
Random Forest for Image Annotation

Hao Fu, Qian Zhang, and Guoping Qiu

School of Computer Science,
University of Nottingham, Nottingham, UK

{hxf,qxz,qiu}@cs.nott.ac.uk
http://www.viplab.cs.nott.ac.uk/

Abstract. In this paper, we present a novel method for image annota-
tion and made three contributions. Firstly, we propose to use the tags
contained in the training images as the supervising information to guide
the generation of random trees, thus enabling the retrieved nearest neigh-
bor images not only visually alike but also semantically related. Secondly,
different from conventional decision tree methods, which fuse the infor-
mation contained at each leaf node individually, our method treats the
random forest as a whole, and introduces the new concepts of seman-
tic nearest neighbors (SNN) and semantic similarity measure (SSM).
Thirdly, we annotate an image from the tags of its SNN based on SSM
and have developed a novel learning to rank algorithm to systematically
assign the optimal tags to the image. The new technique is intrinsically
scalable and we will present experimental results to demonstrate that it
is competitive to state of the art methods.

Keywords: Random Forest, Image Annotation, Semantic Nearest
Neighbor.

1 Introduction

Nearest Neighbor (NN) based methods have been successfully applied to various
problems in computer vision including, image classification [1], scene completion
[2], image parsing [3], image annotation [4,5], etc. In this paper, we are particu-
larly interested in using NN to deal with problems related to image annotation.

In order to extend nearest neighbor based methods to large scale settings,
we need to carefully consider at least two significant issues. The first is how
to design efficient data structures to retrieve the nearest neighbors. Some well
known techniques including inverted file structure [6] or Locality Sensitive Hash-
ing (LSH) [7] are usually adopted to deal with this problem. The second is the
semantic gap problem where the nearest neighbors retrieved based on visual
feature similarity do not necessarily share the same semantic concepts. This is
a fundamental problem in computer vision and hundreds of different methods
have been developed.

In the past, the two problems mentioned above were usually dealt with sep-
arately. In this paper, we propose to use random forest to tackle them simul-
taneously: using the tree structure of the random forest enables the efficient

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part VI, LNCS 7577, pp. 86–99, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.viplab.cs.nott.ac.uk/

Random Forest for Image Annotation 87

retrieval of nearest neighbors; using the tag distribution as supervising informa-
tion to guide the generation of the random trees makes the images located at
the same leaf node share similar semantic concepts. Furthermore, we exploit the
specific structure of the random forest and propose a new concept called seman-
tic similarity measure (SSM). Based on this SSM, we define semantic nearest
neighbors (SNN) in contrast to the traditionally used visual feature space nearest
neighbors.

We made three contributions in this paper. Firstly, we propose to use the tags
contained in the training images as the supervising information to guide the
generation of the random trees, thus enabling the retrieved nearest neighbors
not only visually alike but also semantically similar. Secondly, different from
conventional decision tree methods, which fuse the information contained at each
leaf node individually, our method considers the random forest as a whole, and
introduce the new concepts of semantic nearest neighbors (SNN) and semantic
similarity measure (SSM). Thirdly, we annotate an image from the tags of its
SNN and have developed a novel learning to rank algorithm to systematically
assign tags to the image. We present experimental results to demonstrate that
our technique is competitive to the state of the art.

2 Related Work

The task of image annotation is to automatically assign metadata, usually in
the form of keywords or tags, to an image. Large quantity of literature exists
in the image annotation area, and methods range from generative models [8]
to discriminative models [9]. While generative models need a large quantity
of training data to learn the joint probability of semantic concepts and image
visual features, discriminative models treat each tag as a semantic class, and try
to learn a different classifier for each tag. Therefore, it is not easy to model the
correlations between tags and one will encounter difficulties when extending to
large number of tags.

Recently, nearest neighbor based methods [4,5] have attracted much attention.
Among them, TagProp [4] is perhaps the most successful method which shows
superior performance on several benchmark image annotation datasets. It uses
a weighted nearest neighbor model to predict the possible tags. Its superior
performance relies on its sophisticated training procedure, and its optimization
function is composed of items corresponding to every tag in every image, which
will inevitably hinder its applicability to large scale datasets. The success of
TagProp largely motivates the work presented in this paper which also adopts
the nearest neighbor based models for image annotation but with much improved
efficiency and flexibility.

