
The Lazy Flipper: Efficient Depth-Limited

Exhaustive Search in Discrete Graphical Models

Bjoern Andres, Jörg H. Kappes, Thorsten Beier,
Ullrich Köthe, and Fred A. Hamprecht

HCI, University of Heidelberg, Germany

Abstract. We propose a new exhaustive search algorithm for optimiza-
tion in discrete graphical models. When pursued to the full search depth
(typically intractable), it is guaranteed to converge to a global optimum,
passing through a series of monotonously improving local optima that
are guaranteed to be optimal within a given and increasing Hamming
distance. For a search depth of 1, it specializes to ICM. Between these
extremes, a tradeoff between approximation quality and runtime is es-
tablished. We show this experimentally by improving approximations
for the non-submodular models in the MRF benchmark [1] and Decision
Tree Fields [2].

1 Introduction

Discrete graphical models [3] have become a standard tool in computer vision.
A central problem is the minimization of energy functions that decompose ac-
cording to a graphical model. This combinatorial optimization problem can be
solved in polynomial time by dynamic programming if the graph is acyclic [4]
or a junction tree with limited treewidth can be constructed [5], and by finding
a minimum s-t-cut if the objective function is (permuted) submodular [6,7,8].
The general problem is, however, NP-hard [9]. In cases where exact optimiza-
tion is intractable, one has to settle for approximations. Substantial progress
has been made in this direction through LP relaxation [10,11,12,13,14,15] and
graph-based optimization [6].

We contribute to the class of graph-based optimization methods a depth-
limited exhaustive search algorithm, the Lazy Flipper, that constrains the search
space based on the structure of the graphical model. The Lazy Flipper starts
from an arbitrary initial assignment of values to the variables and searches for
flips of variables that reduce the energy. As soon as such a flip is found, the
current configuration is updated accordingly, i.e. in a greedy fashion. In the
beginning, only one variable is flipped at a time. Once a configuration is found
whose energy can no longer be reduced by flipping of single variables, all those
subsets of two and successively more variables that are connected via potentials
in the graphical model are considered. When a subset of more than one variable is
flipped, all smaller subsets that are affected by the flip are revisited. This allows
the Lazy Flipper to perform an exhaustive search over all subsets of variables

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part VII, LNCS 7578, pp. 154–166, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Lazy Flipper 155

whose flip potentially reduces the energy. Two special data structures described
in Section 3 are used to represent each subset of connected variables precisely
once and to exclude subsets from the search whose flip cannot reduce the energy
due to the structure of the graphical model and the history of unsuccessful flips.

We evaluate the quality and convergence of Lazy Flipper approximations, first,
on simulated submodular problems where the global optimum is accessible and
then on the non-submodular problems of the MRF benchmark [1] and Decision
Tree Fields for Chinese character inpainting [2].

2 Related Work

In the variety of optimization algorithms for discrete graphical models, there are
at least three major classes: (i) Algorithms based on polyhedral approximation
that consider outer relaxations of the corresponding linear program constrained
to the marginal polytope, (ii) move-making algorithms that start from an initial
configuration and seek to iteratively improve the objective in a greedy manner
and (iii) Metropolis-Hastings algorithms that explore the configuration space
stochastically via a Markov chain.

Polyhedral Approximations. Optimization problems for discrete graphical
models can be formulated as linear programming (LP) problems. The complex-
ity of these LPs lies in the marginal polytope which constrains the feasible set.
The problem is commonly made tractable by considering an outer relaxation of
the marginal polytope, e.g. the local polytope [13]. Well-known algorithms for
optimizing over the local polytope are TRBP [15,13], TRW-S [14], and Dual De-
composition [16]. While the latter provide lower bounds on the global minimum,
the primal solutions obtained by these algorithms need not be integral such that
rounding techniques are required.

Move-making algorithms. Instead of solving a relaxed problem, move-making
algorithms seek to iteratively improve the objective without leaving the discrete
feasible set. In each step, a single tractable optimization problem that represents
a subset of the combinatorial search space is solved. This set always includes
the current configuration which guarantees monotonic decrease of the objec-
tive. Since the state space is finite, these algorithm are guaranteed to converge.
Fixed points are optimal w.r.t. the set of moves. Algorithms of this class include
ICM [17], Block-ICM [18], α-Expansion and αβ-swap [6]. More recently, Jung
et al. [19] have suggested and analyzed an algorithm that explores subspaces
defined by randomly selected connected subsets of variables.

