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Abstract. Object discovery algorithms group together image regions
that originate from the same object. This process is effective when the
input collection of images contains a large number of densely sampled
views of each object, thereby creating strong connections between nearby
views. However, existing approaches are less effective when the input data
only provide sparse coverage of object views.

We propose an approach for object discovery that addresses this problem.
We collect a database of about 5 million product images that capture
1.2 million objects from multiple views. We represent each region in
the input image by a “bag” of database object regions. We group input
regions together if they share similar “bags of regions.” Our approach can
correctly discover links between regions of the same object even if they
are captured from dramatically different viewpoints. With the help from
these added links, our proposed approach can robustly discover object
instances even with sparse coverage of the viewpoints.

1 Introduction

Object discovery systems group input image regions into clusters that represent
individual objects [1-9]. The grouping quality relies on finding correct matches
between occurrences of the same object. When each object is observed seamlessly
from all of its possible viewpoints, such matches can be recovered by existing
techniques. In reality, the volume of input data is limited to a sparse sampling of
views for each object. The appearance variance between different views makes it
hard to recover the matches correctly. This happens frequently in scenarios such
as at the beginning of a data collection process, or on websites such as Flickr and
eBay, where most users only upload pictures of objects from a few viewpoints.
In this paper, we propose a data-driven approach that matches objects de-
spite of large viewpoint changes. We are inspired by the fact that, given an
unseen object, a person can easily reason about the appearance of the occluded
views [10]. We emulate this ability with a data-driven approach that leverages
a large prior “knowledge-base” of how objects appear in different views. Since
similar objects appear similar from different views, we use the prior knowledge to
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Fig. 1. Object discovery is difficult when appearance changes dramatically, such as the
front view and rear view of the same laptop. Our approach connects the missing links
between two object views if they are similar to the same set of objects in a large catalog
database.

“augment” the observations of new unseen objects. For example, we observe that
two object occurrences are likely from the same object, if they are similar to the
same set of database objects (Figure 1). We develop a data collection procedure
that takes advantage of multiple data sources. We collect a large image database
of known objects (5 million product image of 1.2 million objects), where each
object is imaged from several different viewpoints. We develop “data-driven sim-
ilarity” based on this object database. We show that this data-driven similarity
is effective in finding matches between views of similar objects. In this paper,
we demonstrate specifically its effectiveness in improving over the state-of-art in
object discovery.

Our approach is related to the object bank work of [11], where images are
represented as bags of detector responses. However, instead of training detectors
for a small number of object categories, we propose a data-driven approach that
handles millions of objects and tens of thousands of categories. Our work is also
related to transfer learning [12], which uses borrowed examples to address the
data sparsity issue, with the key difference that we do not explicitly learn object
classifiers. The problem of matching input images with product image databases
have been attacked in many commercial systems, such as SnapTell and Google
Goggles. Our paper explores a new application of using such existing product
datasets as the prior to process new images, i.e., augmenting object similarities
between sparse viewpoints. A method in face recognition [13] is most related to
our approach, the work compares two faces using a ranked lists of faces that
each matches in an existing face image database. To the best of our knowledge,
our paper is the first to apply it to object discovery.
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2 The Problem of Sparse Observation in Object
Discovery
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Fig. 2. The phenomenon of sparse observation and its impact on the object discovery
problem. (a) As the number of images increases, the number of observations of each
object increases (blue solid curve from left to right), and as a result, the shortest
distance between occurrences of the same object decreases (dashed-cross curve). For
comparison, we also show the average nearest neighbor distance between random image
segments on the same dataset. The statistics are generated from the dataset of [9)].
(b) Image segments from different views of the same object may be separated into
different groups by existing object discovery approaches, such as [9]. In this case, image
segments of a computer mouse are fragmented into 5 separate groups, each group
roughly corresponds to (D the right 45° view, @ the left 45° view, 3) the rear view,
@ the front view, and () the left 45° view captured under different lighting condition.
In this paper, we focus on the fragmentation issue due to view point changes, i.e., the
first 4 cases.

