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Abstract. In this paper we propose the first exact solution to the prob-
lem of estimating the 3D room layout from a single image. This problem
is typically formulated as inference in a Markov random field, where po-
tentials count image features (e.g ., geometric context, orientation maps,
lines in accordance with vanishing points) in each face of the layout. We
present a novel branch and bound approach which splits the label space
in terms of candidate sets of 3D layouts, and efficiently bounds the po-
tentials in these sets by restricting the contribution of each individual
face. We employ integral geometry in order to evaluate these bounds
in constant time, and as a consequence, we not only obtain the exact
solution, but also in less time than approximate inference tools such as
message-passing. We demonstrate the effectiveness of our approach in
two benchmarks and show that our bounds are tight, and only a few
evaluations are necessary.

1 Introduction

3D scene understanding is an important component in applications such as au-
tonomous driving and personal robotics. Existing approaches that perform infer-
ence from a single image can be categorized into those that attempt to estimate
the layout of outdoor scenes and those that tackle the indoor setting. In outdoor
scenarios, existing approaches try to infer 3D information in the form of photo
pop-ups [1, 2], qualitative parsings of the scene under geometric constraints [3, 4]
or reason about the layout of road intersections [5].

The indoor scenario is more constrained, as the Manhattan world assumption
typically holds. This assumption states that there exist three dominant vanishing
points which are orthogonal. The problem of inferring the 3D layout of indoor
scenes is commonly formulated as a structured prediction task, which estimates
the 3D box that best approximates the scene layout [6–9]. A generalization of
this setting from rooms to corridors with arbitrary number of frontal walls has
also been explored [10, 11].

In this paper, we focus on the more popular setting of estimating the layout of
rooms from single images as illustrated in Fig. 1(a). The two prevalent param-
eterizations targeting this problem assume that the three dominant vanishing
points (vp) are reliably detected. In [6, 7], a single high dimensional discrete
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(a) 3D layout prediction.
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(b) Parameterization of the problem.

Fig. 1. In (a) we illustrate the task of predicting the room layout given a single image
with the blue overlay illustrating the best possible result and red indicating an obtained
prediction of 6.47% error. The parameterization of the problem is detailed in (b).

random variable with each state denoting a different candidate 3D box is em-
ployed. However, only a few candidate layouts were considered as this setting
does not allow to decompose the problem. Contrasting this univariate formula-
tion, Wang et al . [8] propose a parameterization of the room layout based on four
discrete random variables related to the four degrees of freedom of the underly-
ing prediction problem. As shown in Fig. 1(b), these four variables correspond
to rays which fully describe the 3D cuboid that defines the layout.

Nearly all existing methods make use of different sources for image informa-
tion. Geometric context [12], orientation maps [11] and lines corresponding to
a particular vanishing point [8] are most successfully employed as image cues.
While the complexity is determined directly by the number of candidate layouts
when working with the univariate parameterization [6, 7], we obtain a complexity
dependence on the dimensionality of the domain of the potentials representing
the image features, i.e., the order of the potentials - the number of variables
involved and their size. In recent work [9], the concept of integral geometry was
introduced, and it was shown that using this concept the potentials employed in
the literature are decomposable into sums of pairwise potentials. This results in
orders of magnitude faster inference than previously published layout estimation
approaches.

In this paper we go a step forward in this direction and show that not only
the exact solution to this problem can be obtained, but also in less time than
the efficient but non-exact message-passing of [9]. In particular, we derive a
novel branch and bound approach to this problem which splits the label space
in terms of candidate sets of 3D layouts, and bounds the potentials in these sets
by restricting the contribution of each individual face. By employing integral
geometry, we are able to compute the bounds in constant time, yielding the exact
solution to the problem in a fraction of a second on a single core computer. We
demonstrate the effectiveness of our approach using the layout dataset of [6] as
well as the bedroom dataset of [13], and show that our bounds are tight, and
only a few evaluations are necessary.
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2 Related Work

