centric analysis of complex scenes
[1H6]. However it departs from many previous works [1-H4] as we do not rely on
Probabilistic Topic Models for inferring high-level activities. Instead we model
the task of discovering spatio-temporal activity patterns as a nonnegative matrix
factorization problem. Up to our knowledge, no previous works have considered
the problem under this perspective. In this paper we also explicitly force the in-
ferred latent representation to be sparse leading to a novel algorithm for activity
localization. This aspect has rarely been addressed in previous works. Exceptions
are the algorithms in |8, 9] which are however very different from ours as they are
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based on a Probabilistic Topic Model framework. Sparse coding has become very
popular in computer vision and has been successfully applied in many problems
related to video analysis |10, [11]. Differently from previous works, the bases of
our dictionary are computed using EMD as distance function, leading to sparse
representations with a nice grouping structure.

The use of trajectory-based representation for embedding motion informa-
tion into a bag-of-words approach has been successfully used in many previous
works |12-14]. However these works have all considered action recognition tasks,
while few approaches [15] have focused on showing the effectiveness of such a
representation for complex scene analysis from video surveillance data.

The proposed method has some similarity with our previous works on EMD
clustering [5, 6], as nonnegative matrix factorization is practically a clustering
algorithm. However, with respect to |3, 6], this method is more scalable and pro-
duces more interpretable results due to the sparse constraints. Moreover we are
not forced to use a dense histogram representation as it is done in [5, 6], avoiding
the need of preprocessing steps. Importantly, even without these preprocessing
steps, our approach produces better performance in the considered datasets.

Nonnegative matrix factorization (NMF) [16] has been considered in many
works in computer vision as well as in other disciplines. NMF provides an ele-
gant framework to achieve sparsity on the basis or coefficient matrices by using
the theoretically sound ¢; regularizer or other composite regularizers |17, [18].
Recently Sandler and Lindenbaum [19] proposed a variant of NMF which uses
the EMD as objective function. However our work is very different from [19] as it
considers specifically the problem of complex scene analysis and integrates effec-
tively a sparse constraint into the Earth Mover’s Distance matrix factorization.

3 Earth Mover’s Distance

Let h, p be two histograms normalized to unit mass. The Earth Mover’s Distance
Denmp(h,p) [1] is obtained as the solution of the transportation problem:

Q Q Q
oin) > datfar sto Y for=h Y for=p" 1)
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The variable f;; denotes a flow representing the amount transported from the
g-th supply to the ¢-th demand and dg; the ground distance between ¢ and t.
Usually dg is defined by Li or Ly distance. The problem () is a Linear Pro-
gram (LP) which can be efficiently solved due to the special structure of its
sparse constraints |7, 20]. However, in the case of high dimensional histograms,
solving () can be very time consuming due to the large number of flow variables
involved. Several methods have been proposed in the past to speed up EMD dis-
tance computation [20, 21]. In particular in [20], it is shown how, for histograms
normalized to unit mass and EMD with L; as ground distance (EMD-L), every
positive flow between faraway histograms bins can be replaced by a sequence of
flows between neighboring bins. This implies that () simplifies as:
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min Zq ZtEN(q) fa.t s.t. Z fat — Z frq =h*—p Vg (2)
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where the index ¢ corresponds to the position of a specific bin of a histogram and
its neighborhood N (gq) is represented by the adjacent bins. For example, in case of
2-dimensional histograms if the ¢-th bin corresponds to the position (i, j) in the
grid, its neighborhood is represented by the index set A'(q) = {(m,n) : (m,n) €
G, d; jimn = |i—m|+|j—n| = 1} with G being the set of indexes corresponding to
all the grid nodes. It is worth noticing that using (2)) the number of flow variables
involved reduces from O(Q?) in (@) to O(Q), where @Q is the number of bins in
the original histogram. This is greatly beneficial in terms of computational cost
since the number of variables is a dominant factor in the time complexity of all
LP algorithms.

4 Mining Sparse Activity Patterns in Complex Scenes

In this Section, the proposed approach for extracting high-level activities in
complex scenes is presented. First, the features used to represent the short video
clips are described (Subsection E1)); then, the proposed learning approach is
illustrated (Subsection [£2]).