Metropolis-Hastings algorithms such as the well-known Gibbs sampler and
the Swendsen-Wang sampler [20] construct a Markov chain whose stationary
distribution corresponds to the Gibbs distribution of the graphical model.

The Lazy Flipper belongs to the class of move-making algorithms and gener-
alizes ICM [17]. While ICM leaves all variables except one fixed in each step, the
Lazy Flipper can optimize over larger (for small models: all) connected subgraphs

156 B. Andres et al.

of a graphical model. It extends Block-ICM [18] that optimizes over specific sub-
sets of variables in grid graphs to irregular and higher-order graphical models.
Moreover, the Lazy Flipper is a deterministic counterpart of [19]. Exactly as in
[19], sets of variables which are connected in the graphical model are considered
and variables flipped if these flips improve the objective. In contrast to [19],
unique representatives of these sets are visited in a deterministic order. Concep-
tually, the Lazy Flipper is a reverse search algorithm [21] to which we add a
data structure for indexing connected subsets.

3 The Lazy Flipper Data Structures

Näıve attempts to generalize ICM and Block-ICM to optimize over subgraphs of
size k consider all sequences of pairwise distinct variables in which each variable
is connected to at least one of its predecessors and ignore the fact that many of
these sequences represent the same set. However, the redundancy is large. As an
example, consider the grid model with six variable nodes in Fig. 1a. Although
there is only one connected set that contains all six variables, 208 out of the
6! = 720 possible sequences of these nodes meet the requirement that each node
is connected to at least one of its predecessors. Finding a unique representative
for each connected subset of variables is therefore important.

Even with a list of the connected subsets of size k at hand, it is inefficient to
iterate over these sets and search all possible labelings of one set exhaustively
in each iteration because smaller subsets in the intersection of subsets of size k
are searched implicitly and repeatedly.

Fig. 1. All connected subgraphs of a graphical model (a) can be represented uniquely
in a connected subgraph tree (CS-tree) (b). Every path from a node in the CS-tree
to the root node corresponds to a connected subgraph in the graphical model. While
there are 26 = 64 subsets of variables in total in this example, only 40 of these subsets
are connected.

The Lazy Flipper 157

We use two special data structures to avoid this redundancy, at the cost of
storing one unique representative for each connected subgraph of size smaller
than or equal to k. The first data structure that we call a connected subgraph
tree (CS-tree) ensures that only connected subsets of variables are considered,
i.e. sets of variables which are connected via potentials in the graphical model.
Moreover, it ensures that every such subset is represented precisely once (and
not repeatedly) by an ordered sequence of its variables, cf. [22].

The rationale behind this concept is the following: If the flip of one variable
and the flip of another variable not connected to the first one do not reduce the
energy then it is pointless to try a simultaneous flip of both variables because the
(energy increasing) contributions from both flips would sum up. Furthermore,
if the flip of a disconnected set of variables reduces the energy then the same
and possibly better reductions can be obtained by flipping connected subsets
of this set consecutively, in any order. All disconnected subsets of variables can
therefore be excluded from the search.

The second data structure is a tag list that prevents the repeated assessment of
unsuccessful flips. The idea is the following: If some variables have been flipped in
one iteration (and the current best configuration has been updated accordingly),
it suffices to revisit only those sets of variables that are connected to at least
one variable that has been flipped. All other sets of variables are excluded from
the search because the potentials that depend on these variables are unaffected
by the flip and have been assessed in their current state before.

3.1 Connected Subgraph Tree (CS-tree)

The CS-tree represents subsets of connected variables uniquely. Every node in the
CS-tree, except the root node that represents the empty set, is labeled with the
integer index of one variable in the graphical model. The CS-tree is constructed
such that every connected subset of variables in the graphical model corresponds
to precisely one path in the CS-tree from a node to the root node, the node labels
along the path indicating precisely the variables in the subset, and vice versa,
there exists precisely one connected subset of variables in the graphical model
for each path in the CS-tree from a node to the root node.

