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Abstract. Multiplexed illumination has been proved to be valuable and
beneficial, in terms of noise reduction, in wide applications of computer
vision and graphics, provided that the limitations of photon noise and
saturation are properly tackled. Existing optimal multiplexing codes, in
the sense of maximum signal-to-noise ratio (SNR), are primarily designed
for time multiplexing, but they only apply to a multiplexing system re-
quiring the number of measurements (M) equal to the number of illu-
mination sources (N). In this paper, we formulate a general code design
problem, where M ≥ N , for time and color multiplexing, and develop a
sequential semi-definite programming to deal with the formulated opti-
mization problem. The proposed formulation and method can be readily
specialized to time multiplexing, thereby making such optimized codes
have a much broader application. Computer simulations will discover the
main merit of the method— a significant boost of SNR as M increases.
Experiments will also be presented to demonstrate the effectiveness and
superiority of the method in object illumination.
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1 Introduction

Optical multiplexing can be tracked back to the late 70s in the field of spec-
trometry [1], where a single detector simultaneously receives signals from differ-
ent spectral bands which are specifically encoded. The goal of multiplexing is to
improve signal-to-noise ratio (SNR) of the demultiplexed, single spectral band
signals. An analogous multiplexing concept has been brought into the domain of
computer vision and graphics by Schechner et al. in 2003 [2], where they illumi-
nated objects by multiple sources from different directions and computationally
demultiplexed the received images, attempting to acquire high-SNR, single-light
source images. Such a multiplexing scheme was afterwards employed in applica-
tions, such as scene recovery [3], object relighting [4], fluorescence unmixing [5]
and photometric stereo [6–8], and has been proved to improve SNR.

The SNR boost of single-light source images is anticipated to have a pro-
found and immediate impact on the successes in computer vision applications.
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For instance, in face recognition system [9], gathering face training images under
arbitrary illuminations via multiplexing scheme would result in noise reduction
and subsequently improve the recognition rate. In photometric stereo [6–8], esti-
mating the surface normals of objects from the multiplexing-applied, single-light
source images can substantially aid in object recognition and 3-D modeling. The
above advantages are expected when there is only sensor noise involved. When
the photon noise comes into play, multiplexing multiple light sources may be-
come counterproductive [10]. Present efforts for designing multiplexing codes in
the presence of both sensor noise and photon noise include the works in [10–12],
but they are limited to time multiplexing system where the number of mea-
surements (M) equals the number of illumination sources (N). Some questions
may arise: How to design the multiplexing codes for the system not only ap-
plying time multiplexing but also color multiplexing? What we can gain from
the multiplexing if the number of measurements M is more than the number of
illumination sources N?

Indeed, some existing works have utilized time and color multiplexing for
various purposes [4, 7, 13, 14], but there is not much information on how the
time and color multiplexing codes were designed. In this paper, we investigate
the possibility of designing optimal time and color multiplexing codes, with
M ≥ N , for achieving maximum SNR in the demultiplexed images. We first
formulate the code design problem as a constrained optimization problem, and
it takes into account the presence of sensor noise and photon noise, as well as the
saturation issue [11]. Since the formulated problem is non-convex, we propose to
use a sequential convex programming to approximate the problem, where each
subproblem is formulated as a semi-definite program and thus can be solved by
any convex optimization solver. The proposed formulation and algorithm can be
readily specialized to time multiplexing, thereby making such optimized codes
have a much broader application. Simulations will discover the merits of our
approach— a significant SNR boost when M increases, and requirement of 1/K
measurements in time and color multiplexing for achieving equal performance
when using time multiplexing, where K denotes the number of color channels;
e.g., K = 3 for RGB color camera. Experiments are presented to demonstrate
the effectiveness and superiority of the proposed approach in object illumination.

2 Background of Time Multiplexing

We briefly review the background of time multiplexing and some related works
in this section. To start with, let us consider a scenario that a static object with
Lambertian surfaces is illuminated by multiple, sayN , diverse single light sources
using time-multiplexed scheme, and each light source has its own direction from
which the light source illuminates a surface patch of the object. Assuming there
are N distinct multiplexed illuminations in total, the captured intensity value
at pixel n can be represented by a linear superposition model:

x[n] = As[n] + v[n], n = 1, ..., L, (1)
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where x[n] ∈ R
N is a vector containing the captured light intensity for N dif-

ferent multiplexed illuminations at pixel n, A ∈ R
N×N is a time multiplexing

matrix, s[n] = [s1[n], ..., sN [n]]T denotes a vector comprising intensities of the
reflected light at the nth pixel, under different N single lighting conditions,
v[n] ∈ R

N is the measurement noise, and L is the total number of image pix-
els. The 1-dimensional pixel index n results from a vector transformation of
2-dimensional image coordinate.