Most outdoor semantic scene understanding approaches produce either only
qualitative results [3] or a mild level of understanding in the form of semantic
labels [14, 15], object detections [16] or rough 3D [17, 18]. An exception to this
is [5] which relies on short video sequences, or [19] which relies on uncalibrated
image pairs. While outdoor scenarios remain fairly unexplored in computer vision
due to their difficulty, estimating the 3D layout of indoor scenes has experienced
increased popularity in the past few years. This can be mainly attributed to the
success of novel structured prediction methods as well as the fact that indoor
scenes behave mostly as ‘Manhattan worlds,’ i.e., edges on the image can be
associated with parallel lines defined in terms of the three dominant vanishing
points which are orthogonal. The Manhattan world assumption has frequently
been used in the past for tasks such as orientation estimation [20] and regularity
detection [21].

Indoor scene understanding approaches reason about the layout of rooms in
the form of 3D cuboids [6–8, 13, 22]. In [6, 7], the problem is treated as the one of
selecting a cuboid from a set of candidate 3D layouts. This limits the performance
as only a small number of layouts is considered. Wang et al . [8] parameterize
the problem with four random variables, which represent the angles whose rays
originate from two different vanishing points and thus define the faces of the 3D
cuboid. While more effective, they rely on higher order potentials with up to four
involved variables. As they additionally reason about clutter, the dimensionality
of these potentials is in fact even higher. Therefore, in [8], they make use of an
iterated conditional modes (ICM) algorithm to tractably deal with the complex
potentials. However, this algorithm is neither efficient nor globally convergent as
ICM can get stuck in local optima.

Structure prediction approaches employ potentials based on different image
information. Geometric context [12], orientation maps [11] as well as lines in
accordance with vanishing points [8] are amongst the most successful cues. The
potentials employed in the literature count these features for each facet of the
cuboid, i.e., left wall, right wall, ceiling, floor, front wall. Schwing et al . [9]
recently showed that these potentials are decomposable into sums of pairwise
potentials by using the concept of integral geometry. This concept is analogous
to integral images, but the accumulators are formed in terms of pairs of rays that
describe the cuboid. As a result, inference in this model is orders of magnitude
faster than previous approaches. The inference algorithm used to find the most
likely configuration is however approximate. Therefore, we would like to know
how far we are from estimating the true maximum a-posteriori (MAP) solution
of the problem. By leveraging branch and bound techniques we show in this
paper how to obtain the exact solution of the problem in less time. Interestingly,
we find that [9] obtained the optimum for almost all cases.

Del Pero et al . [23, 24] proposed to solve the layout prediction task using a
generative method. The resulting performance is poor when compared to struc-
tured prediction approaches as their model is fairly complex and does not exploit
the recently developed discriminative image features of [11, 12].
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Algorithm 1. branch and bound (BB) inference

put pair (f̄(Y),Y) into queue and set Ŷ = Y
repeat

split Ŷ = Ŷ1 × Ŷ2 with Ŷ1 ∩ Ŷ2 = ∅
put pair (f̄(Ŷ1), Ŷ1) into queue
put pair (f̄(Ŷ2), Ŷ2) into queue
retrieve Ŷ having highest score

until |Ŷ| = 1

More recently, [10, 11] have tackled the problem of inferring the 3D layout
of corridors. While this is arguably simpler due to the fact that the level of
clutter in corridors is much lower, it requires doing inference over a larger set of
random variables. Existing approaches typically reason at the pixel level, having
thousands of variables. In contrast, in this paper we tackle the more popular
room layout estimation problem.

Branch and bound techniques have been used in the past to tackle computer
vision problems. The seminal work of [25] shows that for a family of object detec-
tors (e.g., bag of words (BoW) with linear kernels, spatial pyramids, intersection
kernels), one can compute the MAP solution without relying on approximate
sliding window approaches. Those methods are approximate as only a subset of
the possible bounding boxes are typically considered (e.g., fixed aspect ratio).
Branch and bound was also employed in [26] to bound the deformation cost of
deformable part-based models [16]. In contrast, in this paper we derive bounds
for the problem of 3D indoor scene understanding.