On the other line of research, to accelerate the speed of retrieving nearest
neighbors, some approximate nearest neighbor approaches are usually adopted.
Among them, hashing [10] is generally believed to be the most prominent one.
It uses a series of hashing functions to project the samples to different buck-
ets, in the hope that similar samples will have a higher probability of falling

88 H. Fu, Q. Zhang, and G. Qiu

into the same bucket. Most of the existing hashing techniques are unsupervised
[11,12], although supervised [13] or semi-supervised [7] hashing techniques exist
and always show better performance in image retrieval applications. However,
for those supervised hashing methods, the supervised information only takes the
form of pairwise similarity [7,13]. They can not make full use of the tag informa-
tion available in image annotation scenario. Besides this, each hashing function
is just a linear projection. This simple form limits its discriminative power in
dealing with highly non-linear data.

Besides hashing, another popular Approximate Nearest Neighbor (ANN)
search method is the tree structure based method [14,15,16]. Sometimes these
tree structure methods exhibit a better performance than hashing [16]. It has
also been observed that multiple random trees usually outperform a single tree
[14,16]. As these tree structure models only aim for fast retrieving nearest neigh-
bors, they are all unsupervised. Although there exists some work on utilizing su-
pervised random trees for nearest neighbor search [17,18], they are mainly used
as a fast alternative to k-means for deriving low-level feature representations and
the random trees played no direct role in the final image classification which is
usually done by classifiers such as SVMs.

The most related work to ours is in [19], who also propose to use random forest
for image annotation. However, their usage of random forest is totally different
from ours: they treat their random forest as a replacement of Gaussian mixture
model embedded in a previous annotation model named Semantic Multiclass
Model [9], whilst our new annotation model is based entirely on the random
forest; what we stored at each leaf node is the training images that fall onto this
leaf node, whilst theirs is the posterior probability of tags.

3 The Construction of the Random Forest

It has been a common practice [5,4] to use multiple kinds of features to represent
one image. How to efficiently combine different features is a non-trivial task
[20]. Existing methods include using an equal weight for different features [5], a
distance specific weight for each feature [4], etc.

In our random tree scenario, the method of fusing different features is corre-
lated with the choice of the split function of the random tree. Given the feature
representation F for a sample, there are many possible ways of defining the split
function at each node, such as a linear classifier [21,22]:{

wTF+ b ≥ 0 go to left child

otherwise, go to right child
(1)

or the feature difference between two dimensions [23]:{
Fi − Fj ≥ thresh go to left child

otherwise, go to right child
(2)

Random Forest for Image Annotation 89

However, the above two methods will both encounter problems when the feature
dimension is high. As for a typical decision tree, we need to generate multiple
hypothesized tests and pick the best one. If the feature dimension is high, then
the valid search space for the above two methods would grow quickly as well,
thus making it harder to pick up a good split. Although we can formulate it
as an SVM problem [22] for choosing the appropriate linear classifier, it is only
applicable for problems with explicit class labels.

To narrow down the search space for the split function, we prefer to use a
simple split function while simultaneously trying to maintain its discriminative
power. To achieve this, we propose to use dimension reduction methods to get
a more compact representation for each feature channel. More specifically, we
choose to use kernel PCA [24] for each feature channel. Although directly com-
puting kernel PCA is time consuming and hard to extend to large scale, there ex-
ist fast approximate methods [25] which make it scalable to large scale datasets.
In all our experiments, we use kernel PCA to reduce each feature dimension to a
fixed low dimension, thus making each kind of feature have an equal probability
to be chosen as the dimension on which the split function will operate. Denote
the kernel PCA reduced feature as F′, the split function is defined as:{

F ′
i ≥ thresh go to left child

otherwise, go to right child
(3)

Based on the split function defined above, we can split samples to the left child
node or right child node accordingly. We can generate multiple splits by choos-
ing different feature dimensions or different thresholds. We plan to use the tag
information to guide the generation of the tree. The idea is straightforward: at
each node, after splitting the samples to the left node or the right node, we
can compute their corresponding tag histograms. A good split means the tag
histogram of the left node should be quite different from the tag histogram of
the right node. Thus we can use the widely adopted information gain criteria
[21,26] as the score function:

Score(split) = �E = − |Il|
|In|

E(Il)−
|Ir |
|In|

E(Ir) (4)

where E(I) is the Shannon entropy of the tag distributions in the set of samples
I. |I| means the number of samples contained in I. In is the set of training
sample in node n, while Il and Ir represent the training images contained in
node n’s left and right child node respectively.

