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Abstract. The non-linear decision boundary between object and back-
ground classes - due to large intra-class variations - needs to be modelled
by any classifier wishing to achieve good results. While a mixture of lin-
ear classifiers is capable of modelling this non-linearity, learning this
mixture from weakly annotated data is non-trivial and is the paper’s
focus. Our approach is to identify the modes in the distribution of our
positive examples by clustering, and to utilize this clustering in a latent
SVM formulation to learn the mixture model. The clustering relies on a
robust measure of visual similarity which suppresses uninformative clut-
ter by using a novel representation based on the exemplar SVM. This
subtle clustering of the data leads to learning better mixture models, as
is demonstrated via extensive evaluations on Pascal VOC 2007. The final
classifier, using a HOG representation of the global image patch, achieves
performance comparable to the state-of-the-art while being more efficient
at detection time.

1 Introduction

Object class detection and recognition is a major challenge within computer
vision. It has been most successfully tackled with the approach: learn a discrim-
inant function from labelled data sets of positive and negative examples [1]. The
decisions about the form of this discriminant function and how it should be
learnt are critical. These decisions require one to consider that the appearance
of images of the same object class can vary significantly due to clutter, lighting,
view-point of the camera and intra-class variation. There is also a strong bias
imposed by photographers with their preferences for specific viewpoints and illu-
minations. These variations and biases lead to a multi-modal distribution of the
positive class irrespective of representation. Combined with the almost uniform
distribution of the negative class, this results in non-linear decision boundaries.
This paper addresses this non-linearity with a mixture of discriminative func-
tions which exploit the multi-modal nature of the positive class.

In order to be able to scale the method to large data set and reduce memory
and computational costs of both the training and the testing phases, instead of
using non-linear mappings of the data [2–4] or utilizing the invariances inherent
in more complex representations e.g. [5], we focus on the use of mixture of linear
discriminants. Here each classifier effectively distinguishes one mode of the posi-
tive class distribution from the background[1, 6]. This framework is attractive as
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Fig. 1. The high level overview of our approach. We group visually similar
positive instances together and for each cluster, learn a linear classifier which separates
the cluster from all negative data. Each color represents a different cluster.

the simplicity of the component classifiers serve to regularize the overall classifier
and avoid over-fitting.

However, learning such mixture of classifiers is not trivial when the association
of each positive training example to a mode of its class distribution is unknown,
the case when one only has weakly annotated data. How to achieve this learning
robustly in this scenario is the main motivation of this paper. One can try
to perform an optimization which simultaneously finds the assignment of each
positive training example to a mixture and learns each discriminative classifier.
But this is a non-convex and expensive optimization problem bedeviled by local
minima. Instead we propose to de-couple the association of the positive examples
to the mixture components and the discriminative learning of the classifiers.

We regard the problem as consisting of two stages. The first is associating
each example with a mode - for which we use the term Mixture Component
Identification (MCI) - while the second is learning the mixture of classifiers
given the associations which we refer to as Mixture Component Learning (MCL).
Figure 1 illustrates our approach: we group visually similar positive samples of
a class together and learn linear classifiers for each group of samples.

We show in the experimental section that such a grouping results in learning
better classifiers per cluster which in turn improves the performance of a detec-
tion system. Extensive experiments are performed on the Pascal VOC-2007 data
set where the configuration settings of our algorithm are thoroughly tested. The
contributions of this work are: 1- to promote the use of unsupervised clustering
- based on visual similarities - in mixture modeling, for the purpose of visual



Mixture Component Identification and Learning for Visual Recognition 117

recognition and 2- to propose a new robust visual similarity measure using a
representation derived from exemplar SVMs[7].

Following a review of the related work, the organization of the rest of the paper
is: section 2 introduces our method, our experiments and results are described
and interpreted in section 3 and the paper is concluded in section 4.

