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Abstract. In the last decade, some illumination preprocessing
approaches were proposed to eliminate the lighting variation in face im-
ages for lighting-invariant face recognition. However, we find surprisingly
that existing preprocessing methods were seldom modeled to directly
enhance the separability of different faces, which should have been the es-
sential goal. To address the issue, we propose to explicitly exploit maximiz-
ing separability of different subjects’ faces as the preprocessing objective.
With this in mind, a novel approach, named by us Separability Oriented
Preprocessing (SOP), is proposed to enhance face images by maximizing
the Fisher separability criterion in scale-space. Extensive experiments on
both laboratory-controlled and real-world face databases using different
recognition methods show the effectiveness of the proposed approach.

Keywords: Separability oriented, illumination preprocessing, lighting-
invariant, face recognition.

1 Introduction

Face recognition has wide potential applications in commercial and law enforce-
ment applications [I], mainly owing to its contact-free and non-intrusive charac-
teristics. However, a practical face recognition system has to handle the grand
challenges caused by the variations in face appearance due to lighting, head pose,
facial expression, partial occlusion, and so on. Among them, harsh lighting con-
ditions such as underexposure, overexposure and shadow, are regarded as one of
the bottlenecks for robust face recognition. Attempts for handling lighting vari-
ation include lighting-invariant feature extraction, lighting variation modeling
and image enhancement (or illumination normalization). Approaches of the first
category try to extract facial features that are robust against lighting variations
[712/35] while approaches of the second category tend to build a representation
that models arbitrary lighting variations [QTOSIT3ITIIT2] and approaches of the

A. Fitzgibbon et al. (Eds.): ECCV 2012, Part VII, LNCS 7578, pp. 307-B20] 2012.
(© Springer-Verlag Berlin Heidelberg 2012



308 H. Han et al.

Fig.1. An overview of Separability Oriented Preprocessing (SOP) for illumination-
invariant face recognition. s;,1 = 1,2, ---, M are the extracted facial features distributed
from fine (such as the eyes and mouth in s1) to coarse (such as the shape and shading
in sar) sales. The enhanced face image « is computed as the linear combination of the
decomposed components of distinct scales, in which the weights are determined by an
optimization framework via maximizing the separability of training samples.

third category preprocess face images by eliminating their lighting variations
before the subsequent recognition algorithm [TEIT4ITHIGI2T].

Compared with those approaches of the former two categories, approaches of
the third category have attracted much attention due to the properties of high effi-
ciency and general purpose usage. However, we could find that there is no objective
function in existing illumination preprocessing methods that guarantees separabil-
ity improvement after preprocessing. This should be the reason why existing pre-
processing methods are reported to degrade the recognition performance on face
images with normal lighting [I8]. This intuitive analysis inspires our basic idea that
higher separability of different faces should be the explicit goal of preprocessing.
With this basic idea in mind, a novel image enhancement framework, Separability
Oriented Preprocessing (SOP), is proposed to normalize face images by maximiz-
ing the separability. Specifically, in this study, as shown in Fig. [l an input face
image with unknown lighting is first decomposed through scale-space decomposi-
tion. Then, the enhanced face image is computed as a linear combination of the
decomposed coarse-to-fine bands with weights learned offline from training set by
maximizing the Fisher separability criterion. Global optimization based on simu-
lated annealing is exploited to solve the optimization problem in SOP.

The proposed approach is extensively evaluated on laboratory-controlled
databases, i.e., Multi-PIE [23] and Extended YaleB [0], as well as areal-world dataset,
i.e., FRGC Ver2.0 [26]. Impressive improvement in recognition accuracy is achieved
compared with several well-known preprocessing methods, which is validated by us-
ing three distinct face recognition methods, i.e., Fisherfaces []], LBP [4] and
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Eigenfaces [27]. Furthermore, cross-database training on heterogeneous databases
also shows that the proposed method has outstanding generalization ability.