Time multiplexing in (1) uses non-switching strategy, where the elements of
the matrix A are from 0 to 1, not restricted to 0 or 1; i.e., 0 � vec(A) � 1NN ,
where� denotes componentwise inequality for vectors or linear matrix inequality
for matrices, vec(·) denotes vectorization operator, 1N is N -dimensional all-
one vector, and 0 is all-zero vector of proper dimension. The extreme values
0 and 1 stand for the corresponding light source being completely turned off
and turned on, respectively. The values of {s[n]}Ln=1 depend on object and light
source relative position, orientation and visibility. In addition, the noise v[n] is
assumed to be independent and identically distributed (i.i.d.), zero mean, with
covariance matrix satisfying the affine noise model [4, 15]:

ΣP = (σ2 + Pρ2)IN , (2)

where σ2 denotes the variance of the signal-independent sensor noise, ρ2 denotes
the variance of signal-dependent photon noise, IN is N ×N identity matrix, and
P is total energy of the activated light sources at each measurement. The value
of P has a direct connection to the time multiplexing matrix A, indicating the
multiplexing power used in each measurement is equal to P ; i.e., A1N = P1N .

A solution to recover the pixel values under various single-light source il-
luminations s[n], n = 1, ..., L is to multiply A−1 to the multiplexed images
x[n], n = 1, ..., L:

ŝ[n] = A−1x[n] = s[n] +A−1v[n], n = 1, ..., L. (3)

From (3), it is obvious that the single-light source illumination s[n] can be esti-
mated subject to some noise contamination A−1v[n]. A question arises: Could
someone make use of A so as to demultiplex high quality ŝ[n], or to minimize
the effect of noise A−1v[n] in ŝ[n]. This is exactly the primary goal of the mul-
tiplexing, which attempts to devise the time multiplexing matrix A such that
the estimated single-light source illumination ŝ[n] has maximum signal-to-noise
ratio (SNR) [11], or equivalently,

{A�, P �} = arg min
A∈RN×N ,P∈R

Tr((ATΣ−1
P A)−1)

s.t. 0 � vec(A) � 1NN , A1N = P1N ,
(4)

where Tr(·) is the trace operator. As compared to the scenario of single-source
acquisition; i.e., A = IN , the SNR gain of time multiplexing can be easily com-
puted as

Gt =

√

Tr(Σ1)

Tr(((A�)TΣ−1
P�A�)−1)

, (5)
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where Σ1 is given by (2) with setting P = 1. The SNR gain Gt can also be called
as time multiplexing gain.

2.1 Related Works

In the following, we categorize previously related works based on conditions
under which the methods for handling problem (4) were developed.

Absence of Photon Noise: Optical multiplexing technique was first investi-
gated in the field of spectrometry [1]. The optimal multiplexing codes for problem
(4) has been shown to be S-matrix [1,2,4] when the photon noise is absent; i.e.,
ρ2 = 0. The S-matrix can be readily constructed based on Hadamard codes of
lengthN+1 for someN such that (N+1)/4 is an integer. Hadamard multiplexing
is switch multiplexed method, which completely turns on P � = (N + 1)/2 light
sources at each measurement. Using Hadamard multiplexing, the time multiplex-
ing gain is Gt = (N+1)/(2

√
N) [1]. Clearly, the more the number of illumination

sources N , the more image quality we can gain using multiplexing.

Presence of Photon Noise: When photon noise comes into play, Hadamard
multiplexing is not optimal anymore [6]. Mutting [10] looked into the effect of
photon noise to Hadamard multiplexing, and derived new multiplexing codes,
based on two-level autocorrelation sequences. These multiplexing codes have
shown their advantages when there are photon noise, but they are only available
for a very limit set of N and for limit range of noise variances {σ2, ρ2}. Thus,
Ratner et al. [11] constructed new time multiplexing codes for any N and noise
variances {σ2, ρ2}. They dealt with problem (4) for a given P using the pro-
jected gradient method, which may easily get stuck in the local optima during
the solution search. Hence, they also devise a higher level optimization procedure
for the method to escape from local optima [11]. After collecting all the optimal
objective values of problem (4) for all the P ’s, the optimal P � was then selected
as the one with minimum objective value.