3 Exact Layout Inference

We tackle the problem of predicting the room layout of indoor scenes from a
single image. The layout is commonly represented in terms of the spatial config-
uration of the faces of a rectangular 3D cuboid, (i.e., left, front and right wall
as well as floor and ceiling). This problem is complex, as typical scenes contain
objects that partly occlude the walls. In order to simplify the inference process,
following existing approaches [6–9] we rely on vanishing point detection and the
Manhattan world properties of man-made indoor scenes.

We define a 3D room layout via four rays ri originating from two distinct van-
ishing points. Considering the geometry depicted in Fig. 1(b) we can construct
a hypothesis layout from two 2D points given by the intersections of r1 with r3
and r2 with r4. Let the tupel y = (y1, . . . , y4) ∈ Y =

∏4
i=1{[yi,min, yi,max]} be

the parameterization of the scene layout in terms of the angles that form these
four rays [8]. Every angle yi with i ∈ {1, . . . , 4} lies within the interval denoted
[yi,min, yi,max] and Y indicates the product space of all four angles. To obtain an
accurate prediction ŷ given an image x we need to solve the following inference
task:

ŷ = argmax
y∈Y

wTφ(x, y). (1)
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The model parameters w commonly referred to as weights can be obtained
with structured prediction learning algorithms such as structured SVMs [27, 28],
conditional random fields [29] or approximate structured prediction [30].

Following Lee et al . [7], we employ geometric context (GC) [6] and orienta-
tion maps (OMs) [11] as image information from which we construct the feature
vector φ(x, y). For a subset of the pixels, orientation maps provide a label cor-
responding to one of the five faces of the 3D cuboid that is potentially visible in
the image, i.e., F = {left-wall , right-wall , ceiling ,floor , front-wall}. Geometric
context [6], on the other hand, provides for every pixel the probability that this
pixel belongs to each surface label including objects in addition to the five labels
in F . Given these image features, potentials are constructed by counting for each
face each feature type. We thus define φ(x, y) as a sum of potentials

wTφ(x, y) =
∑

α∈F
wT

o,αφo,α(x, yα) +
∑

α∈F
wT

g,αφg,α(x, yα), (2)

where the subscripts o and g denote OM and GC features respectively. Note
that the vectors wo,α and wg,α consist of 5 elements wo,α,i with i ∈ {1, . . . , 5}
for each face α ∈ F in the case of orientation maps and 6 elements wg,α,i with
i ∈ {1, . . . , 6} per face α ∈ F for geometric context.

We now describe how branch and bound is employed for our problem. We
start with a trivial set (i.e., all possible layouts Y), and at any given branch and
bound iteration we have a priority queue where the considered sets are ordered
in terms of a quality bound function which upper bounds the maximum score
that any layout member of that set can possibly achieve. The best candidate
Ŷ of the layout sets within the queue is considered. If it is a single layout, i.e.,
|Ŷ| = 1 and consequently ŷ = Ŷ we have obtained the optimum. If it is a set of
layouts, we split the set into two disjoint candidate sets Ŷ1 and Ŷ2. New bounds
for those two sets are computed and denoted by f̄(Ŷi) with i ∈ {1, 2}, and both
candidate sets are included into the priority queue. As the bound is more tight
(smaller sets), it may be that none of these candidates will be on top of the
priority queue. The algorithm terminates when a single hypothesis is returned,
and such hypothesis is guaranteed to be the optimum. The beauty of branch and
bound is that it does not explore regions which are not promising, allowing for
efficient exact inference. We refer the reader to Alg. 1 for a schematic illustration.