2 Previous Preprocessing Methods by Scale-space
Decomposition and Their Problems

In many computer vision tasks, the face imaging procedure is formulated as a
reflection-illumination model

I=RL (1)
where R is the reflectance component which corresponds to intrinsic facial fea-
tures and L is the illumination component which corresponds to lighting vari-
ations. Based on this face imaging model, illumination normalization for a face
image is usually performed by estimating the illumination component L and
subtracting it to get the reflectance component R. It is convenient to perform
the above normalization based on an additive model; however, the face imaging
model is multiplicative. Therefore, logarithmic transformation is usually applied
first to convert the multiplicative imaging model into an additive one

log I =log R+ logL (2)

For convenience, we rewrite the above equation as f = u + v, where f =logI,
u = log L and v = log R. Then, illumination preprocessing can be performed as

b=f—a (3)

where u is the estimation of the illumination component in the input face image,
and it can be generally represented as

= F(f) (4)

Based on the observation that illumination variations mainly lie in the low-
frequency domain of a face image [I0/I9], in practice, a low-pass filtering is
commonly used as F(-) to estimate . For instance, [5] uses a Gaussian kernel
G to get a smoothed version of f, which is a convolution procedure

F(f)=6+f (5)

In [I6], discrete cosine transform (DCT) is utilized to implement F(-) by re-
moving the DC coefficient and several large AC coefficients scanned in zigzag
pattern. Recently, total variation model (TV-L1) [20] is utilized to estimate @
in [21], in which the illumination component in image f is estimated by solving
the following variational problem

F(f) =argmin [ [Val + Alf =l ©)

where [|Vul is the total variation of u, A is a scalar constant controlling the
truncation scale between w and v, and || - ||+ denotes L1 norm.

In all the above methods, only features in small-scale band are believed help-
ful for face recognition while those in the large-scale band are not and removed.
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One problem of this strategy is that it is hard to decide where to truncate
the scale space. In the literature, it is generally set empirically, which is quite
tedious and not easy to guarantee optimum. Lighting aware preprocessing (LAP)
[18] was proposed to adaptively determine the truncation scale. A more serious
problem with the above methods is that there are also some features in the
component of large-scale which are helpful to distinguish different faces. Another
common issue in above image enhancement approaches is that different feature
bands are considered to be of the same importance for face recognition. However,
discriminant facial features are not necessarily distributed uniformly among each
band in scale space. So, treating them equally is not desirable.

To summarize, the essential problem of the previous preprocessing methods
with scale-space decomposition is: no clear and formal objective is designed to
guide the enhancement to keep or even improve the discriminative capacity of
the resulting images. With the above analysis, in this work, we propose a novel
approach that establishes an explicit relationship between the goal of image
enhancement and separability improvement by appropriately exploiting the fea-
tures in all the scales.

3 Separability Oriented Preprocessing (SOP)

3.1 Scale-space Decomposition

As above mentioned, signals at different bands play different roles for face recog-
nition. However, a rough division of features in a face image into one large-scale
and small-scale band pair is insufficient for understanding the roles played by
different feature bands. To address this issue, a group of band-pass filters can be
carefully designed to extract the facial features in different bands. In fact, such
a careful design is unnecessary as many well-studied existing approaches can be
utilized for scale-space decomposition.

As shown in Fig. Bl we decompose a face image into pairs of large-scale and
small-scale components: {w;,v;},l =1,2,--- M by varying the truncation scale
between u; and v;. It is not difficult to find that v, is flattened as all the face
shape information is lost and there are mainly facial features of smallest scale in
v1. From v; to vy; more and more face shape information will be included. As
mentioned above, the decomposition of f into u and v is based on an additive
model, therefore, the relationship between all v; will be

v Cvo C---Copmy (7)

Then, as illustrated in Fig. 2 a face image can be decomposed into features of
various bands in scale-space as below

U1 ifi=1
8= . (8)
v; —v;—1 otherwise

Theoretically, all the methods mentioned in Sect. 2] can be used for scale-space
decomposition for a face image, and in our experiments below, TV-L1 model
[20] is utilized.
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Fig. 2. Scale-space decomposition for a face image. A face image is first decomposed
into several pairs of {u;,v;},l = 1,2, -+, M by varying the truncation scale between
large-scale and small-scale bands and then features in different bands are calculated.
s1 band contains the smallest-scale facial features such as the eyes and mouth, while
sy band contains the largest-scale facial features such as the face shape and shading.