4.1 Computing Clip Histograms

Similarly to previous works [2, |3, 5], we divide a video into short clips and
we adopt a bag-of-words approach for computing clip histograms. First, we con-
struct a codebook of trajectory snippets (trajectons) as described in [12]. Feature
trajectons, i.e. sequences of (z,y;) positions over time, are computed by crop-
ping the features trajectories extracted using a KLT tracker [22]. Using a short
video segment as training set, a codebook of trajectons is computed by cluster-
ing the obtained trajectory snippets into a pre-specified number of clusters n;.
While in general standard k-means can be employed in this phase, in our spe-
cific application we manually selected the codebook ensuring that trajectories
cover all the space of possible motion orientations. For the dynamic of the scene,
in fact, a small codebook defining different motion orientation is more suitable
to distinguish between the most relevant activities. This simple codebook cor-
responds to features more robust to noise than when considering optical flow
vectors. In line with [22], we consider trajectory snippets formed by 10 positions
in the trajectory. The subsequent phase consists in extracting low level features
from the video and quantizing it according to the codebook generated. Specifi-
cally for each pixel we compute the foreground/background information using a
simple dynamic Gaussian-Mixture background model as background subtraction
algorithm [23]. We use KLT to compute trajectory snippets and assign them a
label according to the nearest snippets in the codebook. The features extraction
process is illustrated in Fig[ll Then we divide the scene of interest in ng x ny,
patches, in order to take into account the location where the activities take place.
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Fig. 1. Low level visual features used in our approach. (a) Original video frame and
(b) associated foreground mask. (c) Trajectories (red) extracted with KLT tracker. (d)
Trajectory snippets (red) and static pixels (blue) used to construct clip histograms.

We also divide the video into clips. A histogram counting the occurrences of tra-
jectons labels is formed for each clip and each patch. Moreover, for each patch a
further bin is used to account for static activities, i.e. pixels of foreground that
do not belong to trajectons. The clip histogram h; € IR™=*™v*"t ig obtained
concatenating the patch histograms.

4.2 Discovering Activities with Sparse EMD Matrix Factorization

Given a training set of clip histograms H = {hi1, ha,...hy}, we model the
task of discovering high-level activities as the problem of finding a set of ba-
sis P = {p', p?, ...p"}, with K << N, and a matrix of mixing coefficients
W = [w; ws ... wy], w; € RE such that, for each clip, the weighted sum of the
computed basis should be as close as possible to the original clip histogram ac-
cording to the Earth Mover’s Distance. More formally the following optimization
problem is formulated:

N

ming, w0 ) Peup(hi, Y wip") 3)
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s.t. wm < @) <wm, YVhk=1...K (4)

The imposed constraints force the computed bases to be sparse. To enforce

sparsity, as in previous works on NMF [17, B], we adopt the following measure:
V= [1x[[1/[x]l2
(P =
6o =" 5)

where x € IR". In practice the constraint () impose a lower and an upper bound
(respectively wy, and wys) to the level of sparsity of the computed prototypes.

By replacing the definition of EMD with L; ground distance (2)) and £2(-) into
@), the following optimization problem must be solved:

minp?,wf,f >0 ZZ Z fz, (6)

i=1 q teN(q)
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where ¢pr = vVQ—-wn(vVQ—1) and ¢, = VQ—wi (VQ—1), Q = ng xny, xn; and
e € IR¥ is a vector of ones. The normalization constraints impose that each basis
vector p¥ and each column of the coefficient matrix W are normalized to sum
one. This implies that ) . S wkpl =1, Vi, i.e. the reconstructed histograms
are normalized to unit mass as required by EMD definition (). The additional
constraints () and (8) are imposed to force the bases to be sparse vectors.

The optimization problem (@) is not convex. However, to efficiently solve it, in
this paper we devise an approximate approach based on an alternate optimiza-
tion scheme. We first consider (@) when constraints (@) and () are not imposed.
In this case the problem (@) is still not convex. However if the coefficient ma-
trix W is fixed, (@) is convex with respect to p’;, f;t. Similarly, with fixed basis
vectors p¥, (@) is convex with respect to wf, f;’t. To solve it, an alternate opti-
mization scheme can be devised where each single optimization problem reduces
to a LP. This approach, which turns out to be a special case of the algorithm
proposed in [19], can be shown to converge to a local minimum. The convergence
proof and further details can be found in the supplementary material.