Average number of occurrences of each object

In the computer vision literature, similarities are generally defined by directly
comparing the image regions, the feature points or both. Approaches from previ-
ous work on object discovery [1-9] form clusters of image regions based on these
similarities. The quality of the clustering step has two aspects, 1) high purity,
i.e., only regions belonging to the same object should be in the same cluster; 2),
low fragmentation, i.e., the regions of the same object should be separated into
as few clusters as possible.

To achieve high clustering quality, the similarity between regions of the same
object should be significantly higher than the similarity between the segments
belonging to different objects. Unfortunately, in real world scenarios with sparse
observations, image segments of the same object can appear different, and some-
times more dissimilar than random pairs of image segments (Figure 2(a)). For
example, the front view of a laptop is different from its rear view (Figure 1)
and it is hard to match them based on visual features alone. As a result, in the
absence of additional information, the discovery results in high fragmentation
clusters (e.g., Figure 2(b)).
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Fig. 3. Given a large database of objects captured from different viewpoints, we can

leverage the knowledge of object correspondences to match input images of objects
captured from very different viewpoints.

appliances|computers & tech furniture general for sale sporting goods
tools arts & crafts baby & kid stuff cell phones |clothing & accessories
electronics| household items |musical instruments| photo/video toys & games

Table 1. Categories of query terms from Craigslist.org used in our data collection.
487,139 query terms are collected from 6 U.S. cities (Boston, Chicago, New York,
Pittsburgh, San Francisco, Seattle) during 2 weeks’ time.

3 Collecting 5 Million Product Images to Model the
Connections of Objects Between Different Views

Directly solving the matching problem with sparse observations is hard but we
can reason about the geometry of unseen objects by exploiting our knowledge of
known similar objects. In this paper we exploit the prior knowledge of commonly
used objects and the commonality shared between different objects.

For this prior knowledge database to be effective, it needs to have high cover-
age, i.e., it must capture most of the objects encountered in typical environments.
A handcrafted list of objects would likely be incomplete and would introduce
bias due to personal experience and preference. Instead, we need to develop a
“surveying” mechanism that collects lists of object names. To minimize bias, the
process of generating this list of objects should be independent to the sources
of object images. In the following, we explore ways to harvest such a dataset by
making use of several existing web sources.

Collecting textual names of objects used in daily environment from
independent web sources First, we collect the names of daily-used objects.
We need to take special care to address the dataset bias issue [14], by choosing
text terms from independent data sources. At the same time, we need to explore
a data source that users “voluntarily” report common objects in their surround-
ings. To this end, we choose the Craigslist.org as the data source. Specifically,
we collect the titles of the classified advertisements posted in 15 categories of 6
major US cities during two weeks’ time (Table 1). We found that object names
are usually dominant in these advertisement titles. In total we collected 487,139
terms.
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Office|Kitchen|Living room|Bedroom|Conference room|Overall
94.0%| 93.0% 96.7% 95.9% 91.2% 93.6%

Table 2. The coverage of the database based on 70 users’ feedback, where the numbers
represent the percentages of times that a user sees objects in the database that are
similar to what she sees in her environment. Examples of objects that users did not
find in our dataset includes: “research paper” in office, “egg” in kitchen and “voting
machine” in conference room. For examples of objects contained in our database, please
explore: http://bit.ly/cmubmillion

U@ =~ ~ ¢ b

a) (b)
Fig. 4. We create a database of segmented objects by automatically identifying “clean”
database images (a), segmenting the corresponding foreground objects (b), and remov-
ing the images taken without a clean background(c).

Harvesting millions of product using product catalogs After collect-
ing the names of objects, we need to collect the corresponding images of these
objects. We use product images from online stores, such as Amazon.com or
Walmart.com. These data sources have three advantages: first, the products dis-
played in their catalogs are commonly found in daily environment; second, each
product in these catalogs is captured in several images from different views,
which provide useful information on the appearance of objects from different
views; third, most of the product images contain objects captured on clean back-
grounds, i.e., the object can be segmented out easily, which improves matching
quality.