3.2 Formulation of SOP

Once the facial features of different bands are extracted, enhanced face images
that are expected to have improved separability can be calculated by empha-
sizing the feature scales of greater importance. Therefore, the preprocessed face
image can be formulated as

M
r =Sw=> ws
=1

s.t.

where x is the enhanced face image in vectorized form. w = {wy,wa, -, war}7 isa
group of weights for different feature bands, which determines the importance of
each band played for face recognition. Another reason why we formulate the pre-
processing as ([@) is to follow the principle of image enhancement: the enhanced
results are still face images, not abstract features extracted from images.

From (@), it is not difficult to find that w determines the final image enhance-
ment results, which thus will affect the effectiveness for robust face recognition
across varying illumination. In the proposed approach, w is optimized by maxi-
mizing the separability of samples based on Fisher separability criterion

w' = {wf’wék’" '7w;<\/[}T

s
=arg max lsBl
wi,wa,-war 15w

s.t. (10)

M
szzl, wp >0, l:1a27"'7M
=1

where Sp and Sy are respectively the between- and within-class scatter matrices
calculated from the training set. Given a training set with C' classes, we denote
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the vectorized face images after enhancement as X = { X!, X2 .- X}, in which
X' = {z},x}, -z, }. Then, the between- and within-class scatter matrices are
defined as

Sp = iNi(Hz‘ — ) (i — )" (11)
and o
Sw=> > (xp—p)(mr—pi)" (12)
i=1lx,eX?

where p; is the mean image of class X'

13
_UJlllel‘i’UJ I"I‘z +WNIHZSM ( )
s T
*(NZ‘ NZ‘ : ZM) (wl OJZ"'WM)
where ', 1 =1,2,---, M is the mean image of class ¢ calculated in band s;. p
is the mean image of all the training samples
T
po=(ps p e ptM) (W wa e wiy) (14)
where p®, [ =1,2,---, M is the mean image of all samples calculated in band
s;. Combining (IJ), (@3) and (@4, we have
c
Sp=>N;
((uz;ll“_sz ) (e o)
T
(w1 ) ~~-wM) (OJ1 w2 "'OJM) (15)
S1 S2 SM 81 82 SM T
(w2 o ) = (ot g2 o o))
c
=Y N;AwTwAT
i=1
where A; = ( St pl ) (usl 7RI SM) Similarly, combining (@),

([@2) and ([@3), we will get
Z > B w'wBl, (16)

i=1 greX?

LT

where By, = (s7% s3* -+ s7F) = (pd* p3? - - - p™). Finally, by combining (I0),
(@A) and (4], the optimization problem defined in (I0) can be rewritten as

* * * * T
W = {wl’w%' ’ "wM}
c
=arg 1max =
W1,W2, WM | Z >SS B wTwBT |
i=lxp€X; k Tk (17)
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By solving the optimization problem in ([I7T), we get the optimum estimation w*.
Then image enhancement for a face image can be performed based on (@)

M
z=Sw"= Zwl*sl (18)
=1

3.3 Solving the Optimization Problem

Theoretically, the best image enhancement results can be achieved using the
weight w learnt by solving the optimization problem in (IT); however, it is dif-
ficult to get an analytical solution to the optimization problem defined in (7).
In order to get an approximation to the global optimum solution to the above
optimization problem, we propose to solve it based on simulated annealing [25]
algorithm. Simulated annealing, which is based on the concepts and techniques
from physics, specifically statistical mechanics, has a highly developed and rig-
orous theory and achieves many successes in pattern recognition [24]. Although
simulated annealing is an iterative algorithm, it is a heuristic method; thus it
makes a good balance between approximating the global optimum for a given
function with a large search space and the computational cost.