Related Work
Related to our work are all the works which address different sources of variations
such as view point [8, 9], articulation [10] and sub-categories [11]. We aim to
address the sources of variations without explicitly modelling any and without
using any extra supervision, in a way that leads to better performance in the
detection task. Therefore, we implement a discriminative framework - to perform
well in the detection task - combined with a rather generative reasoning - to
address the variations - for careful initialization of the discriminative model.
A rather similar argument can be found in [12] and a similar approach for a
different problem is taken in [13].

Previous works have often utilized mixture models and - either explicitly or
implicitly - dedicated mixture components to modes of the aforementioned multi-
modal distributions e.g. [1, 6, 12, 14]. Unlike the greedy optimization steps in
boosting based approaches, we use the latent SVM formulation of [1] - which
is essentially a mixture of linear SVMs - for our MCL step. The latent SVM
formulation minimizes a convex objective once the latent variables, which include
the data-component associations, are fixed. However, once the latent variables
are allowed to vary, the problem is non-convex and is referred to as semi-convex
[1]. This non-convexity makes the latent SVM initialization-dependent.

Most similar to our work is [12], which - in the unsupervised case - initializes
a latent SVM using a clustering of the positive examples. In comparison to our
work: 1- the similarity measure in [12] does not perform any feature selection and
therefore is clutter sensitive, 2- the focus of [12] is view-point classification and
therefore, very little experiment is done in the direction of object recognition, 3-
the objective being minimized in [12] is slightly different: �2 regularization for
large number of components leads to over-regularization for the same cache size;
therefore the variables CNeg and CPos are included in (3) of [12] which probably
require extra cross-validation while Cs in our case are fixed for different number
of components, thanks to the max regularization.

Unsupervised MCI is possible either by explicitly using a generative model
or by unsupervised clustering of the positive data. Current approaches in the
second direction include the clustering according to the Aspect Ratio of the
bounding boxes [1], a combination of HOG and AR similarity [12] and the recent
ensemble of exemplar SVM approach [7] which essentially treats each positive
sample as a mixture component. The AR clustering is a very crude estimate of
the visual similarity of the data and therefore, clusters based on aspect ratio do
not necessarily contain visually similar samples. HOG based similarity - without
feature selection - is sensitive to clutter, as it will be shown later in sections 2
and 3. Therefore, linear combination of the two - as suggested in [12] - cannot
overcome the mentioned shortcommings. On the other hand, MCL based on
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one positive sample inherently cannot generalize well. We now describe how
to measure and utilize visual similarity to group the positive data and learn a
mixture model with one linear classifier per cluster which discriminates better
than the former and generalizes better than the latter.

2 Visual Similarity Based Mixture Model Learning

2.1 Mixture Learning Framework

Our learning framework consists of two de-coupled steps: MCI and MCL. The
MCI step, given a desired number of components c, assigns to each training
example, xi, a mixture component number mi ∈ {1, . . . , c}. We further describe
the elements of the MCI step in sub-sections 2.3 and 2.2.

The MCL step, given the data-component associations, learns a model for each
component using a latent SVM [1] formulation. The training data in this step
consists of the following. There is a set of positive examples and their associated
mixture components Dp = {(x1,m1), . . . , (xN ,mN )}, a set Dn = {x′

1, . . . , x
′
N ′}

of negative examples and finally a set Z(x) containing all the candidate bounding
boxes which overlap more than 50% with the annotated bounding box of x1.

Let Φ(x, z) denote the modified HOG [15] feature vector of [1] extracted from
the bounding box z. The MCL step learns the parameters β = (β1, . . . ,βc) by
minimizing the objective function:

L(β) =
1

2
max

i
‖βi‖2 + C

N∑

i=1

max
(
0, 1− f+

β (xi,mi)
)
+C

N′∑

i=1

max
(
0, 1 + f−

β (x′
i)
)

(1)

where the scalar C controls the relative weight of the regularization with respect
to the hinge loss and

f+
β (x,m) = max

z∈Z(x)
βm · Φ(x, z), f−

β (x) = max
m

f+
β (x,m). (2)

In (2), the data-mixture component associations (”mi” s ) for positive samples
were fixed to those found in the MCI step. The ”mi” s can also be treated as
latent variables. This increases the non-linearity of the objective function which
in turn increases the number of local minima. However, we expect a careful
initialization to result in better minima. This is empirically validated later in
section 3.