In order to guarantee by construction of the CS-tree that each subset of con-
nected variables is represented precisely once, the variable indices of each subset
are put in a special order, namely the lexicographically smallest order in which
each variable is connected to at least one of its predecessors. The following defi-
nition of these sequences of variable indices is recursive and therefore motivates
an algorithm for the construction of the CS-tree for the Lazy Flipper. A small
grid model and its complete CS-tree are depicted in Fig. 1.

Definition 1 (CSR-Sequence). Given an undirected graph G = (V,E) whose
m ∈ N vertices V = {1, . . . ,m} are integer indices, every sequence that consists
of only one index is called connected subset representing (CSR). Given n ∈ N

and a CSR-sequence (v1, . . . , vn), a sequence (v1, . . . , vn, vn+1) of n+ 1 indices
is called a CSR-sequence precisely if the following conditions hold:

158 B. Andres et al.

(i) vn+1 is not among its predecessors, i.e. ∀j ∈ {1, . . . , n} : vj �= vn+1.
(ii) vn+1 is connected to at least one of its predecessors, i.e. ∃j ∈ {1, . . . , n} :

{vj , vn+1} ∈ E.
(iii) vn+1 > v1.
(iv) If n ≥ 2 and vn+1 could have been added at an earlier position j ∈

{2, . . . , n} to the sequence, fulfilling (i)–(iii), all subsequent vertices vj , . . . , vn
are smaller than vn+1, i.e. ∀j ∈ {2, . . . , n}:

{vj−1, vn+1} ∈ E ⇒ ∀k ∈ {j, . . . , n} : vk < vn+1 .

Based on this definition, three functions are sufficient to recursively build the
CS-tree T of a graphical model G, starting from the root node. The function q
= growSubset(T,G, p) appends to a node p in the CS-tree the smallest variable
index that is not yet among the children of p and fulfills (i)–(iv) for the CSR-
sequence of variable indices on the path from p to the root node. It returns the
appended node or the empty set if no suitable variable index exists. The func-
tion q = firstSubsetOfSize(T,G, n) traverses the CS-tree on the current deepest
level n− 1, calling the function growSubset for each leaf until a node can be ap-
pended and thus, the first subset of size n has been found. Finally, the function
q = nextSubsetOfSameSize(T,G, p) starts from a node p, finds its parent and
traverses from there in level order, calling growSubset for each node to find the
length-lexicographic successor of the CSR-sequence associated with the node p,
i.e. the representative of the next subset of the same size. These functions are
used in Algorithm 1 to construct the CS-tree. In contrast, the traversal of al-
ready constructed parts of the CS-tree (when revisiting subsets of variables after
successful flips) is performed by functions associated with tag lists.

3.2 Tag Lists

Tag lists are used to tag variables that are affected by flips. A variable is affected
by a flip either because it has been flipped itself or because it is connected in the
graphical model to a flipped variable. The tag list data structure comprises a
Boolean vector in which each entry corresponds to a variable, indicating whether
or not this variable is affected by recent flips. As the total number of variables
can be large (106 is not exceptional) and possibly only a few variables are affected
by flips, a list of all affected variables is maintained in addition to the vector.
This list allows the algorithm to untag all tagged variables without re-initializing
the entire Boolean vector. The two fundamental operations on a tag list L are
tag(L, x) which tags the variable with the index x, and untagAll(L).

For the Lazy Flipper, three special functions are used in addition: Given a
tag list L, a (possibly incomplete) CS-tree T , the graphical model G, and a node
s ∈ T , tagConnectedVariables(L, T,G, s) tags all variables on the path from s
to the root node in T , as well as all nodes that are connected in the graphical
model to at least one of these nodes. The function s = firstTaggedSubset(L, T)

The Lazy Flipper 159

traverses the first level of T and returns the first node s whose variable is
tagged (or the empty set if all variables are untagged). Finally, the function
t = nextTaggedSubset(L, T, s) traverses T in level order, starting with the suc-
cessor of s, and returns the first node t for which the path to the root contains
at least one tagged variable. These functions, together with those of the CS-tree,
are sufficient for the Lazy Flipper, Algorithm 1.

Algorithm 1. Lazy Flipper

Input: G: graphical model with m ∈ N binary variables, c ∈ {0, 1}m: initial
configuration, nmax ∈ N: maximum size of subgraphs to be searched

Output: c ∈ {0, 1}m (modified): configuration corresponding to the smallest
upper bound found (c is optimal within a Hamming radius of nmax).