In order to apply branch and bound to our problem, we have to define a
parameterization of the sets Ŷ as well as a bound f̄(·) for the function of interest
being wTφ(x, y). We parameterize the set of hypothesis in terms of intervals
of candidate 2D ray intersections. Let Ŷ = {Y1 · Y2 · Y3 · Y4} denote a set of
candidate layouts defined by the product space of intervals Yi = [yi,low, yi,up].
Note that unlike [25], these intervals are not axis aligned, but in accordance with
the vanishing points. This is illustrated for an arbitrary Ŷ in Fig. 2(a) where the
black rays indicate the smallest yi in the interval, i.e., yi,low, and the red rays
are drawn according to the biggest yi in the intervals, i.e., yi,up.

We still have to derive bounds f̄ for the original scoring function wTφ(x, y).
In order for branch and bound to recover the exact solution, we need our bounds
to satisfy the following two properties:
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(a) Front Wall. (b) Minimal left wall. (c) Maximal left wall.

Fig. 2. (a) illustrates the max and min of the front wall in red and black respectively.
(b) magenta colors the minimally possible left wall within the set of layouts bounded
from below and above by the black and red rays. (c) provides the maximal left wall.

Fig. 3. Computing the content of the gray shaded area can be efficiently done in
constant time using integral geometry and adding the cell contents laying to the top
left of the red dotted corners while subtracting the content within the cells located to
the top left of the blue dotted intersections.

1. The bound of the interval Ŷ has to upper-bound the true cost of each hy-
pothesis y ∈ Ŷ, i.e., ∀y ∈ Ŷ, f̄(Ŷ) ≥ wTφ(x, y).

2. The bound has to be exact for every single hypothesis, i.e., ∀y ∈ Y, f̄(y) =
wTφ(x, y).

Going back to our problem, as our features φi,α,r(x, yα) are always positive
(i.e., they represent counts), we can split the potentials in Eq. (2) into those
with strictly positive weights and those with weights less or equal to zero as
follows

wTφ(x, y) =
∑

{(i,α,r):i∈{o,g},α∈F ,wi,α,r>0}
wi,α,rφi,α,r(x, yα) +

∑

{(i,α,r):i∈{o,g},α∈F ,wi,α,r≤0}
wi,α,rφi,α,r(x, yα).

We can thus collapse these potentials into two functions, one that is strictly
positive and one that is zero or negative by defining

f+(x, y) =
∑

{(i,α,r):i∈{o,g},α∈F ,wi,α,r>0}
wi,α,rφi,α,r(x, yα),

f−(x, y) =
∑

{(i,α,r):i∈{o,g},α∈F ,wi,α,r≤0}
wi,α,rφi,α,r(x, yα).
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Fig. 4.We illustrate the run time required to obtain a fraction of completed test images
on the layout data set for the proposed inference approach (BB) and a standard message
passing algorithm (cBP). The results are averaged over a large set of parameters C
for the two different models SSVM in (a) and approx in (b). The average times are
indicated below the figures.

Inference is hence equivalently stated via the problem

ŷ = argmax
y∈Y

f+(x, y) + f−(x, y), (3)

where we have used the fact that wTφ(x, y) = f+(x, y) + f−(x, y).
Note that in the efficient subwindow search (ESS) of Lampert et al . [25], the

detection bounding box scoring function was also decomposed into the sum of
negative and positive terms. The bounds were constructed by summing all pos-
itive terms within the outer rectangle, i.e., the union of all possible members,
while adding the negative terms within the interior rectangle, i.e., the intersec-
tion of all possible set members. This approach is suitable if the quality function
depends only on contributions from within the rectangle. With our cost function
being defined on the entire image we have to find another bounding strategy.
Moreover, our faces are not axis-aligned but more general convex quadrilaterals.