We use a slightly modified version of [16] to optimize (1) and unless stated
otherwise, we use the same parameters as in the original implementation.

2.2 Measuring Visual Similarity

To perform successful clustering one must have a good way of measuring sim-
ilarity between examples. This is a tricky task as background and foreground

1 Here, the set of valid bounding boxes should be a function of the dimensionality of
the corresponding filter. This was neglected in the notations for the sake of brevity.
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clutter affect the appearance of an object instance within its bounding box.
Hence, to robustly measure the visual similarity between two examples from the
same visual class one needs to disregard the irrelevant clutter.

We use the recently developed exemplar SVM [7] to suppress this clutter. The
aim of the exemplar SVM is to learn a classifier which best separates a single
positive example from the large set of negative examples. The classifier learnt
based on this premise effectively performs feature selection on that particular
example. It suppresses the uninformative detail inside the bounding box, see
figure 3, which is not useful when discriminating it from the negative class. The
exact details of how we robustly measure visual similarity now follow.

Let = {wi | i = 1, . . . , n} be the set of n sparse basis filters (in this paper
these filters correspond to the weights of the exemplar SVMs learnt for each
training example). Each one is applied linearly to the feature extracted from the
image patch in x defined by the bounding box z as wi · Φ(x, z). A calibration
process is then required to ensure the scores from the different basis filters are
comparable. This is achieved with the sigmoid function and we define our basis
functions as

Fi(x, z) =
1

1 + exp(−αi(wi · Φ(x, z)− γi))
(3)

where αi and γi are the calibration parameters learnt as in [7]2 and wi is the
i-th sparse basis filter. Let Ei(x) be the maximum score of Fi(., .) over the valid
latent positions of x:

Ei(x) = max
z∈Z(x)

Fi(x, z) (4)

This maximization process corresponds to finding the best alignment over scale
and translation, the search is over bounding boxes of different size and position,
of the sparse filter with the test image patch and can be found via convolution.

If there is a one-to-one association between the basis functions and the positive
training examples, which is the case if an exemplar SVM is trained for each
positive example, we can directly use the bases to evaluate visual structural
similarity between the i-th and j-th positive training instance. Assuming the
same order for the bases and the positive examples in this case, we can define

KE(xi, xj) =
1

2
(Ei(xj) + Ej(xi)) (5)

where symmetry is achieved by averaging between two model responses. How-
ever, if a one-to-one association between the bases and the positive training sam-
ples does not exist or cannot be established, other measures need to be utilized as
theKE measure cannot be evaluated on such cases. Let Ex = (E1(x), . . . , En(x))
be the vector of all basis functions aligned and evaluated on x. With this new
fixed length representation of x, we can utilize any kernel to measure similarity
between two instances without directly associating either of the instances with
the bases. Applying the Intersection Kernel on this representation, the visual
similarity between two image patches becomes:

2 We used the models provided by the authors.
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KE
MI(x, y) =

n∑

i=1

min (Ei(x), Ei(y)) (6)

As a specific example is usually visually similar to only a limited number of
examples, averaging (mean pooling) the intersection measure on all the bases
will unnecessarily smoothen out the responses. Therefore, if the responses of the
bases are calibrated with respect to each other3, we can make use of measures
which are more sensitive to the responses of the bases. Therefore, we utilize �∞

on the intersection measures and define the KE
MMI as the max pooling of the

intersections:

KE
MMI

(x, y) = max
i

min (Ei(x), Ei(y)) (7)

Figure 2 shows the top nearest neighbors using each similarity measure evalu-
ated on several classes. Similar to the results reported in [7], feature selection
according to the exemplar SVMs results in better visual similarity measures
which in turn leads to visually more appealing nearest neighbors. It is evident
from the figure that unlike KE