Saturation: Another issue encountered in illumination multiplexing is satura-
tion, and it may occur when the object is illuminated by numerous light sources.
When the captured image intensity is saturated, meaning that the linear super-
position model (1) is violated, one should either reduce the exposure time or
decrease the total energy P for each measurement. [2, 4] has proved that the
latter is better than the former. Thus, to counter saturation issue, Ratner et al.
have added a constraint:

P ≤ Psat, (6)

where Psat is the threshold beyond which the captured image gets saturated.
Despite the success of the above methods, the present time multiplexing codes

are limited to time multiplexing and the determined, multiplexing system (or
A ∈ R

N×N is square). Some interesting questions may arise: Can the code
design problem for time multiplexing be extended to that for time and color
multiplexing? What if the multiplexing system can allow to capture more number
of measurements? In the next section, we will formulate a maximum-SNR code
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design problem for time and color multiplexing, where the multiplexing matrix is
not limited to be square. Some advantages of employing, over-determined, time
and color multiplexing system will be discovered and discussed therein.

3 Time and Color Multiplexing

Time and color multiplexing has been utilized for relighting [4], multi-spectral
imaging [13], and capturing varying illumination conditions [7, 14], but none of
them specifically elaborate how to optimally devise the codes for time and color
multiplexing. In this section, we introduce the model of time and color multiplex-
ing, and present how the codes for time and color multiplexing can be designed
in a near-optimal way. As reported in [14], the captured time-multiplexing im-
ages of a static Lambertian object at RGB channels should fulfill the following
linear superposition model:

xc[n] = αc[n]Acs[n] + vc[n], n = 1, . . . , L, c ∈ {r, g, b} (7)

where xr[n],xg[n],xb[n] ∈ R
M denote M -time multiplexed image intensity at

pixel n, recorded via red, green, and blue channels, respectively, αr[n], αg[n], αb[n]
∈ R represent the illumination-independent, normalized RGB intensities of the
material at image pixel n, satisfying αr[n] + αg[n] + αb[n] = 1, n = 1, ..., L,
Ar,Ag,Ab ∈ R

M×N are the time-multiplexing matrices for red, green, and
blue channels, respectively, s[n] ∈ R

N corresponds to various single-light source
illuminations at pixel n, and vr [n],vg[n],vb[n] ∈ R

M denote the i.i.d. noise
measured in RGB channels, respectively. The noise covariance matrices for RGB
channels are usually diverse, depending on specification of the color camera used;
i.e., Σc

P = (σ2
c +Pρ2c)IM , c ∈ {r, g, b}. Here, the number of time multiplexing M

can be different from the number of illumination sources N . Also, the material
colors and the noise covariance matrices can be practically acquired in camera
calibration phase, and they are assumed to be known herein. The details of how
to estimate those parameters can be referred to Section 5.1.

We first reformulate the model (7). Moving the effects of material colors
αr[n], αg[n], αb[n], n = 1, ..., L into noise, and staking RGB counterparts as
a column vector, we obtain

y[n] �

⎡

⎣

xr [n]/αr[n]
xg[n]/αg[n]
xb[n]/αb[n]

⎤

⎦ =

⎡

⎣

Ar

Ag

Ab

⎤

⎦ s[n] +

⎡

⎣

vr[n]/αr[n]
vg[n]/αg[n]
vb[n]/αb[n]

⎤

⎦ ∈ R
3M (8)

= Fs[n] +w[n], n = 1, ..., L, (9)

where F = [ AT
r ,A

T
g ,A

T
b ]T ∈ R

3M×N is the time and color multiplexing matrix,

and w[n] = [ v[n]Tr /αr[n],v[n]
T
g /αg[n],v[n]

T
b /αb[n] ]

T ∈ R
3M is the noise having

block diagonal covariance matrix

ΛP = Bdiag

(

L
∑

n=1

Σr
P

α2
r[n]L

,
L
∑

n=1

Σg
P

α2
g[n]L

,
L
∑

n=1

Σb
P

α2
b [n]L

)

∈ R
3M×3M , (10)
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thanks to i.i.d. property of the noise. Here, Bdiag(C1, ...,CN ) denotes a block
diagonal matrix with the diagonal blocks equal to C1, ...,CN . The structure in
(10) is for ease of presentation, and any correlation across RGB channels caused
by Bayer filter and color interpolation will not change the optimization procedure
(to be presented in Section 3.1) and the optimality of the yielded solution.