As our functions f+ and f− naturally decompose into a weighted sum over the
different faces of the layout, we construct bounds by answering the question of
what is the maximum positive contribution and minimum negative contribution
of the score function within the set of layout candidates Ŷ for each face α ∈ F .
The answer is simple, we need to bound each face separately by considering
the minimum and maximum area that each face can take in the set. This is
illustrated in Fig. 2(a) for the front wall trivially having a minimal contribution
when taking yi,low ∀i and a maximal contribution when taking yi,up ∀i. Hence
we bound the contribution of the front face using

f̄front-wall (Ŷ) = f+
front-wall (x, yup) + f−

front-wall (x, ylow), (4)

where we used the subscript to restrict summation over the faces α within f± to
the indicated set being in this case the front-wall . Let yup and ylow be the 4-tuple
(yi,up)

4
i=1 and (yi,low)

4
i=1. For the remaining four faces α ∈ F\front-wall we need

combinations of upper and lower bounding angles yi,low and yi,up to construct a
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Fig. 5. We illustrate the run time required to obtain a fraction of completed test
images on the bedroom data set for the proposed inference approach (BB) and a
standard message passing algorithm (cBP). The results are averaged over a large set of
parameters C for the two different models SSVM in (a) and approx in (b). The average
times are indicated below the figures.

valid function f̄α(Ŷ) that fulfills previously mentioned properties. We illustrate
such a combination of angles for a minimal and maximal contribution of the left
wall in Fig. 2(b) and Fig. 2(c). Altogether the function for scoring sets of layouts
Ŷ is given by

f̄(Ŷ) =
∑

α∈F
f̄α(Ŷ). (5)

In order for our branch and bound inference to be practical, we need to be able to
compute the bounds very efficiently. The bounds employed in [25] were efficiently
computed using integral images. However, integral images are not applicable to
our case, as we reason about 3D faces. Instead, we can use integral geometry [9]
in order to compute these bounds in constant time.

Integral images perform partial computations in accumulators such that the
generation of image features at different locations and scales can be performed
efficiently by a few accesses to these accumulators [31]. In the spirit of integral
images, as shown in Fig. 3, we construct 2D accumulators, each counting features
(probabilities) in regions of the space defined by two rays originating from two
different vanishing points. Suppose we want to compute a potential defined as
counts in the gray shaded area. We can easily obtain this potential, by treating
each cell as a pixel (by counting the contribution in the cell) and applying integral
images to those cells. This is the concept of integral geometry introduced in [9].
Thus a potential defined in the shaded area in Fig. 3 is computed by adding the
integral geometry cells to the top left of the red dotted corners while subtracting
the ones to the top left of the blue dotted intersections.

4 Experimental Evaluation

We first investigate the efficiency of our method and then illustrate the state-of-
the-art performance obtained by our approach via exact inference. Importantly,
we are able not only to do exact inference, but also to do it faster than any other
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approximate inference technique. All evaluations are carried out on two different
data sets commonly used in the literature. The layout dataset [6] contains 314
images with ground truth annotation of faces, i.e., left, right and front wall as
well as ceiling and floor. We employed the vanishing point detector of [6], which
failed in 9 training images and was successful for all test images, 105 in total. In
addition, we evaluate our method on the bedroom dataset [13] which contains
309 labeled images. The data is split into training and test sets of size 181 and
128 respectively. In accordance with previous work on those data sets, we use a
pixel based error measure, counting the percentage of pixel that disagree with
the provided ground truth labeling. Note that the ground truth labeling is not
necessarily aligned with detected vanishing points.

Efficiency: We trained our models to learn the parameters w using the struc-
tured support vector machine implementation of [28], denoted “SSVM,” and an
approximation, denoted “approx,” which makes use of the same implementa-
tion but computes the cutting plane updates only approximately. Throughout
this submission the stopping criteria for the message passing inference (i.e.,
our baseline) was set to a relative duality gap of 1e-5 or a maximum of 1000
iterations. We compare the running-time of our proposed branch and bound
inference technique (BB) to a message passing baseline in the form of convex
belief propagation (cBP) [32]. This baseline makes use of integral geometry, and
thus is equivalent to the efficient approach of [9]. Fig. 4(a) and Fig. 4(b) illus-
trate the percentage of completed layout test set images given a certain amount
of time for models trained with “SSVM” as well as “approx” in the dataset of
[6]. For the bedroom data set, we provide the results for “SSVM” training in
Fig. 5(a) and for “approx” training in Fig. 5(b). To obtain meaningful statistics
the given curves are averaged over a wide range of regularization tradeoff pa-
rameters C ∈ {1, 2, 5, 8, 10, 12, 15, 18, 20, 50, 100, 200, 500, 1000} defined in [28].
The average run time is provided in the caption.