4 Tag Prediction Based on Semantic Neighbors

For a test image, we pass it through every random tree. It falls from the root
node and keeps falling according to the split function until it reaches the leaf
node. It is obvious that every node in its falling trajectory contains important
information, but for now we only consider the samples stored in the leaf node

90 H. Fu, Q. Zhang, and G. Qiu

and call these samples the semantic neighbors of the test sample. The semantic
neighbors obtained from different trees together make up the semantic neighbor
set. Based on this semantic neighbor set, we can draw the important rationale
behind this paper: the more often that two images fall into the same leaf node, the
more likely they share similar tags. Therefore, the semantic similarity between
two images should be monotonically increasing with the number of trees in which
they fall into the same leaf node. Thus, we can count the number of trees that
two images fall into the same leaf node and use this count value as the semantic
similarity measure (SSM) of the two images (we will use count value and SSM
interchangeably in the rest of the paper). Based on the SSM, we can sort all the
images contained in the semantic neighbor set to retrieve its K semantic nearest
neighbors. The concepts of semantic neighbor set and semantic neighbors are
also illustrated in Fig.1.

Fig. 1. An example showing the concepts of semantic neighbor set and semantic neigh-
bors. A query image passes through all random trees. The training images stored at
the leaf nodes on which the query image falls into form the semantic neighbor set.
Based on this, the semantic similarity measure (SSM) between the query and a given
training image is calculated as the number of times that the given image appears in
the semantic neighbor set. A larger SSM indicates higher similarity.

Based on the semantic neighbor set, our semantic nearest neighbor (SNN)-
based image annotation method is performed as follows: For a test image, we
use the method described above to retrieve its K semantic nearest neighbors.
The prediction of the tags for this image totally depends on these K seman-
tic nearest neighbors. At this stage, we can use previously developed methods,
like the label transfer method in [5] or the label filter method in [27]. In our case,

Random Forest for Image Annotation 91

we can get additional help from the count value obtained from our random forest,
and therefore we adopt a conventional tf-idf scheme [6].

Denote I the query image andQ the probabilities of assigning tags to annotate
the image. Let Ii represents I’s ith semantic neighbor returned by our random
forest with its count value denoted as ci, and Ti represents the ground truth
tags of Ii. Suppose there are M tags in total, thus Q and Ti can be represented
as a M -vector: Q = (q1, q2, ..., qM)T and Ti = (ti1, ti2, ..., tiM)T . Here tij is an
indicator function which is equal to 1 if tag j exists for the ith image. The
prediction of Q totally depends on the Ti and ci value:

qj = log
R

rj
∗

K∑
i=1

(
tij
Z

∗ f(ci)
)
, j ∈ {1, 2, ...,M} (5)

where the term log R
rj

is the inverse document frequency [6] obtained from all

the training images. R is the number of training images, and rj is the number
of training images who contain the jth tag. Z is a normalizing constant which
is equal to

∑K
i=1

∑M
j=1 tij . The term f(ci) represents a function which should

be monotonically increasing with ci. This term reflects our intention that the
neighbor with a larger count value should contribute more to the predication
of the tags. Based on the computed M -vector (q1, q2, ..., qM)T , we can predict l
tags for the test image which correspond to the l largest qj values.

Possible forms of f(ci) include f(ci) = ci, f(ci) = ci
2, etc. However, ad

hoc choices of f(ci) is not fully convincing. In the next section, we introduce a
systematic method to learn f(ci) from training data.