1 n← 1; CS-Tree T ← {root}; TagList L1 ← ∅, L2 ← ∅;
2 repeat
3 s← firstSubsetOfSize(T,G, n);
4 if s = ∅ then break;
5 while s �= ∅ do
6 if energyAfterFlip(G, c, s) < energy(G, c) then
7 c← flip(c, s);
8 tagConnectedVariables(L1, T, G, s);

9 end
10 s← nextSubsetOfSameSize(T,G, s);

11 end
12 repeat
13 s2 ← firstTaggedSubset(L1, T);
14 if s2 = ∅ then break;
15 while s2 �= ∅ do
16 if energyAfterFlip(G, c, s2) < energy(G, c) then
17 c← flip(c, s2);
18 tagConnectedVariables(L2, T, G, s2);

19 end
20 s2 ← nextTaggedSubset(L1, T, s2);

21 end
22 untagAll(L1); swap(L1, L2);

23 end
24 if n = nmax then break;
25 n← n+ 1;

26 end

4 The Lazy Flipper Algorithm

4.1 For Binary Variables

In the main loop (lines 2–26) of Algorithm 1, the size n of subsets is incremented
until the limit nmax is reached (line 24). This loop falls into two parts, the explo-
ration part (lines 3–11) and the revisiting part (lines 12–23). In the exploration
part, flips of previously unseen subsets of n variables are assessed. The current

160 B. Andres et al.

best configuration c is updated in a greedy fashion, i.e. whenever a flip yields a
lower energy. At the same time, the CS-tree is grown, using the functions de-
fined in Section 3.1. In the revisiting part, all subsets of sizes 1 through n that
are affected by recent flips are assessed iteratively, until no flip of any of these
subsets reduces the energy (line 14). The indices of affected variables are stored
in the tag lists L1 and L2 (cf. Section 3.2). In practice, the Lazy Flipper can
be stopped at any point, e.g. when a time limit is exceeded, and the current
best configuration c taken as the output. It eventually reaches configurations for
which it is guaranteed that no flip of n or less variables can yield a lower energy
because all such flips that could potentially lower the energy have been assessed
(line 14). Such configurations are therefore guaranteed to be optimal within a
Hamming radius of n:

Definition 2 (Hamming-n bound). Given a function E : {0, 1}m → R, a
configuration c ∈ {0, 1}m, and n ∈ N, E(c) is called a Hamming-n upper bound
on the minimum of E precisely if ∀c′ ∈ {0, 1}m(‖c′ − c‖0 ≤ n ⇒ E(c) ≤ E(c′)).

4.2 For the Multi-Label Case

In principle, any encoding of a graphical model with multiple labels as a graphical
model with binary labels can be used to apply Algorithm 1. However, this is not
the most efficient approach in practice because the CS-tree is grown for each
fully connected subgraph of binary variables that encode a non-binary variable
in the original model.

To avoid this, we use a specialized function energyAfterFlip for the multi-
label case. For a subset of n variables, this function searches all labelings of
these variables in which each label differs from the label assigned to the same
variable in the current best configuration, i.e. all labelings in which all labels
change. This corresponds to an exhaustive search over the label space that still
avoids the repeated assessment of smaller subgraphs.

4.3 Initialization

Despite its optimality guarantees for sufficiently large search depths and fixed
points at limited search depth, the Lazy Flipper is still a greedy algorithm and
is useful in practice only in conjunction with good initializations. TRW-S and
α-expansion provide such initializations for a wide range of models.

5 Experiments

5.1 Ferromagnetic Ising model

To study the Lazy Flipper in a simulated setting where global optima are accessi-
ble, we consider an Ising model withm ∈ N binary variables which are associated

The Lazy Flipper 161

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

8.0
2⋅106

α=0.1

t [s]

E
LF

 −
 E

op
t

min/max
median

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

8.0
2⋅106

α=0.1

t [s]

E
LF

 −
 E

op
t

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

7.1
2⋅106

α=0.3

t [s]
E

LF
 −

 E
op

t

min/max
median

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

7.1
2⋅106

α=0.3

t [s]
E

LF
 −

 E
op

t

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

7.0
2⋅106

α=0.5

t [s]