Assuming that 3M ≥ N , the unique recovery of single-source illumination
s[n] from y[n] can be written as

ŝ[n] = GTy[n] = s[n] +GTw[n], n = 1, ..., L, (11)

where G ∈ R
3M×N is a demultiplexing matrix such that GTF = IN . Unlike the

case of 3M = N , whereG can be trivially determined as F−1, we herein consider
G is unknown and to be designed. Hence, the time and color multiplexing is to
jointly devise F and G such that the SNR of ŝ[n] is maximum, which turns out
to be equivalent to minimizing the noise power subject to all the constraints
considered in (4):

min
F,G∈R3M×N ,P∈R

Tr(GTΛPG)

s.t. GTF = IN , 0 � vec(F) � 13MN , F1N = P13M .
(12)

By the Lagrangian multiplier method [16], we can obtain the a closed-form
solution G for the above problem, in terms of F and P , as follows:

G� = Λ−1
P F(FTΛ−1

P F)−1. (13)

The details of how we derive (13) can be found in the Supplementary Material
(SM)1. Substituting (13) into (12) yields

{F�, P �} = arg min
F∈R3M×N ,P∈R

Tr((FTΛ−1
P F)−1)

s.t. 0 � vec(F) � 13MN , F1N = P13M .
(14)

In comparison to straightforward time and color multiplexing; i.e., 3M = N and
F = IN , the gain of optimal time and color multiplexing can be defined as

Gtc =

√

Tr(Λ1)

Tr(((F�)TΛ−1
P�F�)−1)

, (15)

where Λ1 is the noise covariance given by (10) with P = 1.
The objective function of problem (14) is highly non-convex. Directly handling

this problem with any non-linear programming method could suffer from risk of
local optimality. Though one may use Ratner’s method [11,12] to tackle problem
(14), it is limited to the case of square multiplexing matrix 3M = N and ΛP =
βI3M for any β > 0. In what follows, we propose to handle problem (14) of
any 3M ≥ N and ΛP by sequential convex programming (SCP), where each
subproblem involved in SCP is in form of semi-definite programming (SDP) and
hence can be readily solved by convex optimization solvers [17].

1 The SM can be downloaded at
http://web.adsc.com.sg/perception/publications.html.

http://web.adsc.com.sg/perception/publications.html
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3.1 Design of Time and Color Multiplexing Codes

To alleviate difficulties in solving problem (14), we adopt a divide-and-conquer
strategy. We first deal with problem (14) by SCP with P fixed, and then find
the optimal P by exhaustive search. Now, suppose that the variable P is fixed
to a constant ̂P . Then, problem (14) can be reformulated into its equivalent,
alternative form:

min
F∈R

3M×N ,H∈R
N×N

Tr(H)

s.t. 0 � vec(F) � 13MN , F1N = ̂P13M , H � (FTΛ−1
̂P
F)−1,

(16)

where the last constraint, linear matrix inequality, can be further rewritten, via
Schur’s complement [18, Th. 7.7.6, p. 472], as

[

H IN
IN FTΛ−1

̂P
F

]

� 0. (17)

By letting U = FTΛ−1
̂P
F, we can write problem (16) as

min
F∈R

3M×N ,H,U∈R
N×N

Tr(H)

s.t. 0 � vec(F) � 13MN , F1N = ̂P13M , (18a)

U = FTΛ−1
̂P
F, (18b)

[

H IN
IN U

]

� 0. (18c)

Solving problem (18) is difficult, due to non-convexity of (18b). Next, we seek
for local optimization methods that approximate (18b) using first-order Taylor
series, so as to make problem (18) able to be solved by a sequence of convex
problems. Applying Newton’s method [19] to the quadratic matrix equation
Q(F) = U − FTΛ−1

̂P
F = 0, where Q : R

N×N �→ R
N×N is a continuously

differentiable function, will have the following recurrence

given F0 (initial guess of F), (19a)