5 Image Annotation as Learning to Rank Semantic
Neighbors

In conventional random forest literature [23], each tree is considered to be inde-
pendent and they contribute equally to predict the posterior probability, which
is equivalent to setting f(ci) = ci in our scenario. However, we will show in our
experimental section that sometimes if we choose f(ci) = ci

2, we can obtain a
better performance. It is not difficult to understand this. As shown in Fig.2, the
distribution of the count variable exhibits a heavy-tailed distribution. That’s
one of the reasons why the method of JEC [5] is successful by using only the
first few nearest neighbors (which correspond to the larger count values in our
scenario). It also stimulates our first intuition to use f(ci) = ci

2 to exaggerate
the contribution of those large count values. However, choosing f(ci) in an ad
hoc manner is not desirable and we need a more systematic approach.

Recall that the count value ci defined in (5) can only take discrete values.
Therefore we can define f(ci) = wci , where wci means this variable only depends
on ci value and we can consider it as a look-up table. Suppose we have trained
NT trees in total, then the inequality ci ≤ NT always holds, and wci can have at
most NT different values. We use W = (w1, w2, ..., wNT)

T to denote the vector
form of w.

92 H. Fu, Q. Zhang, and G. Qiu

Fig. 2. Distribution of the count value across different datasets. Randomly sampled
images from each dataset are fed into the random forest. The top K semantic nearest
neighbors retrieved with their count values are gathered to plot this graph.

Denote aj = log R
rj

∗ 1
Z , which is a tag specific constant, then (5) can be

rewritten as:

qj = aj ∗
K∑
i=1

(tij ∗ wci), j ∈ {1, 2, ...,M} (6)

Here, we introduce another indicator variable D ∈ {0, 1}K×NT . Each of its row
contains all zero but only one 1 which corresponds to the position of wci in W.
Thus (6) can be written as:

qj = aj ∗ [t1j t2j ... tKj] ∗D ∗W (7)

Its matrix form is:

Q = A . ∗ ([T1 T2 ... TK] ∗D ∗W)

= ([A A ... A]︸ ︷︷ ︸
NT

. ∗ ([T1 T2 ... TK] ∗D)) ∗W (8)

where A = [a1, a2, ...aM]T , ‘.∗’ represents element-by-element multiplication.
Here, we can see that the prediction of tags can be casted as a linear prediction

model. In the training procedure, we need to find the largest values in Q, and
make it equal to the ground truth annotation. We can cast it as a learning to
rank problem [28].

Denote {(TP , TN)} as the set of all possible tag pairs in the training set, where
TP represents the ground truth tags and TN represents the rest of the tags. Let

Ψj = aj ∗ [t1j t2j ... tKj] ∗D (9)

then (7) can be simplified as qj = Ψj ∗W = 〈Ψj,W〉.

Random Forest for Image Annotation 93

Then this learning to rank problem can be formulated as:

min
W,ξij≥0

1

2
WTW + C

∑
(i,j)∈{(TP ,TN)}

ξij

s.t. ∀(i, j) ∈ {(TP , TN)} : 〈Ψi,W〉 ≥ 〈Ψj,W〉+ 1− ξij

∀i : wi ≤ wi+1, W ≥ 0, (10)

This problem differs from the conventional SVM problem [28] in that it has the
additional constraints W ≥ 0 and wi ≤ wi+1, but still it is a convex problem,
and we can solve it using off-the-shelf convex problem solvers1. These additional
constraints represent our belief that the contribution of the retrieved nearest
neighbors should be monotonically increasing with the count value.

However, the problem defined in (10) is still different from our needs. The
aim of the learning to rank problem, as defined in (10), is to make the rank of
positive samples as high as possible, but in our scenario, we only need to predict
the top l tags. This means there is no difference between ranking one positive
tag as rank l + 1 or rank l + 100. Therefore, we introduce a slack variable ξi
for each positive tag instead of ξij for each positive-negative pair. This slack
variable motivates the algorithm to make the rank of positive tags outperform
all the negative tags. Our new learning to rank problem is defined as:

min
W,ξi≥0

1

2
WTW + C

∑
i∈TP

ξi

s.t. ∀(i, j) ∈ {(TP , TN)} : 〈Ψi,W〉 ≥ 〈Ψj,W〉+ 1− ξi

∀i : wi ≤ wi+1, W ≥ 0, (11)

One obstacle to directly solving (11) is that it will generate huge number of
constraints. For example, if a dataset contains 5000 images for training, each
image is annotated with 4 tags on average and the size of the tag set is 260, then
one image will generate 4*256≈1000 constraints, and the whole dataset will
generate about 5 million constraints! However, with the help of the additional
constraints W ≥ 0 and wi < wi+1, we will show that most of the constraints are
redundant and we can reduce the size of the constraints by almost two orders of
magnitude.