If the constraints (7)) are also considered, the optimization problem (@) can still
be solved with an alternate optimization scheme and, in particular, as a sequence
of convex optimization problems. Solving with respect to w¥, fé,t with variables
p’; fixed is still a LP, while solving with respect to p’;, ;’t having W fixed is a
Second Order Cone Programming (SOCP) which can be solved efficiently with
standard solvers (see supplementary material). However, when the constraints
) are also considered, solving (@) with respect to p’;, ;t and w¥ fixed is not
convex anymore. Therefore, inspired by previous works on NMF [17], we adopt
an approximate technique to solve it. The approach is based on the Tangent
Plane Constraint (TPC) method [24] and basically consists in approximating
the non convex cone constraints by linear constraints and specifically by tangent
plane constraints.

The algorithms we develop for solving (f) are shown in Algorithm [ and
Algorithm 2l In particular the alternate optimization approach used to solve
(@) is illustrated in Algorithm [I Step 5 of Algorithm [ consists in solving (@)
subject to () and () with the TPC method. The TPC method is illustrated in
Algorithm 2

To solve the proposed optimization problem we adopt some practical solutions
which reduce the computational cost of our approach and then makes it more
appealing to large scale computer vision applications. First of all we note that
the convex constraints () are not particularly important in order to guarantee
sparse solutions. In fact, rather than imposing an upper bound on the maximum
level of sparsity, it is much more important to guarantee a minimum level of
sparsity. This implies that in practice we can omit convex constraints (7). This
is of paramount importance in practical applications since the sequence of SOCP
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Algorithm 1. EMD Clustering
1: Input: Original clips histograms H = {h1, h2,...hn}.

2:  Initialize W = [w; w2 ... wy]| with positive random values.

3:  Normalize the columns of W such that >, wh=1Vi=1,...N.

4 while not converged

5 Solve (@) s.t. (@) and (®) with respect to p*, f using Algorithm
6: Solve the LP (@) with respect to W, f.

7:  end

8: Output: W, p* Vk.

Algorithm 2. Algorithm for computing sparse prototypes

1: Input: Original clips histograms H = {h1, h2,...hnx} and coefficent matrix W.
The parameters wy, and wys specifying the desired sparsity levels.

2:  Compute ey = vV/Q —wm(v/Q — 1) and ¢ = VQ — win(vVQ — 1).

3:  Solve @) s.t. () with respect to p®, f.

4:  Initialize the index set of violated constraints V° = (.

5. Sett=0.

6: while not converged

7 p* = p*, Vk.

8: Find p” violating ®); update V'*' =V U{r:r=1,...,K, c}” e’p" > [Ip”[|2}

9: Vr € V' compute the projection 7. = 7(p") as shown in [18].

10: Vr € V! compute the tangent plane ti}l to cone @) in 7,

11: Solve (@) s.t. (7) and to the tangent plane constraints (p")"tit' > 0, vr € V!
with respect to p©, f.

12: t=t+1.

13:  end

14: Output: p*, Vk=1,..., K.

problems in Algorithm 2] (Step 3 and Step 4) reduces to a sequence of efficient
LP problems. In alternative, as for the constraints (§), also in case of (7] tangent
plane constraints can be devised. Still, the overall optimization problem reduces
to a LP. In our experiments we used the former solutions (wp; = 1).

While the TPC method is guaranteed to converge (i.e. Algorithm [2] always
converges) [24] the alternate optimization problem in Algorithm [ is not guar-
anteed to converge. For this reason in [17], in case of TPC applied to NMF, a
more robust but slower approach is proposed. While we also cannot prove the
convergence of Algorithm [I] when using TPC method in our experiments we did
not observe problems of convergence (Fig[).