U− FT
kΛ

−1
̂P
Fk = FT

kΛ
−1
̂P
ΔF+ΔFTΛ−1

̂P
Fk, (19b)

Fk+1 = Fk +ΔF, k = 0, 1, 2, ... (19c)

where ΔF denotes a small change in F, and Fk denotes the estimate of F at
iteration k. The details of how we derive (19) is provided in the SM1. Since the
newly updated Fk+1 should be feasible to (18), Fk+ΔF should also fulfill (18a).
By replacing the equality constraint (18b) with (19b), at each iteration k, we
can obtain the following SDP formulation:

min
ΔF∈R

3M×N ,H,U∈R
N×N

Tr(H)

s.t. 0 � vec(Fk +ΔF) � 13MN , (Fk +ΔF)1N = ̂P13M ,

U− FT
kΛ

−1
̂P
Fk = FT

kΛ
−1
̂P
ΔF+ΔFTΛ−1

̂P
Fk,

H,U satisfy (18c).

(20)
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The above SDP problem can be efficiently solved by any convex optimization
solvers [17]. Note that problem (18) is now handled by a sequence of SDPs
given by (20). In each iteration k, problem (20) is thought of as a local, linear
approximation to problem (18). Once ΔF is obtained at the iteration k, we will
update Fk+1 by (19c), and continue to solve problem (20) for k := k + 1.

Since SCP is a local approximation, using the iterative SCP (20) for solving
problem (18) may converge to local minima. To reduce the risk of local optima,
we empirically impose a penalty term to the objective function, which amounts
to the maximum of the off-diagonal elements of the matrix U; i.e.,

D(U) = max
i�=j

uij , (21)

where uij is the (i, j)th element of U. The idea is motivated by the fact that
minimizing the objective function Tr(U−1) in (14) suffices maximizing Tr(U), or
minimizing D(U), due to the properties uij ≥ 0, ∀i, j,∑ uij = P̂ 21T

3MΛ−1
̂P
13M ,

and U � 0, inferred from (18a)-(18b). The complete SCP for problem (18) is
summarized in Algorithm 1. The initial F0 should be feasible— the elements
of F0 are randomly generated following uniform distribution over [0, 1], and are
normalized to satisfy (18a). The weight of the penalty function λ is empirically

set to 2N/(3 ̂PM). The iteration procedure will stop when the relative change in
objective function is smaller than a preset threshold. A convenient implementa-
tion of Algorithm 1 using CVX [17] is provided in the SM1.

Algorithm 1. Sequential convex programming for problem (18).

input : total energy of the multiplexing ̂P , the noise covariance matrix Λ
̂P

given by (10), initial multiplexing codes F0, λ = 2N/(3 ̂PM) and
iteration number k = 0.

while not converged do
solve the linearized convex problem

{ΔF�,H�,U�} = arg min
ΔF,H,U

Tr(H) + λD(U) s.t. all constraints in (20);

update Fk+1 = Fk +ΔF� and k := k + 1;

end

output: solution F̄( ̂P ) = Fk and optimal value J̄( ̂P ) = Tr(H�) to problem (16).

The remaining problem is to determine the optimal total energy of the ac-
tivated light sources P . Once the optimal value J̄( ̂P ) for ̂P = 2, 3, ..., Psat are
obtained by Algorithm 1, where setting Psat given by (6) as an upper bound is to
account for saturation problem in multiplexing, the time and color multiplexing
matrix F to problem (14) can be found by F� = F̄(P �) for

P � = min
̂P=2,3,..,Psat

J̄( ̂P ). (22)
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3.2 Application of Algorithm 1 to Time Multiplexing

The methodology shown in the above subsection can also be applied to time
multiplexing. Recall the time multiplexing model (1), where A becomes M ×N
instead of N ×N conventionally addressed in the previous works [1,2,4,10,11].
Following the similar derivations in (11), (12), (13) and (14), the design of such
A ∈ R

M×N is to solve the optimization problem

{A�, P �} = arg min
A∈RM×N ,P∈R

Tr((ATΣ−1
P A)−1)

s.t. 0 � vec(A) � 1MN , A1N = P1M .
(23)

Since problem (23) has a similar structure as (14), following Section 3.1, one can
apply Algorithm 1 to solve problem (23); see the SM1 for details.