In this paper, we used the Amazon product search engine to collect relevant
product images. We use each text term collected before as a query. For each
query, we extract the top 20 most relevant products. We remove duplicates
using the product ID returned by the web store. We retrieved about 5 million
catalog images for about 1.2 million products. Most of the products are captured
multiple times in different poses. Each product in the database is also assigned
to one of about 15,000 categories. We surveyed multiple independent persons
living in multiple geographical locations to illustrate the coverage of the dataset
for five different environments as shown in Table 2.

Extracting object regions from “clean” product images For reliable
matching with input images, we segment the foreground objects from the prod-
uct images with clean background. To identify such “clean” images, we build a
logistic classifier based on the color variance along the image boundaries, similar
o [15]. Since these images only contain the objects and clean background, we
can use a simple background subtraction algorithm. Figure 4 shows some exam-
ples of the “clean” images and the corresponding foreground objects. Figure 3
shows more examples of object regions from different viewpoints.
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4 Overview of the Object Discovery Framework

In the following, we briefly review the object discovery framework proposed in [9].
We then introduce and integrate data-driven similarity with the object discovery
process. First, we generate object proposals using multiple segmentation algo-
rithms [16,17]. Each individual image segment forms an object hypothesis s;.
We take two steps to discover objects from these image segments: 1) we calculate
the similarity between image segments; and 2) we discover objects as groups of
image segments that are mutually consistent.

We estimate the similarity between s; and s; by combining two measure-
ments, ¢1(s;, ;) and ca(s;, s5), calculated from color-texture features and shape
features respectively. For each consistency measure, we find a threshold that
maximizes the separation of two independent sets of segments that are labeled
as consistent and inconsistent. Finally, a binary graph is generated as creating
each link c(i, j):

c(i,j):cl(i,j) > /\Cg(i,j) > 1o, (1)
With the binary similarity graph established, we extract groups of mutually
similar segments such that each group corresponds to an object. Because the
features used for calculating ¢1(s;,s;) and ca(s;, ;) are sensitive to viewpoint
changes. The image segments of an object might be fragmented into several
clusters due to sparse observations, e.g., Figure 2(b).

In this paper, we introduce a “data-driven similarity” measure that augments
the matching of objects despite large viewpoint changes, using the product image
database we have collected. Given an image segment, s;, we find the set of most
similar product objects, ¥(s;). We compute the data-driven similarity, denoted
by ¢4 (4,7), based on the portion of common objects shared between the two sets,
W(s;), ¥(s;). We assign high similarity value to ¢, (4, j) if ¥(s;) share with ¥(s;)
a large portion of common objects.

We combine the data-driven similarity measure with the existing binary sim-
ilarity graph by modifying c(i, §):

c(i,7) = (c1(i, J) > t1 Aca(i,5) > ta) V (ca(i, J) > ta) - (2)

In other words, we use the data-driven similarity to add extra links to the graph.
Because in our database, each object could be captured from multiple views. The
shared objects could capture different aspects of the same object. The added
links effectively connect views of objects despite the difficulty of finding direct
visual correspondences. As a result, data-driven similarity succeeds in matching
objects despite of large viewpoint changes.

5 Calculating Data-driven Similarity

Generating new links based on the data-driven similarity involves three main
steps. First, we find similar database object regions, ¥(s;) for each input image
segment, s;. Second, we select the input segments that yield the most consistent
matches. Third, we calculate the data-driven similarity, ¢, (¢, j) as in (2), based
on the intersection of ¥(s;) and ¥(s;).
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Fig. 5. Finding similar database regions using a modified HOG feature. (a) Generating
HOG descriptors from each image segment. (b) Precisions of the K nearest neighbor
matching, evaluated under a recognition setup. Note that the “recognition” rate for
certain objects is close to zero. However, this does not prevent them from being suc-
cessfully discovered. The representation based on the K-nearest neighbors is robust
to mismatches: For example, a computer mouse from viewpoint 1 is similar to other
computer mice and some bicycle helmets (c); the same computer mouse from viewpoint
2 is similar to other computer mice and some bicycle helmets (d); some of these similar
database objects are common, which are labeled with different colored bounding boxes.
Another example is that a water bottle could be similar to a pipe, a SLR lens, and
some trash cans (e). In each row, the image segments used for query are outlined in
green.