While our approach can be generally applied to several types of histogram
data, for computational efficiency reasons in our experiments we consider two-
dimensional histograms obtained by reshaping the clip histograms as h; €
IR™= "> In this way the EMD objective function operates on a grid as neigh-
borhood structure, where neighboring bins in a histogram mostly corresponds
to the same features (e.g. same trajectons) computed in neighboring patches.
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Table 1. Details on the datasets and the experimental setup

n° frames fps video duration frame size nz X ny X ny @ clip duration n° clips

Junction 90000 25 60’ 288x 360 8x6x9 432 127 300
Junction2 78000 25 52 288x 360 8x6x9 432 127 260
Roundabout 93500 25 62’ 288x 360 12x9x9 972 127 311

5 Experimental Results

5.1 Experimental Setup

Experiments were conducted on three publicly available datasets collected
from researchers of Queen Mary University, namely Junction, Junction2 and
Roundabout. The videos depict some complex traffic scenes in London and
have been extensively used in previous works [1H3, |5, 125]. The ground truth cor-
responding to activities found by a human annotator are also publicly availabldl.
To compare our approach with state-of-the-art methods |3, 5% we also use the
code and the results made available by other research groupsg’ . Our method is
implemented in C++ using the publicly available library OpenCV for the video
processing and feature extraction parts while MATLAB is employed for Algo-
rithms[land 2l The code will be made available to the Communityﬁ. More details
about the datasets used and our experimental setup are summarized in Table [Il
Video results associated with our approach are provided in the supplementary
material.

5.2 Testing the Proposed Approach

The first series of experiments is aimed to demonstrate the ability of the pro-
posed approach to extract high level activities by selecting the most significant
elementary features in the scene. Figure [2] depicts the high level activity pat-
terns computed with our approach for the Junction dataset; these three main
patterns correspond to vertical traffic flow, horizontal flow from left to right and
from right to left. In the same figures, the n; + 1 elementary features are plot-
ted in different colors: green circles correspond to static activities and the other
colors identify the n, different trajectons, whose main direction is indicated by
arrows. Also, the intensity of each elementary feature n; is represented by N,
colored patches that are plotted with a Gaussian distribution around the patch
centroid (¢, j). The number N, is proportional to pgj’t.

Varying the required minimum sparsity level, and specifically with w,, close to
one, only few elementary features are active in the final prototype representation.
Furthermore a grouping effect, which must be ascribed to the use of EMD as
objective function, is observed, as elementary features in adjacent regions tend

! http://www.eecs.qmul.ac.uk/.jianli/Dataset List.html

2 http://disi.unitn.it/.zen/emd.html

3 http://www.vision.ee.ethz.ch/.calvin/publications.html
4 http://disi.unitn.it/.zen/sparse emd.html
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Fig. 2. Junction dataset. High level activities automatically extracted with our ap-
proach at different levels of sparsity (a) wm = 0.0, (b) wm = 0.9.

Table 2. Clustering accuracy at varying sparsity level wy,

Wm 0 0.1 0.3 0.5 0.7 0.9

Junction2 (48 clips) 89.58% 89.58% 89.58% 89.58% 91.67% 89.58%
Roundabout (60 clips) 88.33% 88.33% 90.00% 90.00% 90.00% 90.00%
Junction (39 clips) 89.74% 89.74% 89.74% 89.74% 89.74% 84.62%

to be active or not active together. The effect of sparse grouping activities can
be observed in Figure @l

Similar observations can be made in the case of the Roundabout dataset
(Figl3) where six main activities are extracted. In details, the yellow and
light /dark green activities correspond to the same higher level activity (top-
right traffic lights on green) but at different traffic flow intensity. The blue and
red activities correspond, respectively, to central-bottom and left traffic lights
on green.

Table 2l shows the clustering accuracy obtained by varying w,, for the three
datasets considered. The results correspond to a two clusters groundtruth seg-
mentation. Imposing sparsity constraints in the learning process is important for
the semantic interpretation of video contents, and our experiments demonstrate
that this is not negatively affecting the accuracy. In some cases, when a high
degree of sparsity (w,, = 0.7) is imposed, the performance can also be better.
This can be ascribed to the beneficial effect of sparsity constraints in filtering
out noisy features. In few cases instead, for severe level of sparsity (w,, = 0.9)
the accuracy can slighly degrade. This is probably due to the loss of some details
that could be useful for some classes’ discrimination.