MMI which is sensitive to subtle variations in basis
responses, the averaging behavior of KE

MI
does not result in visually appealing

nearest neighbors if the class exhibits high variations.
Let L = 1

N

∑
x∈Dp

|Z(x)| be the average number of latent positions over the
positive training set and D be the average dimensionality of the linear weights
of the basis filters . The computational complexity of evaluating a full affinity
matrix using KE is O(Dn2L). Assuming the same number of bases as positives
i.e. N = n, the computational complexity of evaluating a full affinity matrix
using KE

MI and KE
MMI is O(Dn2L+ n3). However, as usually DL � n, the domi-

nating factor is still the convolutions which makes the computational complexity
of all measures equivalent. We now describe how these similarity measures can
be used to identify mixture components.

2.3 Mixture Component Identification via Unsupervised Clustering

With our similarity measure K, we can cluster our positive data using spectral
clustering [17]. We construct fully connected similarity graphs and use the sim-
ilarity measure as the affinity measure s.t. W = (wij) and wij = K(xi, xj). Let
Lsym denote the symmetric normalized Laplacian:

Lsym = I−D− 1
2 WD− 1

2 (8)

where D is the degree matrix - a diagonal matrix with diagonal entries dii =∑
j wij . In order to identify c components, we compute the first c+ 1 eigenvec-

tors ū0, ū1, . . . , ūc of Lsym and ignoring the first eigenvector, construct Ū =
(ū1, . . . , ūc). Let U be the matrix obtained by normalizing the rows of Ū:

3 We need to emphasize here that while the exemplar SVMs in [7] are not calibrated
with respect to each other, we found out the independent calibrations to be suffi-
ciently accurate to be used in KE

MMI (7).
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car class

person class

Query Image 1st NN 2nd NN 3rd NN 4th NN 5th NN

Fig. 2. Nearest neighbors produced by different visual similarity measures.
The similarity measures within each block, from top to bottom are: HOG similarity
without feature selection, KE , KE

MI and KE
MMI. The leftmost column shows the image

with highest similarity to its 10 nearest neighbors and to its right are its 5 nearest
neighbors. Note how feature selection based on exemplar SVM results in better mea-
sures of visual similarity.

uij = ūij/
(∑

k ū2
ik

) 1
2 . We refer to the i-th row of U ∈ R

n×c as ui and the
mapping - according to K and c - from xi to ui as the (c,K)-spectral projection.

The �2 distance is well suited to the spectral projection (u) representation
and therefore, as suggested in [17], k-means on this representation gives a good
clustering of the data. The 2D coordinates of the instances in Figure 1 depict the
(2,KE

MMI
)-spectral projection of a subset of the car examples. It can be observed

that the �2 distance on this representation reflects the visual similarity between
instances: points close in this space are expected to be visually similar. Because
of this fact, we can measure the quality of a cluster by computing the average
distance between two samples in the cluster. The colors in Figure 1 reflect the
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x Basis 1 Basis 2 Basis 3 . . . Basis N Ex

. . .

. . .

Ẽi(x) 0.198 0.209 0.152 0.044 No FS

. . .
Ei(x) 1.000 0.002 0.013 0.000 FS

Fig. 3. Visualization of x projected onto a set of basis filters. In this figure the
feature vector, Φ(x, z), extracted from example x is projected onto two different sets
of basis filters. The first is a non-sparse basis and corresponds to the original HOG
feature representation of each training example, while the second is a sparse one based
on its exemplar SVM weight vector. The suppression of the clutter in the sparse basis
allows for a more precise matching w.r.t. visual similarity (compare Ei s with Ẽi s).

association of samples to the top 4 clusters from the 5 clusters produced by
k-means on the (5,KE

MMI
)-spectral projection of the data. The 5th cluster had

a high average distance measure as it mainly contained everything which was
not visually similar to samples of any of the other clusters and therefore, it was
omitted for visualization purposes.