E
LF

 −
 E

op
t

min/max
median

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

7.0
2⋅106

α=0.5

t [s]

E
LF

 −
 E

op
t

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

7.1
2⋅106

α=0.7

t [s]

E
LF

 −
 E

op
t

min/max
median

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

7.1
2⋅106

α=0.7

t [s]

E
LF

 −
 E

op
t

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

7.4
2⋅106

α=0.9

t [s]

E
LF

 −
 E

op
t

min/max
median

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

7.4
2⋅106

α=0.9

t [s]

E
LF

 −
 E

op
t

0.1 0.3 0.5 0.7 0.9

0

0.02

0.04

0.06

0.08

α

(E
LF

 −
 E

op
t)

/ E
op

t

t=100s

Fig. 2. Upper bounds on the minimum energy of a graphical model can be found by
flipping subsets of variables. The deviation of these bounds from the minimum is shown
above for ensembles of ten random Ising models (Section 5.1). Compared to ICM where
only one variable is flipped at a time, the Lazy Flipper finds significantly tighter bounds
by flipping also larger subsets. The deviations increase with the coupling strength α.
Color scales and gray scales indicate the size and the total number of searched subsets.

with points on a 2-dimensional Cartesian grid and connected via potentials to
their nearest neighbors. For α ∈ (0, 1) and ∀x ∈ {0, 1}m:

E(x) =

m∑

j=1

Ej(xj) + α

m∑

j=1

m∑

k=j+1
k∼j

|xj − xk| . (1)

The global minimum of this submodular function is found via a graph cut. For
50 · 50 = 2500 variables and each α ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, an ensemble of ten
random Ising models is simulated in order to compare Lazy Flipper approxi-
mations to the global optimum. Additionally, ensembles of different sizes are
simulated in order to measure how the runtime of lazy flipping depends on the
size of the model and the coupling strength α. The first order potentials Ej

are initialized randomly by drawing Ej(0) uniformly from the interval [0, 1] and
setting Ej(1) := 1− Ej(0).

For each model, the Lazy Flipper is initialized with a configuration that min-
imizes the sum of the first order potentials. Upper bounds on the minimum
energy found by means of lazy flipping converge towards the global optimum as
depicted in Fig. 2. Color scales and gray scales in this figure respectively indi-
cate the maximum size and the total number of distinct subsets that have been
searched, averaged over all models in the ensemble. Upper bounds are tightened

162 B. Andres et al.

0 2000 4000 6000 8000 10000 12000
0

50

100

150

200

250

300

350

Number of variables

R
un

tim
e

[s
]

N
models

 = 10, n
max

 = 6

Fig. 3. For a fixed maximum subgraph size (nmax = 6), the runtime of lazy flipping
scales only slightly more than linearly with the number of variables in the Ising model.
It is measured for coupling strengths α = 0.25 (upper curve) and α = 0.75 (lower
curve). Error bars indicate the standard deviation over 10 random models, and lines
are fitted by least squares. Lazy flipping takes longer (0.0259 seconds per variable) for
α = 0.25 than for α = 0.75 (0.0218 s/var) because more flips are successful and thus
initiate revisiting.

significantly by searching larger subsets of variables, independent of the coupling
strength α. It takes the Lazy Flipper less than 100 seconds (on a single CPU
of an Intel Quad Xeon E7220 at 2.93GHz) to exhaustively search all connected
subsets of 6 variables. The size of the CS-tree (approximately 50 MB in this
case) becomes limiting for large problems. However, for regular graphs, implicit
representations can be envisaged which overcome this limitation.

For a fixed maximum subgraph size, the runtime of lazy flipping scales only
slightly more than linearly with the number of variables (Fig. 3).

5.2 MRF Benchmark

To study whether lazy flipping can improve labelings close to the LP lower bound
found by state-of-the-art algorithms with different fixed points, we consider all
non-submodular problems in the MRF benchmark [1] and initialize the Lazy
Flipper with the approximations found by the best performing algorithm [1],
i.e. either TRW-S or α-expansion.

It can be seen from the results in Tab. 1 that all approximations are improved.
Moreover, it is benefitial in all cases to search subsets of more than one variable,
i.e. to go beyond ICM.