5.1 Matching input regions with prior database of regions

Given an input image segment s;, we want to find the set of database regions,
U(s;), that are most similar. We consider color, texture and shape as the three
criteria to select K nearest neighbors from the database, i.d., |[¥(s;)| = K. We
measure color similarity by using color histogram matching. We propose a mod-
ified HOG descriptor that retrieves objects with similar texture and shape. This
modified HOG descriptor has three advantages, 1) it addresses the heterogeneity
of object appearance, i.e., some objects are texture-rich (e.g., keyboard), while
some other objects are texture-less (e.g., mouse); 2) it is computationally effi-
cient for retrieving objects with similar shapes (unlike other approaches for direct
shape comparison, such as [18]); 3) using the gradients makes our approach more
robust to illumination changes.

We illustrate the process of generating the HOG descriptors in Figure 5(a).
First, we crop the minimum bounding rectangle regions of image segments from
the input and database images, and we normalize each rectangle region to a
canonical size (80 x 80 pixel). Second, we extract HOG descriptors from the
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normalized image patch, using 8 x 8 pixel cells [19]}. Each cell is represented as
a 31 dimensional histogram of gradients vector. Third, using the segment mask,
we set the cells in the background region to zeros. Finally, we concatenate all
the HOG descriptors into a 3100-dimensional vector normalized to unit length.
For each input image segment, we find the most similar database regions using
the cosine similarity between HOG descriptors. Figure 5 shows several examples
of the database regions similar to the image segments in the input images.

There are interesting differences and similarities between our matching task
and object recognition. Although the purpose of finding similar database regions
is relevant to the task of recognition, it addresses a different objective. As an
object recognition task, the retrieved objects have to be the same as the input
image segment to be considered correct, while in our task the matched objects are
merely used as an intermediate representation. Since objects share appearance
features, it is perfectly fine for a computer mouse to be matched with other
computer mice as well as bike helmets (Figure 5(c)); similarly a water bottle
may be matched with pipes, SLR lenses, and trash cans (Figure 5(e)).

On the other hand, it seems reasonable that improving the matching quality
as a recognition task will probably improve our performance in object discovery.
As a way to illustrate the matching quality, we evaluate the matching algorithm
under a recognition setup, where a match is counted as correct if at least one
object of the same type as the input appears in the top 10 matches (Figure
5(b)). While the “recognition” rates for certain objects are close to zero, they
can still be successfully discovered because the data-driven similarity remains
informative.

5.2 Selecting segments with consistent matches

We select a subset of the segments that yield high quality matches for calculating
data~driven similarity. We found this has two advantages: first, it improves the
quality of the added links; second, it reduces the computational cost for pairwise
comparison.

A straightforward approach is to use the averaged similarity of a region with
its K nearest neighbors. However, when the database size increases, the likeli-
hood of finding a set of unrelated objects that happen to be similar to an image
segment increases [20,21] (e.g., Figure 5(f)).

We propose to use the meta-data category information to cross-validate the
visual matches. Specifically, we select the segments with most consistent nearest
neighbors (e.g., Figure 5(c), (d), (e)). We measure the matching consistency of
an image segment s; as the category entropy of ¥(s;):

C
H(s;) ==Y pelnpe, (3)
c=1

! To prevent boundary crossing, we pad the original region with 8 pixel-wide blank
stripes in each boundary direction.