Definition 1. Tag m is superior over tag n if qm = 〈Ψm,W〉 ≥ qn = 〈Ψn,W〉
for every W ∈ {W ≥ 0, wi ≤ wi+1}.

From the above definition, we can see that if tag m is superior to tag n, then we
will always prefer tag m over tag n in predicting the tags. If tag m is the ground
truth annotation, then we will always be right. On the contrary, there will be no

1 http://cvxr.com/cvx/

94 H. Fu, Q. Zhang, and G. Qiu

hope to remedy the mistake. Therefore, such constraints can be considered as
redundant and there is no need to add them to our optimization problem. Using
the following proposition, we can quickly judge if tag m is superior over tag n.

Proposition 1. Denote Ψj which is defined in (9) as [ψj1 ψj2 ... ψjNT]. Tag

m is superior over tag n if and only if
∑NT

i=N ψmi ≥
∑NT

i=N ψni for every N ∈
{1, 2, ..., NT}. [The proof of this proposition can be found in the supplementary
material 2.]

Based on this proposition, we can use the following procedure to find the redun-
dant pairs and remove them from the constraint set:

1). Let Ψ = [Ψ1;Ψ2; ...;ΨM]. Rearrange the rows of Ψ into the Right-Ordered
form ΨRO;
2). Calculate the cumulative sum of each row vector in the reverse order Ψcum;
3). We can judge that tag m is not superior to tag n if either of the following
two conditions hold: the position of Ψn in ΨRO is higher than Ψm or any items
of Ψn in Ψcum is bigger than Ψm. This procedure is also illustrated in Fig.3.

Fig. 3. From left to right: the matrix Ψ = [Ψ1;Ψ2; ...;ΨM], where Ψj is defined in
(9); ΨRO obtained by rearranging Ψ in its Right-Ordered form; the cumulative sum
of each row of ΨRO in the reverse order

6 Experiments

Corel5K [8] is one of the most well known image annotation datasets. It contains
5000 images and 373 different tags in total. It is usually split into 4500 images
for training and the remaining 500 for testing, resulting in 260 tags in both
the training set and testing set. IAPR-TC12 [29] and a subset of ESP-game [4]
are another two image annotation datasets which contain approximately 20000
images. More specifically, IAPR-TC12 is usually divided into a fixed number of
17665 images for training and the rest 1962 images for testing, while 291 tags
exist both in the training set and testing set; ESP-game contains 18689 images
for training and 2081 images for testing. The training set and testing set contain
268 different tags in common.

Much work has been done on these three datasets. In terms of accuracy, Tag-
Prop [4] is the best technique in the literature. The authors of TagProp have also

2 http://www.viplab.cs.nott.ac.uk/publications/Papers/ECCV12-supp.pdf

Random Forest for Image Annotation 95

released the features they used on these three dataset. We directly did experi-
ments based on these features. There are 15 different kinds of features in total,
including two kinds of global features: Gist features and color histograms. Local
features include SIFT and hue descriptor which are extracted either densely or at
the Harris-Laplacian interest points. For all these kinds of features, we use kernel
PCA to reduce each of them to a fixed 100 dimensions. We use k = exp(−γ−1 ·d)
to compute the kernel matrix, where γ is the mean of the distance matrix, and
d is the distance between samples. Following [4], we use L2 norm as the base
metric for Gist, L1 for global color histograms, and χ2 for all the other features.

For all of these three datasets, we generate NT random trees. Based on the
count value, we retain K nearest neighbors for each test sample, then the tags
are predicted using (5) based on these K nearest neighbors. As in other works,
five tags are predicted for each image. Average precision, average recall and
the number of tags whose recall is above zero (N+) are used to evaluate the
performance.

Fig. 4. The relation between the system performance F value (F value = 2 ∗
Precision∗Recall/(Precision+Recall)), and the parameters of NT (number of trees)
andK (number of Nearest Neighbors used for prediction). From left to right: the results
on Corel5K, results on IAPR-TC12 and results on ESP game.