5.3 Decision Tree Fields

Finally, we consider a hard problem: optimization of Decision Tree Fields that
are learned to inpaint Chinese characters [2]. The 100 models from the supple-
mentary material of [2] have between 4992 and 17856 binary variables and first
order factors (median: 8920) as well as between 141232 and 535870 second order

The Lazy Flipper 163

Table 1. Lazy flipping improves labelings found by TRW-S for all non-submodular
models in the MRF benchmark [1]. E denotes the absolute energy, ΔE the improve-
ment, H the Hamming distance to the TRW-S result and t the runtime.

Dataset Algorithm E ΔE H t [s]

Tsukuba TRW-S 369290 - - -
LF-1 369266 24 1 0.4
LF-2 369255 35 3 23.3
LF-3 369219 71 8 1526.0

Venus TRW-S 3048387 - - -
LF-1 3048387 0 0 1.4 · 10−6

LF-2 3048325 62 2 61.3
LF-3 3048325 62 2 147.8

Teddy α-exp. 1343326 - - -
LF-1 1343326 0 0 7.4 · 10−6

LF-2 1343182 144 42 1314.5

Panorama α-exp. 151202 - - -
LF-1 151200 2 1 1.5
LF-2 151171 31 8 36.6
LF-3 151171 31 8 70.9
LF-4 151168 34 17 26781.6

Family TRW-S 184825 - - -
LF-1 184825 0 0 1.8 · 10−6

LF-2 184813 12 2 14.8
LF-3 184813 12 2 33.2
LF-4 184813 12 2 603.9

House TRW-S 37580724 - - -
LF-1 37580618 106 24 7.8
LF-2 37580552 172 46 8290.1

Penguin TRW-S 15349028 - - -
LF-1 15347532 1496 20 2.7
LF-2 15347193 1835 43 2828.0

factors (median: 260246). Variable are connected via factors to as many as 64
other variables. The state of the art in optimizing these objective functions [2]
is TRW-S (41 models) and simulated annealing (59 models).

It can be seen from the results in Fig. 4 that lazy flipping improves labelings
found by TRW-S which are used as initializations. While labelings found by
TRW-S deviate by a Hamming distance of 228 in the median from the ground
truth, lazy flipping reduces this deviation by 10% to 205 (Fig. 4 and 5). For
45 out of the 100 models, the improved Hamming-3 optimal labelings found by
lazy flipping have a lower energy than the labelings found by both TRW-S and
simulated annealing and are thus an improvement over the state of the art. The
runtime (43 minutes) is competitive with that of simulated annealing.

164 B. Andres et al.

−100 0 100 200

E
LF3

 − E
*

E
LF3

 − E
SA

E
LF2

 − E
SA

E
LF1

 − E
SA

E
LF3

 − E
TRW−S

E
LF2

 − E
TRW−S

E
LF1

 − E
TRW−S

E

0 500 1000

H
LF3

H
TRW−S

Hamming distance to ground truth

10
0

10
2

10
4

t
LF1

t
LF2

t
LF3

Runtime [s]

Fig. 4. Lazy flipping improves labelings found by TRW-S for Decision Tree Fields [2].
While these labelings deviate by a Hamming distance of 228 in the median from the
ground truth, lazy flipping reduces this deviation by 10% to 205. For 45 out of the 100
models, these improved labelings have a lower energy than those found by TRW-S and
simulated annealing and are thus an improvement over the state of the art.

Truth

TRW-S

TRW-S
+LF-3

Fig. 5. Lazy flipping corrects both false positives (yellow) and false negatives (red) in
labelings found by TRW-S for Decision Tree Fields for Chinese character inpainting.
The results for all 100 images are contained in the supplementary material.

6 Conclusion

The optimum of a function of discrete variables that decomposes according to
a graphical model can be found by an exhaustive search over only the con-
nected subgraphs. We implemented this search, using a CS-tree to efficiently
and uniquely enumerate the subgraphs. The algorithm is guaranteed to converge
to a global minimum when searching through all subgraphs which is typically
intractable. With limited runtime, approximations can be found by restricting
the search to subgraphs of a given maximum size. These approximations are
guaranteed to be optimal within equal Hamming distance.