Connecting Missing Links 9

02y Time (seconds) per million comparisons 0.7
1000 728 O 06

en

0.5 ﬁ 0.5

7 100 5 04

5, S 03

g 10 O 02

£ 18 Ao
009

1 0

S ——— Ratio of shared  Shared ordering correct links  incorrect links
Ermrony objects [13)
(a) (b) (c)

Fig. 6. (a) shows the distribution of the category entropy of different bags of matched
regions. (b) Computational cost of computing the consistency measure over a million
pairs. (c¢) The percentages of the discovered links being correct or incorrect based on
the ground truth matches.

where C' is the number of unique object categories in the list of ¥(s;), and p.. is
the percentage of objects in category c. In our experiments, we fix K = 20. We
keep the segments with the 10% lowest matching entropy. Figure 6(a) shows the
distribution of entropy generated from the dataset used in our experiment.

5.3 Calculating data-driven similarity using bags of regions

Given a pair of input image segments s; and s;, and the K nearest neighbors
¥(s;) and ¥(s;). We measure the data-driven similarity as the percentage of
shared common objects:

U(si) (¥(si

Ca(ivj):%M' (4)

This is a more efficient version of the similarity measure used in [13], which
considers also the ordering of the shared nearest neighbors. We found that it
improves the computational efficiency, (Figure 6(b)), which is crucial in the
discovery task that requires millions of pairwise comparison. Empirically, we
found that these two measures perform similarly in the discovery performance.
We create links between segments according to (2). We found that the data-
driven similarity links aligned well with the ground truth matches (Figure 6(c)).

6 Experiments

In this section, we perform rigorous experimental evaluation of our algorithm
on multiple datasets to quantify the benefits of our approach. We show that our
approach does help in recovering matches despite large viewpoint changes and
we demonstrate the effectiveness of our approach in object discovery.

6.1 Quantitative evaluation of robustness to viewpoint changes

First, we investigate the effectiveness of our approach in establishing links be-
tween object regions from widely separated viewpoints of an object. In this
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Fig. 7. Comparison of different approaches in recovering links between regions in the
presence of large viewpoint changes. The horizontal axis shows the change of viewpoints
(0° — 360° in increments of 30°). For visualization, we normalize the similarity score
estimated by each method between 0 and 1.

experiment, we select two objects, stapler and keyboard, from the UoW’s RGB-
D dataset [22]. We collect another image sequence of a laptop, in addition to
these two objects, to increase matching difficulty. For each object, we sample
the image sequence for viewpoints at 30° increments. We use the ground truth
segmentations to make sure that the only factor involved in this experiment is
the variation of appearance due to viewpoint.

We compare three techniques for computing similarity. The first technique of
[9] calculates similarity according to color, texture and shape. This technique is
sensitive to non-planar transformation since it uses a similarity transformation
model for matching shapes [18]. The second technique (SIFT_Epipolar) uses
sparse SIFT feature matching with epipolar constraints [23]. It still can not
handle the extreme viewpoint changes that completely changes the appearance
of the object.

For quantitative evaluation, we normalize all scores between images (sim-
ilarity measure for [9], number of correspondence features for SIFT _Epipolar,
and data-driven similarity measure for our approach) to be between 0 and 1.
We plot these normalized scores in Figure 7. For the stapler and the laptop, the
number of correspondences recovered by the baseline techniques decrease quickly
with respect to the amount of viewpoint change. Neither method can find any
correspondences if the viewpoint change is larger than 90°. The SIFT_Epipolar
technique performance improves on the keyboard, which is planar and texture-
rich. Our approach maintains reliable correspondence between large viewpoint
changes in most cases. Exceptions are when one of the input regions is uninfor-
mative. For example, when the stapler is rotated by 90°, the rear view of the
stapler becomes unformative and matched with generic objects different from
that of the more distinctive side view, the same happens for the rear view of the
laptop.
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6.2 Quantitative evaluation of object discovery on the CMU ADL
dataset

Now we evaluate the effectiveness of our approach in the object discovery ap-
plication. We evaluate three separate properties of our discovery algorithm. 1:
Each cluster should contain image segments that correspond to a single object
(precision). 2: All of the objects in the environment should be discovered (recall).
3: Each object should be found as a single cluster (fragmentation).

Following prior work [9, 7, 3], we measure precision by estimating the purity
of each cluster, which is defined as the percentage of segments in the cluster
which come from a single object. Precision measures the percentage of pure
clusters out of all the extracted clusters. We define the recall as the percentage
of objects that are correctly discovered. We define object fragmentation as the
average number of segment clusters per discovered object.