From (I7), it can be noticed that in our problem, each w;, I = 1,2,-,-,- M
is analog; therefore, deterministic simulated annealing can be performed, which
will be more efficient than a stochastic one [24]. Before conducting simulated
annealing in solving the optimization problem, a cost or energy function must
be specified. In our method, the minimization of the energy function should cor-
respond to the improvement of the separability of faces. Therefore, the following
energy function is calculated in the ¢-th iteration of simulated annealing

Blow) = (F(:’(t)))2 (19)

where C

|3 Moo AT

1=

Flwg)=
1> > Bwkwa)w(t)ng‘

1=lxreX;

(20)

With the energy function defined, the learning stage in SOP can be performed
offline. Simulated annealing is initialized with equal band weights and stops when
the change of separability is less than le-3 for 500 times. Moreover, to improve
the generalization ability, we apply simulated annealing in a cross-validation
pattern by dividing the training set into multiple folds. The offline learning of
SOP is detailed in the supplemental material.
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Fig. 3. The optimum weights for different feature scales that are learnt in SOP on (a)
Multi-PIE and (b) Extended YaleB face databases

4 Evaluation

4.1 Roles of Features in Different Bands

In this section, the roles that features in different bands play for face recognition
are analyzed based on the weights learnt by the proposed SOP from different face
databases. In scale-space decomposition, we use 13 (M = 13) feature bands by
linearly selecting lambda for TV-L1 model. Fig. Blshows the weights for different
bands that are respectively learnt from Multi-PIE [23] and Extended YaleB [9]
databases. From Fig.[3 it can be noticed that the weights learnt from Multi-PIE
is dramatically different from those learnt from Extended YaleB. For example,
more importance is assigned to the smallest and largest bands for Extended
YaleB. That is because the shadow in Extended YaleB is much more severe than
that in Multi-PIE; thus, for many face images in Extended YaleB, features in
many bands are corrupted. In this case, features of the smallest- and largest-scale
bands, which mainly correspond to sharp edges and face shading respectively,
are usually least affected by shadow.

Through the comparison of weights learnt by SOP on Multi-PIE and Extended
YaleB, possible conclusions can be summarized as below:

— Different from the viewpoint of most previous illumination preprocessing
methods which mainly preserve features of small-scale band, the proposed
SOP shows that features of large-scale band are also important for face
recognition. In fact, as shown in Fig. @ the features of the largest-scale
band, i.e. S, mainly correspond to face shading.

— The importance of one specific feature band is not fixed across different
face databases, as the distributions of lighting in different face databases
usually vary from one another. Therefore, for different face databases, only
appropriately determined weights for each feature scales can lead to optimum
illumination preprocessing and satisfying face recognition performance.

4.2 Experiments on Laboratory-controlled Database

The proposed SOP is first evaluated on two representative laboratory-controlled
face databases: Multi-PIE [23] and Extended YaleB [9]. Multi-PIE database
contains as many as 755,370 images from 337 subjects, imaged under 15 view
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Fig. 4. Illumination preprocessing using different approaches is performed on (a) Multi-
PIE and (b) Extended YaleB face databases

points and 19 illumination conditions in up to four recording sessions. According
to the official testing protocol, face images of 14 randomly selected subjects are
used for training and images of all the other 323 subjects are used for testing.
Among all the testing images, only one image of each individual recorded without
flashes is used as gallery. Extended YaleB database contains 21,888 face images
from 28 human subjects under 9 poses and 64 illumination conditions. Seven face
images of each individual are used for training and all the other images are used
for testing. Following most of the image enhancement approaches [22[2TIT6l6],
face images in frontal pose are used for experiments.

Several state-of-the-art illumination preprocessing methods, e.g. LTV [21],
LDCT [16], RLS [I7] and TT [6], are used to compare with the proposed SOP.
For fair comparison, we exploited the best parameters settings recommended in
the original literature proposing the corresponding methods. For convenience,
we denote “ORI” as the original input face images without illumination prepro-
cessing. Before illumination preprocessing, all the face images are geometrically
normalized into the size of 64 x 80 with 35 pixels distance between two eyes.

Preprocessed face images from Multi-PIE and Extended YaleB are illustrated
in Fig. @l Compared with previous methods which usually performed for the
goal of better visualization, the preprocessed face images with SOP also show
impressive visual appearance. For face images with severe shadow in the last
two rows of Fig. [l (b), the proposed SOP preserves more discriminative facial
features in the preprocessed face images.