The relation between the performance, and the number of trees NT and the
number of nearest neighbors K are shown in Fig.4. From there, we can see that
about 200 trees will saturate the performance and we only need to retain about
100 nearest neighbors, and the three dataset exhibit a similar trend. This proves
that our algorithm is robust to these parameters. Two stopping criterions are
set in generating the random trees. The first one is that the number of images
contained in a node should be larger than thresh1, and a second criterion is that
the depth of the random tree should not exceed thresh2. We empirically set
thresh1 to be 8 across all the three datasets. thresh2 is set to be 10 for Corel5K
and 12 for the other two datasets.

6.1 Semantic Nearest Neighbor Search

A well known problem of traditional nearest neighbor search is the semantic gap
issue where two images that are similar in the feature space bear little semantic

96 H. Fu, Q. Zhang, and G. Qiu

relations. Here we show that our random forest based semantic nearest neighbors
can better overcome this issue. Fig.5 shows visual examples of several query
images and their semantic nearest neighbors (SNN) returned by our method
and the visual feature based nearest neighbors returned by the JEC method [5].
It can be seen that, whilst the visual appearances of the nearest neighbor images
returned by JEC do resemble those of the query images, their semantics differ
significantly. On the other hand, the SNN images returned by our method are
not only visually similar to the query images but also share common semantics
with them. More examples can be found in the supplementary material.

These examples demonstrate that our new concept of semantic nearest neigh-
bors and semantic similarity measure can indeed be successfully used to per-
form nearest neighbor search and reduce the semantic gap of traditional nearest
neighbor search. It is this capability to retrieve semantically similar nearest
neighbors that has enabled our method to achieve good performances in image
annotation.

Fig. 5. Some examples of the semantic nearest neighbor images retrieved by our ran-
dom forest method and by JEC method. The tags associated with each image are also
shown beneath each image. The tags which are in accordance with the test image are
colored in blue and underlined, while the false tags are colored in red. The numbers
underneath the SNN images are the values of SSM.

6.2 Image Annotation Performances

Table.1 shows the average precision and recall performances of our new ran-
dom forest based image annotation technique and comparisons with state of
the art techniques. From Table.1, we can see that our methods outperform all
previous methods only except TagProp [4]. However, as mentioned before, the
success of TagProp relies on its sophisticated training procedure and per im-
age per tag optimization, which hinders its extension to large scale datasets.
On the contrary, our method can be easily extended to large scale datasets.
Besides this, our method is as straightforward as a nearest neighbor method.

Random Forest for Image Annotation 97

Table 1. Image Annotation Performances on Corel5K, IAPR-TC12 and ESP game.
RF represents our Random Forest method. RF count denote f(ci) = ci, RF count2

denote f(ci) = ci
2 and RF optimize denote f(ci) is learned based on our optimization

framework.

Corel5K IAPR-TC12 ESP game

method Prec Recall N+ Prec Recall N+ Prec Recall N+

MBRM [30] 0.24 0.25 122/260 0.24 0.23 223/291 0.18 0.19 209/268
JEC [5] 0.27 0.32 139/260 0.28 0.29 250/291 0.22 0.25 224/268
MSC [31] 0.25 0.32 136/260 - - - - - -
HPM [32] 0.25 0.28 136/260 - - - - - -

M-E Graph [33] 0.25 0.31 - - - - - - -
TagProp [4] 0.33 0.42 160/260 0.46 0.35 266/291 0.39 0.27 239/268
GS [34] 0.30 0.33 146/260 0.32 0.29 252/291 - - -

SML+RF [19] 0.36 0.33 135/260 0.27 0.30 266/291 - - -

RF count 0.26 0.36 143/260 0.47 0.22 220/291 0.45 0.24 233/268
RF count2 0.29 0.41 165/260 0.45 0.31 253/291 0.34 0.27 239/268
RF optimize 0.29 0.40 157/260 0.44 0.31 253/291 0.41 0.26 235/268

In this sense, JEC [5] is the most comparable to our method. However, our
method shows a clear performance gain over JEC because JEC only relies on
the nearest neighbors of visual features, whilst our method finds semantically
similar nearest neighbors (also see Fig. 5).