4 Computer Simulations

The performance of the proposed code design algorithm, in terms of multiplexing
gain, will be demonstrated, for time multiplexing, as well as time and color mul-
tiplexing in this section. The purpose of showing results with time multiplexing
is to make a baseline comparison with the existing algorithms [11, 12].

4.1 Time Multiplexing

There are N = 24 distinct illuminations, and M = 24, 48, 72 measurements
allowed to be captured by using time multiplexing. Two noise parameters given
by (2) are set to σ2 = 1.5 and ρ2 = 0. Figure 1(a) shows the comparable
performance of the proposed method (i.e., Alg1) to Ratner’s method [11] for
M = 24. Next, we further examine the performance of the proposed method
to various number of measurements. Since Ratner’s method was developed for
determined multiplexing system M = N = 24, we repeat Ratner’s optimal
24× 24 multiplexing matrix twice and three times for M = 48, 72, respectively.
As shown in Figure 1(b), the performance improvement of the proposed method
over Ratner’s method can be obviously seen as M > N , regardless of the value
of P . This immediately suggests that if someone demands a high-quality image
under single lighting condition, the solution for that is to acquire more number
of measurements using the proposed multiplexing codes.

4.2 Time and Color Multiplexing

We consider the time and color multiplexing where there are N = 24 disparate
illuminations and M = 8, 16, 24 number of RGB multiplexed images. Some noise
parameters in ΛP in (10) are set to σ2

r = 1.5, σ2
g = 0.9σ2

r , σ
2
b = 2σ2

r , and
ρ2c = σ2

cχ
2, c ∈ {r, g, b}, where χ2 denotes the common ratio of the sensor

noise power and photon noise power for RGB channels. Figure 2(a) shows the
object to be illuminated. Figure 2(b) is the synthetic map of material colors
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Fig. 1. Time multiplexing for N = 24 over various P . (a) shows Gt of the proposed
method (Alg1) and Ratner’s method for M = 24. (b) shows Gt of the Alg1 and Ratner’s
method for M = 24, 48, 72, where ‘∗’ denotes the maximum Gt for a specific M .

of the object. Figure 2(c) shows the time and color multiplexing gain of the
proposed Alg1 for M = 8, 16, 24 in the absence of photon noise; i.e., χ2 = 0. The
multiplexing gain improves as the number of measurements M increases. While
this observation is similar to time multiplexing shown in Figure 1(b), to maintain
the equal multiplexing gain, the number of measurements required by time and
color multiplexing is less than time multiplexing by a factor of 3, thanks to three
RGB channels utilized for multiplexing. Moreover, the impact of photon noise
on the time and color multiplexing is also evaluated in Figure 2(d). It can be
seen that the optimal total energy of the activated light sources P � may decrease
when the photon noise goes up, or χ2 increases. This directly reflects the fact
that multiplexing more light sources P results in superposition of more photon
noise, and the optimal P should be pulled back in the presence of photon noise.

5 Experiments

We demonstrate the effectiveness of the proposed time and color multiplexing
method by object illumination. A PC-controlled BENQMX761 projector created
patterns of N = 24 light patches on a white diffuse wall corner. Lights reflected
by these patches acted as separate light sources illuminating the placed object—
pink piglet, shown in Figure 3(a). A camera FUJINON FL2G13S2C-C was used
to capture the multiplexed images, and its exposure time and amplifier gain
were set to 150 msec and 0 dB, respectively. The experiment setup, illumination
patterns, and some more results are provided in the SM1.

5.1 Material Colors, Calibration and Noise Estimation

A pre-scan of the object under white light condition is required for estimation
of the RGB material colors of the object. Suppose that the RGB values of the
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Fig. 2. Time and color multiplexing for N = 24 over various P . (a) is the object. (b)
is the synthetic map of material colors. (c) shows Gtc of the Alg1 for M = 8, 16, 24.
(d) shows Gtc of the Alg1 for M = 16 and various χ2. The symbol ‘∗’ denotes the
maximum Gtc for a specific setting.

acquired color image are {zr[n]}Ln=1, {zg[n]}Ln=1, {zb[n]}Ln=1. Then, the material
colors can be calculated by αc[n] = zc[n]/(zr[n] + zg[n] + zb[n]), n = 1, ..., L, c ∈
{r, g, b}. The synthetic map of the material colors is shown in Figure 3(b).