We note that cBP inference has a plateau-like behavior, i.e., there are easy
instances, but also harder ones requiring more iterations, some of them requiring
the maximum number of iterations we allow. Importantly, the proposed BB
approach has a roughly constant incline, and converges to the optimum faster.
In contrast, the baseline is not guaranteed to get the optimum. Note that we
display the results in logarithmic time scale, and thus cBP takes significantly
more time in a large set of images.

To obtain quantitative results we provide the average time for inference for the
layout data set and the bedroom data set in Tab. 1(a) and Tab. 1(b) respectively.
The proposed BB approach outperforms the message passing technique on both
data sets. Also note that the approach proposed in [24] requires about 12 minutes
per image in the layout dataset.

Number of Splits: The number of iterations in branch and bound is a direct
measure for the number of splits required to achieve the optimal solution. It also
provides an indication for the tightness of the bounds constructed in the previ-
ous section. We emphasize that the proposed branch and bound scheme utilizes
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Table 1. We compare the inference run time of standard message passing (cBP) and
our approach (BB) averaged over a large set of parameters C in all test instances of
the (a) layout and (b) bedroom dataset for models learned with SSVM and approx.

(a) Layout data set
���������Inference

Model
SSVM approx

cBP 0.449 s 0.146 s

BB 0.011 s 0.007 s

(b) Bedroom data set
���������Inference

Model
SSVM approx

cBP 0.576 s 0.169 s

BB 0.010 s 0.007 s

10
2

10
3

10
40

20

40

60

80

100

Iterations

%
 c

om
pl

et
ed

SSVM BB
approx BB

(a) Iterations layout data set

10
2

10
3

10
40

20

40

60

80

100

Iterations

%
 c

om
pl

et
ed

SSVM BB
approx BB

(b) Iterations bedroom data set

Fig. 6. We illustrate the number of iterations required to obtain a fraction of com-
pleted test images on the layout data set in (a) and the bedroom data set in (b) for
the proposed inference approach (BB). The results are averaged over a large set of
parameters C for the two different models SSVM and approx.

integral geometry, and thus only accesses a few values on the accumulators to
efficiently upper bound a set of layouts. Therefore one iteration is very fast and
computable in constant time. Fig. 6(a) and Fig. 6(b) depict the cumulative dis-
tribution of the number of iterations required to obtain the optimal solution for
the layout and bedroom datasets respectively. As before, we average over a large
range of parameters C employed to learn our models, and compare “SSVM” and
“approx.” We observe that the behavior on both data sets is roughly identical,
with the bedroom data set requiring on average somewhat more iterations. In-
dependent of the way the parameters w are learned, we find that roughly similar
number of iterations are required during inference.

Accuracy: Our branch and bound approach is faster than any previously pub-
lished 3D layout estimation method. We now show its predictive performance
on the layout and bedroom datasets. To this end we take the best learning set-
tings reported in [9] and use them for our proposed BB inference. Tab. 2 and
Tab. 3 show the results. Interestingly, we obtain identical results to the ones
in [9]. This means that in practice cBP converges (although not guaranteed) to
the optimum. Therefore we conclude that identical accuracies are obtained with
our faster but most importantly, provably exact, BB inference mechanism.
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Table 2. Comparison to state-of-the-art that uses the same image information on the
layout data set of [6]. Pixel classification error is given in %.

OM GC OM + GC Others Time

[12] - 28.9 - - -

[6] - 21.2 - - -

[8] 22.2 - - - -

[7] 24.7 22.7 18.6 - -

[24] - - - 16.3 12min

[9] 18.64 15.35 13.59 - 0.15s

Ours 18.63 15.35 13.59 - 0.007s

Table 3. Comparison to state-of-the-art on the bedroom data set [13]. Pixel classifi-
cation error is given in %.