Face recognition is then performed on the preprocessed face images to evalu-
ate the effectiveness of different illumination preprocessing methods in improving
the robustness of a face recognition method. As what we concern is the com-
parison among different illumination preprocessing methods, Fisherfaces [§] is
fixed as the recognition method in this experiment. C' — 1 dimensions are used
in Fisherfaces, where C' is the class number in the training set. Recognition per-
formance of Fisherfaces with different methods for illumination preprocessing
is detailed in Table [l The recognition rate of 52.8% on original face images
reveals the challenge of the testing on Multi-PIE. Face recognition with SOP
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Table 1. Face recognition performance of Fisherfaces on the enhanced images prepro-
cessed by different approaches on Multi-PIE and Extended YaleB face databases. The
training set for SOP is from the same database with the testing set.

Recognition Rate (%)

Approach 1 bR Extended YaleB
ORI 52.8 54.2
RLS 56.9 75.0
LTV 608 78.0
TT 61.2 716
LDCT 618 741
SOP  75.0 84.1

Table 2. Generalization ability of our proposed SOP is evaluated on Multi-PIE and Ex-
tended YaleB face databases in a cross-database training pattern. With cross-database
training, the training and testing sets for SOP are NOT from the same database.

Training Set  Testing Set Recognition Rate (%)
Extend YaleB Multi-PIE 73.8
Multi-PIE  Extend YaleB 83.1

for illumination preprocessing gets a recognition rate as high as 75.0%, which
is 13% higher than the best of the state-of-the-art (61.8%). The effectiveness of
the proposed SOP can also be observed from the recognition performance on
Extended YaleB. Face recognition with SOP for illumination preprocessing gets
a recognition rate as high as 84.1%, achieving 6% improvement compared with
the best of the state-of-the-art (78.0%).

As there is no separate gallery set in Extended YaleB, more experiments
are performed in a cross-database training pattern to verify the generalization
ability of the proposed SOP. For example, SOP is trained on the training set
from Extended YaleB but tested on the testing set from Multi-PIE, and vice
versa. Face recognition is then performed on the preprocessed face images and
comparisons with that without cross training/testing are listed in Table 2l As
clearly shown in Table[2], even when SOP is performed in a cross training/testing
pattern, it still shows to be effective for illumination-insensitive face recognition,
e.g. 73.8% and 83.1% recognition rates are achieved in Multi-PIE and Extended
YaleB, which are impressively higher than the best of previous methods. Both
experiments show satisfying generalization ability of the proposed SOP.

4.3 Experiments on Real-world Database

In Multi-PIE and Extended YaleB, the lighting is strictly controlled and other
factors, e.g. pose and expression, are mainly excluded in face imaging. From a
practical standpoint, it would also be valuable to verify the effectiveness of the
proposed SOP on a real-world database. Therefore, the dataset for Exp. 4 in
FGRC Ver2.0 [26] is employed in this evaluation, as the query set in FGRC
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Table 3. Performance comparison of different preprocessing methods in terms of VRs
at FAR = 0.1%, 1% and 10% on real-world database FRGC Ver2.0 Exp. 4.

Preprocessing VRs (%) at different FARs
methods 01% 1.0% 10%

ORI 40.1 67.9 93.5
RLS 32.9 54.2 79.6
LTV 28.5 56.2 86.6
TT 44.5 69.1 91.1
LDCT 32.3 58.6 84.9
SOP 46.2 72.2 93.7

Ver2.0 Exp. 4 is quite challenging due to uncontrolled lighting conditions as
well as sensor or photon noise, defocus, motion blur and even small pose and
expression variations. According to the protocol for FRGC Ver2.0 Exp. 4, there
are respectively 12,776, 16,028 and 8,014 face images in the training, target and
query sets. All the face images in FRGC Ver2.0 Exp. 4 are also normalized in
the same way as that in Multi-PIE and Extended YaleB face databases.
Illumination preprocessing is first performed on FRGC Ver2.0 Exp. 4 dataset
using different preprocessing methods, and then face verification with Fisherfaces
is conducted on the preprocessed face images. As shown in Table[3 Verification
Rates (VR) at different False Acceptance Rates (FAR) are reported for compari-
son. It can be noticed that existing preprocessing methods may even degrade the
face verification performance. By contrast, the proposed SOP shows to be more
effective in improving face verification performance on FRGC Ver2.0 Exp. 4. Our
preprocessing method learns to enhance images by increasing the separability of
different subjects’ faces, but other variations caused by non-illumination factors
such as noise, blur, etc., can also be suppressed to some degree. This should be
the reason why our method also proves to be useful for uncontrolled conditions.