Convergence. As discussed in Section .2, Algorithm [ is not guaranteed to
converge when the Tangent Plane Constraint method ﬂﬂ, Iﬂ] is adopted. How-
ever, in our experimental results we mostly observed a convergent behavior.
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Fig. 3. Roundabout dataset. High level activities automatically extracted with our
approach at different levels of sparsity (left) wm = 0.0 and (right) w., = 0.9; (a) GT
[25] (b) GT considering three classes set by the authors and (c) temporal segmentation
obtained with our approach.

Figure Bl depicts two examples of convergence for the experiments conducted on
the Junction dataset for w,, = 0.5 and w,, = 0.7; specifically the value shown
is the L; distance computed between successive vector bases pi and pfc_l, at
each iteration ¢. Some convergence issues were observed for values of w,, close
to 1. However these situations are of less practical utility as the best clustering
accuracy is typically obtained for w,, = 0.7/0.8.

5.3 Comparison with Previous Works

In this Subsection we report some results aimed at comparing the proposed
approach with previous methods E, E, B, }

Temporal Segmentation. We first consider the datasets Junction and Round-
about, as for these videos a ground truth annotation with two classes (horizontal
and vertical traffic flows) is provided in } However, it is easy to observe that
the natural classes of traffic flows are more than two. In particular, for the
Roundabout dataset, this is due to the presence of more that two traffic lights
regulating the vehicles’ flow and to varying traffic flows intensity (e.g. traffic
light is on green but there are no vehicles in the lane). Therefore Kuettel et al.
B] consider a temporal segmentation with K = 6. Moreover they use clips of 3s
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Fig. 4. Effect of combining EMD with sparsity constraints, shown on Junction dataset.
Prototype obtained with our method setting (left) wy, = 0.0 and (right) wm, = 0.9. The
2D histogram is shown for zero motion and for rightward motion elementary features
(drawn respectively in green and red).

2 2
w,=0.5 PR w =07 — PP
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Fig. 5. Junction dataset. Convergence analysis of our approach for different levels of
sparsity (left) wn, = 0.5 and (right) wm = 0.7.

length instead of 12s as related works. In our experiments, we also show results
obtained with K = 6. In Figlf]l the results obtained with the different methods
are compared. Specifically the segmentation computed with Probabilistic Latent
Semantic Analysis (PLSA) e hierarchical PLSA , Dependent Dirichlet Pro-
cess Hidden Markov Model (DDP-HMM) [3], Earth Mover’s Prototypes (EMP)
ﬂa] and our approach are compared. As shown in the plot, all the approaches
obtained consistent results with respect to ground truth annotation. Similar
comparative results are also reported for the Junction (Figlfl) and the Junction2
Figl)) datasets. For these datasets, a qualitative comparison with the work in
iﬂ] is also possible, as our approach is able to extract the same recurrent activi-
ties shown in E] Note that for the Junction2 dataset only the results provided
by [3] are available.

A quantitative comparison between our approach and the methods E, B, ]
is also provided in Table 8l Observing the first two rows of the table it is evident
that our approach outperforms previous methods in the Roundabout dataset,
while it is the second best for Junction. The last row in the table shows the
segmentation results for a longer sequence of the Roundabout dataset. In this
sequence the best results are obtained by the approach proposed in E] However
it is worth noting that these results correspond to a different experimental set-
up, as in E] all the 148 clips are used as training set, while, similarly to
we consider a more challenging task and we train only on 60 clips and use
the remaining clips as test set. In these experimental conditions we outperform
previous methods.

Comparison with ﬂa] As observed in Section [2] both our approach and the
one presented in ﬂﬂ] use EMD to compute the basis vectors p* representing
the discovered activities. In this section we compare both methods in terms of
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20 40 B0 an 100 120 140
Fig. 6. Roundabout dataset. (a) Ground truth annotation lﬁ} and temporal segmen-
tation results obtained with (b,c) standard and hierarchical pLSA [23], (d) EMP [d],
(e,f) HDP-HMM [d] and (g,h) our approach.