Example clusters found using the KE
MMI similarity measure are shown in figure

4. Shown are the top 5 samples of the top 4 from the 5 clusters for four classes
and the filters (the β1, . . . ,βc from equation (1)) learned for each cluster. Here,
the top sample refers to samples with the highest average visual similarity, using
KE

MMI
, to all instances associated with the same component. The top cluster is

considered as the cluster with the highest average visual similarity between the
samples assigned to the cluster. It can be observed that the MCI step groups
together examples that are visually similar.

It is worth noting that while the KE and KE
MMI visual similarity measures

are not kernels i.e. they do not result in positive definite affinity matrices, they
can be utilized in the spectral clustering as the spectral projection utilizes (the
normalized version of) the largest eigenvalues of the affinity matrix. Let d̃ refer to
the vector of ordered eigenvalues of the Lsym and d̄ refer to the average d̃ values
over all classes in Pascal VOC 2007. Figure 5 shows d̄ and its derivative when
usingKE andKE

MMI
as similarity measures. It can be observed thatKE results in

higher rank affinity matrices leading to lower rank normalized Laplacians; which
means that KE

MMI is potentially preferable for coarser clusterings (less number of
clusters). This is also experimentally validated later in Figure 6.
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Fig. 4. Visualization of the clusters. Each row shows the top 5 samples of the
top 4 clusters based on the highest average kernel similarity after (5, KE

MMI)-spectral
clustering of the car and person classes (see text for details). The last column depicts
the positive weights of the model learnt for each cluster in the MCL step.

3 Experiments

Data Set: We evaluate our method on the Pascal VOC 2007 [18] data set,
training on the train + validation set, and testing on the test set and using
the Average Precision (AP) and mean Average Precision (mAP) as performance
measures. We report the performance of the MCI + MCL framework based on
different visual similarity measures and different number of mixture components.
Therefore we review the visual similarity measures considered and our acronyms
for them : 1- aspect ratio (AR) as a very crude measure of visual similarity, 2-
visual similarity without feature selection (HOG): linear kernel on HOG feature
vectors with latency on the position and scale and 3- visual similarity with fea-
ture selection (KE , KE

MI and KE
MMI). A ”+L” in the results denotes an MCL step

with latent data-component association, initialized from the data-component as-
sociations of the MCI step.

Performance vs. Number of Components: Figure 6 (left) shows the mAP
vs the number of mixture components when different visual similarity measures
are used in the MCI step. We point out the following observations: 1- Clustering
based on AR performs well only for low numbers of components i.e. 3 and 5
components. Unlike other visual similarity measures however, it fails to provide



124 O. Aghazadeh et al.

0 50 100
0

0.5

1

Eigenvalues of KE

d

0 50 100
0

0.02

0.04

Eigenvalues of KE

Δ
d

0 50 100
0

0.5

1

Eigenvalues of KE
MMI

d

0 50 100
0

0.05

Eigenvalues of KE
MMI

Δ
d

Fig. 5. Rank analysis of KE and KE
MMI: average of the (oredered) eigenvalues

of Lsym (d̄) and its derivative (Δd̄) when using KE and KE
MMI as visual similarity

measures.

good initializations when the non-linearity of the objective increases. 2- Latent
(positive) data-component association is beneficial almost consistently (with the
exception of AR:5). The extra non-linearity introduced to the objective via this
latent formulation is initialization dependent (compare KE

MMI+L and AR+L). 3-
Feature selection in visual similarity measure improves the performance (com-
pare HOG with KE

X). 4- The performance tends to improve when more mixture
components are utilized in combination with MCI based on visual similarities.
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Fig. 6. The performance of the MCI + MCL framework using different visual similarity
measures on Pascal VOC 2007 classes. Left: results achieved by varying the number
of components for each visual similarity measure. Right: performances vs model com-
plexity for 3, 5 and 10 component mixture models in different configurations(see text
for details).