We compare our approach to the object instance discovery method of [9].
We also compare with [3] and [5], which used multiple segmentations and link
analysis for object discovery. We also investigated [6] as a potential baseline
system but it turned out to be too computationally expensive for our application.
The approach of [7] is also an interesting baseline, but it requires supervision
whereas we are interested in fully unsupervised discovery.

We evaluate our approach on the ADL dataset [9]. Since our approach is
essentially adding new links to the similarity graph, it is important to compare
it with a baseline in which we simply lower the thresholds on the appearance
similarity measures c¢; and ¢z to include more links. We adjusted the thresholds
so that the baseline system include a majority (80%) of the new links that
our approach adds. We quantify the performance of each approach using the
F-measure.

We evaluate the effects of dataset size by performing experiments on subsets
of images from the ADL dataset (ranging in size from 10 to 175 images). Fig-
ure 8 shows a comparison of different approaches for this task. Our approach
consistently outperforms the baseline system (“Kang, et al. 2011”) by 6% on av-
erage; moreover, the performance improvement grows to over 15% as the number
of input images decreases. In addition, we outperform the modified version of
(“Kang, et al. 2011 (Lower Matching Threshold)”). This is intuitive, since low-
ering the matching threshold results in a large number of spurious links that
degrade the quality of clusters. We also outperform the baseline system in terms
of fragmentation. Our approach generates fewer clusters per object and lowers
the fragmentation factor by about 20% (Figure 8(b)).

6.3 Qualitative evaluation on Flickr images

We also evaluate our approach in the scenario of online photosharing, where
users tend to take pictures of the same objects from few iconic views, resulting
in sparse observations, for example the 23 images corresponding to the query
“Vibram five fingers,” downloaded from Flickr, shown in Figure 9. The sparse
observation problem is a challenge in many applications, such as web image
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Fig. 8. We compare our approach with existing techniques in discovering objects from
sparse observations. In this experiment, we randomly select a proportion, p € (0, 1], of
all the ADL images dataset. We run 10 rounds of experiments for each p and measure
the performance of each instance discovery approach. As we can see, our approach
performs reliably even with a small number of input images while the performance of
the baseline approaches degrades more rapidly as the number of images decreases.
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Fig. 9. Examples of images retrieved from Flickr.com using the query “Vibram five
fingers.” Users tend to capture the same objects from a few iconic views, while leav-
ing out the intermediate views, which makes it impossible to group regions based on
appearance alone (fragmentation). Our approach correctly groups the regions into a
single cluster.

clustering and categorization. Existing definitions of visual similarity are very
limited in handling such large viewpoint changes.

In this experiment, we applied the clustering algorithm in [9], which results
in highly fragmented clusters, i.e., 3 segment clusters, each containing less than
4 image segments. By comparison, our algorithm is able to discover additional
links between segments by matching with the product database. Figure 9 shows
the cluster of 15 segments that our program discovered. We not only merge all the
original fragmented clusters, but also include some segments that were originally
left out due to large visual difference. Analysis on the database objects used for
generating the data-driven similarity links shows that objects of different types
that share similar attributes also contributes to the matching process, such as
gloves and keyboards (Figure 9(b)).

7 Conclusion

In this paper, we proposed a data-driven approach for measuring object similari-
ties that is robust to sparse observations. We use a large product image database
to represent the appearance of objects in different viewpoints. We match image
segments that are similar to the same set of database objects, augmenting the
existing visual matches. We demonstrate that our approach recovers matches de-
spite large viewpoint changes, specifically, for the application of object discovery.
This work shows the value of data-driven approaches with a large body of prior
knowledge. In the future, we would like to explore the application of our ap-
proach to handle the sparse observation issues due to other imaging conditions,
such as difference in illumination.

Acknowledgments. The authors would like to thank anonymous reviewers for
helpful suggestions. This work is partially supported by NSF Grant No. EEC-
0540865.
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