Two issues are considered in camera calibration. The first one is the nonlinear
effect of the camera readout as the intensity of light source increases linearly.
Usual step for fixing this effect is to enable γ-correction mode in the camera, but
it is not advised for multiplexing [4]. Instead, we compensate this nonlinearity
by assigning nonlinear reference values to projector such that the illuminations
measured by the camera are linear in light intensity. Specifically, we use a nonlin-
ear function, f(x) = ηx1/γ where η = 0.98 and γ = 1.98, to transform the linear
input x ∈ [0, 1] to a reference value f(x) for projector to display the strength
of lighting. The other issue is the spectra overlap among RGB channels of the
camera. Since the spectra of red and blue channels are almost disjoint and that
of green channel is overlapped with that of red and blue channels, we therefore
only use two channels, red and blue, for time and color multiplexing.

In the design of optimal time and color multiplexing codes, the measurement
noise variances {σ2

r , σ
2
b} and photon noise variances {ρ2r, ρ2b} play a central role.

We follow the method reported in [11] to estimate the variances of sensor noise
and photo noise for red and blue channels of the camera, and the resultant
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Fig. 3. Experimental results of time and color multiplexing for object illumination.
(a) is the object to be illuminated. (b) is the synthetic map of material colors
{αr[n], αg [n], αb[n]}Ln=1. (c) presents the time and color multiplexing gain Gtc for
M = 12, 24, 48, and ‘∗’ denotes the maximum Gtc for a specific M . (d) represents
one of the multiplexed images. (e) is the 12th demultiplexed image via trivial illu-
mination M = 12,F = I24. (f)-(h) correspond to the 12th single-light source images
demultiplexed from 12, 24, 48 time and color multiplexed images, respectively.
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variances of sensor noise are σ2
r = 0.8033, σ2

b = 1.1238, and variances of photon
noise are ρ2r = 0.0787 and ρ2b = 0.0742.

5.2 Object Illumination

As the noise variances and the material colors were acquired in the above sub-
sections, the time and color multiplexing codes can be easily computed by using
the proposed method in Algorithm 1. Figure 3(c) shows the time and color mul-
tiplexing gain Gtc for various number of multiplexed images M = 12, 24, 48. In
this experimental setting, using M = 48 and M = 24 multiplexed images would
have triple and double multiplexing gain improvement in comparison to that
using M = 12. Figure 3(d) displays one of the multiplexed images, which looks
like more dominant in red and blue since only red, blue and their combinations
were used for illuminating the object. By demultiplexing from the M multiplexed
images, we can obtain the N = 24 demultiplexed single-light source illumina-
tions {ŝ[n]}Ln=1, which do not contain any color information. We can incorporate
the material colors into {ŝ[n]}Ln=1 to have the RGB single-light source illumina-
tions, where the intensity of the jth illumination in RGB channels are written as
{αc[n]ŝj [n]}Ln=1, c ∈ {r, g, b}. Figures 3(e)-3(h) show the 12th RGB single-light
source illuminations obtained from trivial illumination M = 12,F = I24, and
from M = 12, 24, 48 time and color multiplexed images, respectively. The blue
and green marked rectangles are magnified to the right of each image. One can
clearly see that the quality of the demultiplexed image, in terms of visual com-
parison, improves as the time and color multiplexing was used and the number of
measurements M increased. For a quantitative analysis, we computed the vari-
ances of the signals within a 320× 320 square in the black background of these
demultiplexed images. These values, referred to as noise variance, are computed
as 1.2522, 0.4056, 0.2209, and 0.1563 for trivial illumination, and 12, 24, 48 time
and color multiplexed images, respectively, which again confirmed the benefits
of using time and color multiplexing and more number of measurements.

6 Conclusions

We have formulated a maximum-SNR code design problem for time and color
multiplexing withM ≥ N , and proposed a sequential SDP approach for handling
the formulated problem. The proposed method not only achieves equal perfor-
mance to Ratner’s method [11] for time multiplexing and special case M = N ,
but also opens a new door for a general setting in either time multiplexing, or
time and color multiplexing. As deduced from the simulation and experimental
results, we summarized the primary merits of the proposed method as below:

– the SNR gain boost for time multiplexing if M > N , and for time and color
multiplexing if KM > N , where K is the number of color channels used;

– the requirement of 1/K number of measurements in time and color multi-
plexing for achieving equal performance when using time multiplexing.
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