4.4 Combination with Other Recognition Methods

As mentioned in Sect. [ illumination preprocessing method has the superiority
of general purpose usage. Therefore, compared with feature extraction or model-
based methods, preprocessing is not limited to work for only one specific feature.
For example, the output of preprocessing is still a face image; thus, different
features can further be extracted. Therefore, it would be helpful to verify that
when the separability in original image space is improved, the separability in one
specific feature space also increases. In this experiment, two more recognition
methods besides Fisherfaces, e.g. LBP [4] and Eigenfaces [27], are utilized to
verify the proposed SOP also works with different recognition methods. The
choice of LBP and Eigenfaces covers both local-and global-based methods.

In our experiments, “uniform” pattern is utilized for LBP and 1,200 dimen-
sions except the first ten are used for Eigenfaces. Face verification using LBP
and Eigenface is performed on the preprocessed images with SOP and the per-
formance is compared with that without illumination preprocessing. The VRs
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Table 4. Performance comparison of different preprocessing methods for face verifica-
tion using LBP and Eigenfaces.

Preprocessing VRs (%) at different FARs (LBP/Eigenfaces)

methods 0.1% 1% 10%
ORI 7.4/6.7 20.9,/18.4 52.6,/49.9
RLS 5.4/8.9 16.1/24.6 45.3/51.4
LTV 2.3/10.9 8.4/26.9 33.0/52.8
TT 8.9/11‘6 22‘0/27.1 54‘0/55.9

LDCT 4.4/12.0 15.3/29.6 50.3/55.3
SOP 11.7/14.5 28.6/31.6 62.6/58.2

at different FARs are presented in Table @l As shown in Table @ the proposed
SOP also shows to be more effective for LBP and Eigenfaces than state-of-the-
art preprocessing methods. This experiment verifies that various face matching
algorithms tend to achieve higher performance when the separability of differ-
ent faces is improved with the proposed SOP. Therefore, performance resembling
state-of-the-art performance on FRGC Ver2.0 Exp. 4 can be reasonably expected
by combining our method with the best face recognition methods.

5 Conclusions

Instead of roughly decomposing facial features into a large-scale and small-scale
band pair, the proposed SOP makes a fine decomposition of facial features in
scale-space. Moreover, the proposed SOP establishes an explicit relationship be-
tween illumination preprocessing and separability improvement of faces. The
weights learnt for different feature bands in SOP reveal that features of differ-
ent bands play different roles in face recognition. However the importance of a
specific feature band varies across different lighting conditions. In the proposed
approach, weights of different feature bands are estimated for varying lighting
conditions by maximizing the Fisher separability criterion.

Experiments on Multi-PIE and Extended YaleB reveal that the proposed SOP
is superior to existing methods in preprocessing laboratory-controlled lighting.
Evaluation with cross-database training shows that SOP has satisfying gener-
alization ability. Experiments on FRGC Ver2.0 Exp. 4 further show the effec-
tiveness of the proposed SOP in handling real-world illumination mixed with
defocus, blur and slight pose or expression variations. The proposed method
learns to enhance images by increasing the separability of different subjects’
faces. Thus, SOP is also able to suppress other variations (such as pose, noise,
and blur) than illumination to some degree. Face recognition using Fisherfaces,
LBP, and Eigenfaces shows that when the separability in original image space is
improved, the separability in a specific feature space also tends to improve. The
effectiveness of proposed approach in conjunction with more face matchers, e.g.
sparse representation-based classification (SRC) [28], will be investigated in the
future work.
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