We did not experiment with higher number of mixture components mainly be-
cause of the computational expense. We observed, though, that the performance
of KE

MMI
- which outperforms all other measures consistently up to and includ-

ing 10 mixture components - degrades after 10 components while the smoother
measures KE and KE

MI continue to benefit from more mixture components. The
main reason of failure in these cases is the domination of the �2 distance in the
k-means clustering (after the spectral projection step) by the eigenvectors asso-
ciated with large eigenvalues of the normalized Laplacian (small eigenvalues of
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the affinity matrix which tend to be noisy). Addressing this issue is out of the
scope of this work but, a potential solution is to use less eigenvectors than the
desired number of clusters, in the spectral clustering step.

Performance vs. Model Complexity: Figure 6 (right) shows the performance
of the MCI + MCL framework vs the models’ parameters (averaged over the
20 classes) using KE

MMI
(magneta) and AR (green) visual similarities and for

models with 3, 5 and 10 mixture components. In the figure, a ”-F” refers to a
model without the flip heuristic4 and a ”+S” refers to a finer (2 scale) HOG
representation instead of a coarse representation (the same scale as the root
filters in [16]). Additionally, the performance of the model is shown if an oracle
were available to tell the model the optimal number of mixture components for
each class (assign each class a number ci ∈ {3, 5, 10}); shown with a ”+O” in
the legend entries.

The analysis of the figure is as follows: 1- Models with the flip heuristic out-
perform equally complex models based on the same similarity measure and with-
out the flip heuristic (compare KE

MMI+L+S-F with the rest of models based on
KE

MMI
). The reason for this is probably the reduced degrees of freedom imposed

on the model using the flip heuristic which prevents model from over-fitting. 2-
The use of an oracle (the ”+O” entries) improves the performance of a coarse
representation by approximately 0.01 mAP and that of a fine representation by
approximately 0.02 mAP in case of KE

MMI and by 0.015 mAP and 0.012 mAP in
case of AR. These are encouraging results for future work on adapting/estimating
the number of mixture components and at the same time emphasize on the use
of subtle visual similarity measures: KE

MMI+L+O and KE
MMI+L+S+O perform

0.03 mAP and 0.02 mAP better than their AR based counterparts. 3- Fine scale
representation improves the performance of KE

MMI by approximately 0.01, but
improves that of AR by 0.025 in case of 3 components and 0.035 in case of 5
components. Nevertheless, AR+L+S+O is only 0.003 better than KE

MMI
+L+O,

while it is more than 4.1 times more complex!

Performance vs. Intra-class Variation: In order to analyze the performance
of our models in presence of different bias and variation levels of the positive
classes, we need to be able to approximate the intra-class variation5. In the
following, we assumed the intra-class variation is negatively correlated with the
performance of KE

MMI
+L+O and we made our arguments reasonably invariant to

the actual measure we used to approximates intra-class variation by considering
the ordering of the classes instead of the exact measured values. This makes the
estimates invariant to any monotonic transformation of the measure. It is worth
mentioning that similar overall conclusions can be drawn using other reasonable

4 In [16], for each mixture component by default two filters are learnt that are flipped
horizontally with respect to each other i.e. a 3 component mixture contains 6 (root)
filters. This constraint essentially reduces the degrees of freedom in comparison to a
model with the same number of filters without the flip constraint.

5 Here, we neglect the effect of the inter-class variations.
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Fig. 7. Performance (of KE
MMI) vs approximate intra-class variation level on (left) and

AP gains in comparison to AR+L:3 (right).

measures e.g. the performance of a one component latent SVM model or the
results of AR+L:3, leads to similar overall conclusions.