6.3 Learning to Rank vs. Ad Hoc Annotation Functions

Comparing the results obtained from RF count, RF count2 and RF optimize
in Table.1, we could see that RF count2 performs best on Corel5K and IAPR-
TC12 but performs worst on ESP-game, while RF count performs slightly better
than RF count2 on ESP-game but worst on the other two datasets. This shows
that these ad hoc annotation functions although sometimes can work well but
as can be expected, lack consistency. In comparison, the systematic method
RF optimize performs consistently well across all the three datasets. The un-
predictable performances of the ad hoc annotation functions across different
datasets and the highly consistent good performances of the novel systematic
learning to rank algorithm clearly highlighted the value and usefulness of our
learning algorithm.

As can be seen the optimization objective of our learning to rank algorithm
(11) treats each tag equally important. Another useful measurement of perfor-
mances is to count the total number of correctly predicted tags. Table.2 lists
the total number of correctly predicted tags for the two ad hoc annotation func-
tions and the systematic learning to rank method. It is seen that the systematic
method consistently predicted more correct tags.

98 H. Fu, Q. Zhang, and G. Qiu

Table 2. The number of correctly predicted tags on each dataset. RF optimize con-
sistently outperforms the ad-hoc functions.

Corel5K IAPR-TC12 ESP game

RF count 993/1756 3957/11053 3778/9774
RF count2 1004/1756 4242/11053 3724/9774

RF optimize 1010/1756 4254/11053 3797/9774

7 Concluding Remarks

In this paper, we have developed a novel random forest based framework for
automatic annotation. Our new contributions include the use of tag information
to guide the generation of the random trees, the introduction of the concept of
semantic neighbors and a novel learning to rank framework for systematically
learning image annotation models from the semantic neighbor sets. We have pre-
sented experimental results demonstrating that our new method is competitive
to state of the art. We have recently shown that the idea of semantic neighbors
is also beneficial for image retrieval. For more details, please refer to [35].

Acknowledgments. This work is partially supported by EPSRC grant EP/
J020257/1 and China Scholarship Council - Nottingham Joint PhD scholarship.

References

1. Boiman, O., Shechtman, E., Irani, M.: In defense of Nearest-Neighbor based image
classification. In: CVPR (June 2008)

2. Hays, J., Efros, A.A.: Scene completion using millions of photographs. In: SIG-
GRAPH, vol. 26 (July 2007)

3. Tighe, J., Lazebnik, S.: SuperParsing: Scalable Nonparametric Image Parsing with
Superpixels. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part
V. LNCS, vol. 6315, pp. 352–365. Springer, Heidelberg (2010)

4. Guillaumin, M., Mensink, T., Verbeek, J., Schmid, C.: TagProp: Discriminative
metric learning in nearest neighbor models for image auto-annotation. In: ICCV
(September 2009)

5. Makadia, A., Pavlovic, V., Kumar, S.: A New Baseline for Image Annotation. In:
Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304,
pp. 316–329. Springer, Heidelberg (2008)

6. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching
in videos. In: ICCV, vol. 2 (2003)

7. Wang, J., Kumar, S., Chang, S.F.: Semi-Supervised Hashing for Scalable Image
Retrieval. In: CVPR (2010)

8. Duygulu, P., Barnard, K., de Freitas, J.F.G., Forsyth, D.: Object Recognition
as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In:
Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part IV.
LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)

9. Carneiro, G., Vasconcelos, N.: Formulating Semantic Image Annotation as a Su-
pervised Learning Problem. In: CVPR (2005)

10. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the
curse of dimensionality. In: Symposium on Theory of Computing (1998)

Random Forest for Image Annotation 99

11. Kulis, B., Grauman, K.: Kernelized locality-sensitive hashing for scalable image
search. In: ICCV (September 2009)

12. Weiss, Y., Torralba, A., Fergus, R.: Spectral Hashing. In: NIPS, vol. (1) (2008)
13. Jain, P., Kulis, B., Grauman, K.: Fast Image Search for Learned Metrics. In: CVPR