Fig. 7. Junction dataset. (a) Ground truth annotation [25] and temporal segmentation
results obtained with (b,c) standard and hierarchical pLSA [25], (d) EMP [5], (e,f)
DDP-HMM 3] and (g,h) our method. (Left) extracted high-level activities wy, = 0.9.

computational cost. It worth noting that we could not use our features as the
algorithm [B] does not scale to long histograms. Long histograms can be more
suitable in case of EMD learning, as the similarity among bins is naturally im-
posed by the patch division structure. This is different from ﬂa}, where an elemen-
tary activity order needs to be established manually to create clip histograms.
However, to compare our approach with ﬂﬂ], we use a dense histogram represen-
tation as described in ﬂa] We compute one-dimensional histograms where each
bin represents an atomic activity (in [B] an atomic activity consists in a specific
motion pattern occurring in a specific image region). Atomic activities must be
manually sorted. In this paper we consider five different atomic activity orders.
Our results are the average of these five runs. Figure [0 shows the results of our
comparison. From the plots it is evident that, when histograms dimension @
increases, our approach is much more scalable. On the other hand, as expected,
our method has modest performance in terms of accuracy. Our best results are
obtained for @ = 32 and correspond to an accuracy equal to 75%. On the same
data the algorithm in E] reaches an accuracy of 92%. However, as demonstrated
by Table [ similar performance (91.67%) can be obtained with our approach
when a sparse histogram representation is adopted.

Anomaly Detection. In this paragraph we briefly show that our approach
can be used to identify anomalous and rare activities. To this aim the mix-
ing coefficients W can be analyzed. Given a clip histogram h; and the associ-
ated weights w;, we consider the corresponding activity as rare if it cannot be

Table 3. Comparison with previous approaches: clustering accuracy

std pLSA [25] hrc pLSA [25] DDP-HMM [3] EMP [5] our approach (wm = 0.7)
Roundabout (60 clips) 81.67% 75.00% 85.00% 86.67% 90.00%
Junction 89.74% 76.92% 87.18% 92.31% 89.74%
Roundabout (148 clips)  84.46% 72.30% 85.14% 86.40% 85.81%
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Fig. 8. Junction2 dataset. (a) Ground truth annotation and temporal segmentation
results obtained with (b) DDP-HMM [3] and (c) our method. (left) extracted high-
level activities with w.,, = 0.9.

Time (sec) Clustering accuracy
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Fig. 9. Junction2 dataset. Comparison with ﬂa] on clustering dense histograms data.

anomaly score

Fig. 10. Junction dataset. (Left) Anomaly score. (Right) Representative frames ex-
tracted from the detected anomalous clips: (4,27) interruption of vertical traffic flow
due to a fire engine passing, (9) leftward horizontal and (15) vertical flow, both inter-
leaved with rightward horizontal traffic.

“explained” by the computed bases p;. This practically means that none of the
w is close to one, i.e. the standard deviation o, of the coefficients w/ is small.
With this intuition, o, can be used as anomaly score. The anomaly score com-
puted for the Junction dataset is shown in Fig[lll Negative peaks identifying
the anomalous clips are highlighted in green. Clips 4 and 27 correspond to the
interruption of traffic low due to a fire engine passing, Clips 9 is and 15 are
anomalous as they are associated, respectively, to leftward horizontal flow and
to vertical traffic, but they are also interleaved with rightward horizontal flow.
These results are similar to those in previous works E é and correspond to the
anomalies indicated in the ground truth.

6 Conclusions

We introduced a novel approach for the automatic extraction of high-level activ-
ities in complex video scenes. Our method combines EMD matrix factorization
and sparsity constraints, thus being robust to features’ noise and producing as
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output a set of sparse bases. This is greatly beneficial for complex scene analysis
applications, where multiple activities simultaneously occur in the scene and it is
of paramount importance to be able to extract the most relevant elementary ac-
tivities for automatically inferring high-level behaviors. The proposed approach
has been used to find recurrent activities in publicly available video datasets and
has been extensively compared with state-of-the-art methods. The application of
the proposed matrix factorization algorithm is not limited to video data. Indeed,
we believe it will be suitable for many other problems, such as data analysis or
human behavior understanding.
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