In practice, the algorithm is useful in conjunction with good initializations.
Starting from fixed points of TRW-S and α-expansion, better approximations
for all non-submodular problems in the MRF benchmark [1] were found. For the

The Lazy Flipper 165

problem of inpainting Chinese characters by optimizing Decision Tree Fields,
TRW-S in conjunction with the proposed algorithm is an improvement over the
state of the art for 45 out of 100 models.

For large problems, the applicability of the proposed algorithm is limited
by the memory required for the CS-tree. For regular graphs, this limit can be
overcome by an implicit representation of the CS-tree which is subject of future
research.

References

1. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A.,
Tappen, M., Rother, C.: A comparative study of energy minimization methods for
markov random fields with smoothness-based priors. TPAMI 30, 1068–1080 (2008)

2. Nowozin, S., Rother, C., Bagon, S., Sharp, T., Yao, B., Kohli, P.: Decision tree
fields. In: ICCV (2011)

3. Koller, D., Friedman, N.: Probabilistic Graphical Models. MIT Press (2009)
4. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible in-

ference. Morgan Kaufmann, San Francisco (1988)
5. Lauritzen, S.L.: Graphical Models. Statistical Science. Oxford (1996)
6. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via

graph cuts. TPAMI 23, 1222–1239 (2001)
7. Kolmogorov, V., Zabin, R.: What energy functions can be minimized via graph

cuts? TPAMI 26, 147–159 (2004)
8. Schlesinger, D.: Exact Solution of Permuted Submodular MinSum Problems. In:

Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS,
vol. 4679, pp. 28–38. Springer, Heidelberg (2007)

9. Shimony, S.E.: Finding MAPs for belief networks is NP-hard. Artificial Intelli-
gence 68, 399–410 (1994)

10. Batra, D., Nowozin, S., Kohli, P.: Tighter relaxations for MAP-MRF inference: A
local primal-dual gap based separation algorithm. JMLR (Proceedings Track) 15,
146–154 (2011)

11. Komodakis, N., Paragios, N., Tziritas, G.: MRF energy minimization and beyond
via Dual Decomposition. TPAMI 33, 531–552 (2011)

12. Sontag, D., Meltzer, T., Globerson, A., Jaakkola, T., Weiss, Y.: Tightening LP
relaxations for MAP using message passing. In: UAI (2008)

13. Wainwright, M.J., Jordan, M.I.: Graphical Models, Exponential Families, and Vari-
ational Inference. Now Publishers Inc., Hanover (2008)

14. Kolmogorov, V.: Convergent tree-reweighted message passing for energy minimiza-
tion. TPAMI 28, 1568–1583 (2006)

15. Wainwright, M.J., Jaakkola, T., Willsky, A.S.: MAP estimation via agreement
on trees: message-passing and linear programming. Transactions on Information
Theory 51, 3697–3717 (2005)

16. Komodakis, N., Paragios, N., Tziritas, G.: MRF energy minimization and beyond
via dual decomposition. TPAMI 33, 531–552 (2011)

17. Besag, J.: On the statisical analysis of dirty pictures. J. of the Royal Statistical
Society B 48, 259–302 (1986)

18. Frey, B.J., Jojic, N.: A comparison of algorithms for inference and learning in
probabilistic graphical models. TPAMI 27, 1392–1416 (2005)

166 B. Andres et al.

19. Jung, K., Kohli, P., Shah, D.: Local rules for global MAP: When do they work?
In: NIPS (2009)

20. Swendsen, R.H., Wang, J.S.: Nonuniversal critical dynamics in monte carlo simu-
lations. Physical Review Letters 58, 86–88 (1987)

21. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65,
21–46 (1996)

22. Moerkotte, G., Neumann, T.: Analysis of two existing and one new dynamic pro-
gramming algorithm for the generation of optimal bushy join trees without cross
products. In: Proc. of the 32nd Int. Conf. on Very Large Data Bases (2006)

	The Lazy Flipper: Efficient Depth-Limited Exhaustive Search in Discrete Graphical Models
	Introduction
	Related Work
	The Lazy Flipper Data Structures
	Connected Subgraph Tree (CS-tree)
	Tag Lists

	The Lazy Flipper Algorithm
	For Binary Variables
	For the Multi-Label Case
	Initialization

	Experiments
	Ferromagnetic Ising model
	MRF Benchmark
	Decision Tree Fields

	Conclusion
	References