(June 2008)
14. Jia, Y., Wang, J., Zeng, G., Zha, H., Hua, X.S.: Optimizing kd-trees for scalable

visual descriptor indexing. In: CVPR (2010)
15. Kumar, N., Zhang, L., Nayar, S.: What Is a Good Nearest Neighbors Algorithm for

Finding Similar Patches in Images? In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part II. LNCS, vol. 5303, pp. 364–378. Springer, Heidelberg (2008)

16. Muja, M., Lowe, D.G.: Fast Approximate Nearest Neighbors with Automatic Al-
gorithm Configuration. In: VISAPP (2009)

17. Uijlings, J., Smeulders, A., Scha, R.: Real-time Bag of Words, Approximately. In:
CIVR (2009)

18. Moosmann, F., Triggs, B., Jurie, F.: Fast discriminative visual codebooks using
randomized clustering forests. In: NIPS (2006)

19. Fukui, M., Kato, N., Qi, W.: Multi-Class Labeling Improved by Random Forest
for Automatic Image Annotation. In: IAPR Conference on Machine Vision Appli-
cations, pp. 202–205 (2011)

20. Fu, H., Qiu, G., He, H.: Feature Combination beyond Basic Arithmetics. In: British
Machine Vision Conference (BMVC). BMVA (2011)

21. Bosch, A., Zisserman, A., Munoz, X.: Image Classification using Random Forests
and Ferns. In: ICCV (October 2007)

22. Yao, B., Khosla, A., Fei-Fei, L.: Combining Randomization and Discrimination for
Fine-Grained Image Categorization. In: CVPR (2011)

23. Yu, G., Yuan, J., Liu, Z.: Unsupervised Random Forest Indexing for Fast Action
Search. In: CVPR (2011)

24. Schölkopf, B., Smola, A., Müller, K.R.: Kernel Principal Component Analysis. In:
Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997. LNCS,
vol. 1327, pp. 583–588. Springer, Heidelberg (1997)

25. Zhang, K., Tsang, I.W., Kwok, J.T.: Improved Nystrom Low-Rank Approximation
and Error Analysis. In: ICML (2008)

26. Criminisi, A., Shotton, J., Konukoglu, E.: Decision Forests for Classification, Re-
gression, Density Estimation, Manifold Learning and Semi-Supervised Learning.
Foundations and Trends in Computer Graphics and Vision 7(2-3), 81–227 (2012)

27. Hu, J., Lam, K.M., Qiu, G.: A Hierarchical Algorithm for Image Multi-labeling.
In: ICIP (2010)

28. Joachims, T.: Training Linear SVMs in Linear Time. In: ACM KDD (2006)
29. Escalante, H.J., Hernández, C.A., Gonzalez, J.A.: The segmented and annotated

IAPR TC-12 benchmark. Computer Vision and Image Understanding (April 2010)
30. Feng, S., Manmatha, R., Lavrenko, V.: Multiple Bernoulli Relevance Models for

Image and Video Annotation. In: CVPR (2004)
31. Wang, C., Yan, S., Zhang, L., Zhang, H.J.: Multi-label sparse coding for automatic

image annotation. In: CVPR (June 2009)
32. Zhou, N., Cheung, W., Qiu, G., Xue, X.: A Hybrid Probabilistic Model for Unified

Collaborative and Content-Based Image Tagging. IEEE TPAMI 33, 1281–1294
(2011)

33. Liu, D., Yan, S., Rui, Y., Zhang, H.J.: Unified Tag Analysis With Multi-Edge
Graph. In: ACM MM (2010)

34. Zhang, S., Huang, J., Huang, Y., Yu, Y., Li, H., Metaxas, D.: Automatic Image
Annotation Using Group Sparsity. In: CVPR (2010)

35. Fu, H., Qiu, G.: Fast Semantic Image Retrieval Based on Random Forest. In: ACM
MM (2012)

	Random Forest for Image Annotation

	Introduction
	Related Work
	The Construction of the Random Forest
	Tag Prediction Based on Semantic Neighbors
	Image Annotation as Learning to Rank Semantic Neighbors
	Experiments
	Semantic Nearest Neighbor Search
	Image Annotation Performances
	Learning to Rank vs. Ad Hoc Annotation Functions

	Concluding Remarks
	References