[23] [12] [6] [9] Ours

Error [%] 29.59 23.04 22.94 16.46 16.46

Time [s] - - - 0.17 0.007

Iterations vs Accuracy: Next we analyze the correlations between the test
error and the number of iterations required by our BB approach. We report
results for the layout data set in Fig. 7(a) and for the bedroom data set in
Fig. 7(b). We observe that there is a slight but not very pronounced correlation
between low errors and low number of iterations. This plot also allows reasoning
about the distribution of the errors. For the layout data set we observe that the
errors for a majority of the test set instances are within the interval [0, 10%].
The bedroom data set seems to be more difficult with the majority of the test
set instances being within the interval [0, 20%].

Visual Results: Finally, we provide visualizations of our results as well as
orientation map and geometric context features for both data sets in Fig. 8 and
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Fig. 7. We illustrate the error for each test set instance of the layout data set in (a)
and the bedroom data set in (b) with respect to the required number of iterations of
the proposed BB approach
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Error: 1.25 % Error: 1.48 %

Error: 1.50 % Error: 1.56 %

Error: 1.61 % Error: 1.96 %

Error: 2.32 % Error: 3.01 %

Fig. 8. The best classification results on the layout data set. The first and fourth
column illustrate the image overlaid by the best possible layout obtained from ground
truth labels in blue and our prediction result (red) given orientation map and geometric
context features illustrated in columns 2,5 and columns 3,6 respectively.

Error: 1.31 % Error: 2.76 %

Error: 3.22 % Error: 3.28 %

Error: 3.29 % Error: 3.37 %

Error: 3.51 % Error: 3.76 %

Fig. 9. The best classification results on the bedroom data set. The first and fourth
column illustrate the image overlaid by the best possible layout obtained from ground
truth labels in blue and our prediction result (red) given orientation map and geometric
context features illustrated in columns 2,5 and columns 3,6 respectively.
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Error: 42.11 %
Error: 48.56 %

Error: 58.35 % Error: 72.01 %

Fig. 10. The worst classification results on the layout data set (top row) and the
bedroom data set (bottom row). The first and fourth column illustrate the image
overlaid by the best possible layout obtained from ground truth labels in blue and our
prediction result (red) given orientation map and geometric context features illustrated
in columns 2,5 and columns 3,6 respectively.

Fig. 9. Here we use the model learned with OM and GC features. The blue lines
overlaying the image provide the best possible discretization with 50 states while
the red lines illustrate our prediction. The prediction error with respect to the
pixelwise face labelings is indicated below each image. Note that the errors are
due to the learned energy function as our inference is exact. Orientation maps
are given in column 2 and 5 while geometric context features are depicted in
column 3 and 6.

We also provide failure cases for the layout data set (top row) and the bed-
room data set (bottom row) in Fig. 10. We observe two main reasons causing
prediction errors. First, a failing vanishing point detection can typically not be
recovered from as the rays and their configuration can be far from any true
layout. The second reason for failure modes is non-informative image features
due to a failing prediction in case of geometric context or wrong line detections
causing misleading orientation maps.

5 Conclusion

In this paper we have addressed the problem of recovering the scene layout in
the form of a 3D parametric box given a single image. We have presented a
novel branch and bound approach which splits the label space in terms of can-
didate sets of 3D layouts, and bounds the energy for entire sets by constructing
upper-bounding contributions of each individual face. We have employed inte-
gral geometry in order to evaluate these bounds in constant time, and show that
we not only obtain the exact solution, but also in less time than approximate
inference tools such as message-passing. We have demonstrated the effectiveness
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of our approach in two benchmarks and show that our bounds are tight, and
only a few evaluations are necessary. We plan to extend our approach to do joint
inference over 3D objects as well as the layout.
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