Figure 7 (left) shows how the performance of KE
MMI+L decreases when intra-

class variation increases. The solid lines are fitted to the actual data depicted by
dashed lines via linear regression. Higher bias (simpler) models are expected to
work better when intra-class variation is large and sufficient data is not available
for the classifier to efficiently learn the discriminative structures. As expected,
more complex models perform worse in presence of larger intra-class variation:
slope of the lines increases when more mixture components are utilized and
also, a 5 component model performs better than a 10 component model on
classes with more intra-class variation than ”diningtable”. At the same time
1 and 3 component models are almost consistently outperformed by 5 and 10
components; except the last 3 classes: bird, dog and plant which probably require
other representations, more data or more supervision.

Figure 7 (right) shows how KE
MMI

+L compares with AR+L:3. It can be ob-
served that in all cases, the gain has a positive slope i.e. improvement gets
more as intra-class variation increases. However, the slope decreases when the
complexity of the model increases. Considering the slope and intercept, we can
conclude that KE

MMI
+L with 5 and 10 components almost consistently outper-

form AR+L:3.

Comparison to Related Works: Table 1 shows the performance of the
MCI+MCL framework using 2 configuration settings on each class of the data
set compared to the ESVM approach and 3 part based models. It can be ob-
served that without using parts, we outperform the state-of-the-art part based
models - based on the HOG representation - in 2 classes and outperform 2 part
based models in mean AP. It should be noted that although the training process
is expensive for a visual similarity based MCI step, the testing phase consists of
convolutions of linear filters learnt in the MCL step; without any dynamic pro-
gramming step to account for deformation of the parts. This, without requiring
a cascade or hierarchical model, is cheaper and better paralellizable compared to
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Table 1. Results on the Pascal VOC 2007 data set. LDPM , CFHPM and DTDPM-
R4 are part based models. Without any post-processing and without using parts, we
outperform state of the art in 2 classes and two part based models in mean AP.

Method Class aero bicycle bird boat bottle bus car cat chair cow mAP

ESVM+Co-occ[7] .208 .480 .077 .143 .131 .397 .411 .052 .116 .186 .227
LDPM [1] .290 .546 .006 .134 .262 .394 .464 .161 .163 .165 .262
CFHPM [19] .277 .540 .066 .151 .148 .442 .473 .146 .125 .220 .269
DTDPM-R4 [16] .289 .595 .100 .152 .255 .496 .579 .193 .224 .252 .323

KE
MMI+L:10 .290 .501 .096 .150 .189 .411 .497 .103 .160 .210 .267

KE
MMI+L+S+O .333 .536 .096 .156 .229 .488 .515 .163 .163 .200 .298

Method Class table dog horse bike person plant sheep sofa train monitor mAP

ESVM+Co-occ[7] .111 .031 .447 .394 .169 .112 .226 .170 .369 .300 .227
LDPM [1] .245 .050 .436 .378 .350 .088 .173 .216 .340 .390 .262
CFHPM [19] .242 .120 .520 .420 .312 .106 .229 .188 .353 .311 .269
DTDPM-R4 [16] .233 .111 .568 .487 .419 .122 .178 .336 .451 .416 .323

KE
MMI+L:10 .170 .103 .500 .396 .330 .090 .198 .220 .382 .343 .267

KE
MMI+L+S+O .238 .110 .553 .438 .369 .107 .227 .235 .386 .410 .298

part based models and more sophisticated approaches such as [2]. Furthermore,
the same framework can potentially be utilized to train better root filters for
any part-based model and to provide better initialization for their non-convex
optimization.
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4 Conclusions

In this paper, we introduced the MCI + MCL mixture learning framework and
promoted the use of visual similarity measures for the MCI step. We performed
extensive evaluations of the proposed framework based on different visual simi-
larity measures on the Pascal VOC 2007 data set. The framework achieved very
promising results, outperforming the bases we used - the exemplar SVMs - in
the detection task and 2 part based models without using parts.

Future work includes estimating the optimal number of clusters for each class,
automatic refinement of the ”junk” clusters - clusters which contain samples not
similar to those of any other cluster’s; but not sharing any structural similari-
ties, investigating the use of other methods for the purpose of feature selection,
and learning the mixture of discriminants with methods other than the latent
SVM.
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