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Abstract. We introduce a novel approach for team activity recognition
in sports. Given the positions of team players from a plan view of the
playing field at any given time, we solve a particular Poisson equation to
generate a smooth distribution defined on whole playground, termed the
position distribution of the team. Computing the position distribution for
each frame provides a sequence of distributions, which we process to ex-
tract motion features for team activity recognition. The motion features
are obtained at each frame using frame differencing and optical flow. We
investigate the use of the proposed motion descriptors with Support Vec-
tor Machines (SVM) classification, and evaluate on a publicly available
European handball dataset. Results show that our approach can clas-
sify six different team activities and performs better than a method that
extracts features from the explicitly defined positions. Our method is
new and different from other trajectory-based methods. These methods
extract activity features using the explicitly defined trajectories, where
the players have specific positions at any given time, and ignore the rest
of the playground. In our work, on the other hand, given the specific
positions of the team players at a frame, we construct a position distri-
bution for the team on the whole playground and process the sequence
of position distribution images to extract motion features for activity
recognition. Results show that our approach is effective.

1 Introduction

Analyzing complex and dynamic sport scenes for the purpose of team activity
recognition is an important task in computer vision. Team activity recognition
has a wide range of possible applications such as analysis of team tactic and
statistics (i.e. especially useful for coaches and trainers), video annotation and
browsing, automatic highlight identification, automatic camera control (useful
for broadcasters) etc. Despite the fact that there is much research on vision-based
activity analysis for individuals [I], group activity analysis remains a challenging
problem. In group activity, there are usually many people located at different
positions and moving in different individual directions making it difficult to find
effective features for higher level analysis.

There are mainly two possible sources of sport videos: TV broadcasts and
multiple video feeds from fixed cameras around the playing field. We first review
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group activity analysis techniques using broadcast videos, and then review tech-
niques which investigate sport videos captured by fixed multi-camera systems.

1.1 Using the TV Broadcast

Kong et al. [2] use optical flow based features and the Latent-Dynamic Con-
ditional Random Field model to recognize three different actions (i.e. left side
attacking, stalemate and left side defending) in soccer videos. Later, Kong et
al. [3] proposed an alternative approach to recognize the same activities in soc-
cer videos. They use scale-invariant feature transform (SIFT) keypoint matches
on two successive frames and a linear SVM to classify activities. Wei et al. [4]
aims to discriminate group activities in broadcast videos targeting identification
of football, basketball, tennis or badminton. They extract space-time interest
points and use the probability summation framework for classification.

Despite the existence of such approaches, using a TV broadcast is not effec-
tive for group activity analysis, since the camera usually captures the region of
interest (such as ball locations) and many players may not be in that region.
Using broadcast cameras also suffers from inaccurate player localization because
of occlusions, camera motion, etc.

1.2 Using Fixed Multiple Cameras

Most team activity analysis methods [5] [6] [7] [8] [9] [I0] [I1] use a fixed multi-
camera system around the playing field to overcome the limitations of using
broadcast data. The multi-camera system usually has a camera configuration to
cover all locations on the playground and is therefore able to capture all play-
ers simultaneously. Player detection and tracking algorithms are employed in the
videos to obtain the trajectories, and then these trajectories are transformed into
the top-view of the playing field for more accurate analysis. In the activity anal-
ysis stage, features (e.g. position, speed and direction) are extracted using the
explicitly defined trajectories and a model employed (e.g. Bayesian Net, Hidden
Markov Models or SVM) to recognize the group activities such as different types
of offense and defense. These models are summarized in the following paragraph.

Intille and Bobic [5] use Bayesian belief networks for probabilistically repre-
senting and recognizing multi-agent action from noisy trajectories in American
football. Blunsden et al. [6] extract features from the trajectory data and classify
different offense and defense types in European Handball using an SVM. Perse
et al. [7] segment the play into three different phases (offence, defense and time
out) in a basketball game using a mixture of Gaussians. Then a more detailed
analysis is performed to define a semantic description of the observed activity.
Perse et al. [8] also present another approach which uses petri nets (PNs) for
the recognition and evaluation of team activities in basketball. Hervieu et al. [9]
uses a hierarchical parallel semi-Markov model to represent and classify team
activities in handball. Recently, Dao et al. [I0] proposed a sequence of symbols
which are derived from the distribution of players positions in a period of time to
represent and recognize offensive types (e.g. side-attack, center attack) in soccer
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Fig. 1. Sample frames from the two fixed cameras for the European handball dataset

games. Li and Chellappa [I1] also address the problem of recognizing offensive
play strategies in American football using a probabilistic model.

2 Owur Motivation and Contribution

In team activities, there is a group of people (the team) performing activities on
the constrained playground. All of the existing trajectory-based methods analyse
the specific positions (set of points) obtained by either vision-based tracking or
GPS-based wearable sensors. There are two main drawbacks in these approaches.
First, the position information is noisy. Second, and this is the most important
drawback, they use only specific positions and ignore the rest of the playground.
By its very nature, team activity takes place over the whole playground as the
entire team reconfigures itself to either attack or defend. Thus we believe that
a holistic approach is required rather than simply considering a collection of
specific player locations.

In this paper, we propose an approach that analyses the entire playground.
Given the team players positions from a plan view of the playing field at any
given time, we solve a particular Poisson equation to generate a smooth distribu-
tion that we term the position distribution of the team. The position distribution
is computed at each frame to form a sequence of distributions. Then, we process
the sequence of position distributions to extract motion-information images for
each frame, where the motion-information images are obtained using frame dif-
ferencing and optical flow. Finally, we compute weighted moments (up to second
order) of these images to represent motion features at each frame. The proposed
motion features are experimented with Support Vector Machines (SVM) classi-
fication, and evaluated on a publicly available European handball dataset [12],
using a similar multi-camera capture set-up to those reported previously, where
sample frames from the handball dataset are shown in Figure [l Results show
that we can recognize six different team activities in the handball game, and we
perform better than a method [6] that analyses the explicitly defined trajectories
for recognition.

Our method is novel and different from other trajectory-based methods pre-
sented in section 1.2. These methods extract activity features using the explicitly
defined trajectories, where the players have specific positions at any given time,
and ignore the rest of the playground. In our work, on the other hand, given
the specific positions of the team players at a frame, we construct a position
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distribution for the team on the whole playground and process the sequence of
position distribution images to extract motion features for activity recognition.
The position distribution accounts the uncertainty of the positions and it is de-
fined on the whole playground which can be considered as an intensity image.
Representing the positions of the team players as an intensity image instead of
a set of points at any given time, allows us to use frame differencing and optical
flow, which are important techniques for image motion description. We extract
motion features at each frame using the sequence of position distribution images
instead of using the explicitly defined trajectories to represent activities.

In our preliminary work [I3], we have verified that a particular Poisson equation
can be used to determine the region of highest population, corresponding to the area
with the highest density of the majority of players, and to estimate the region of
intent, corresponding to the region towards which the team is moving as they press
for territorial advancement. The approach proposed here significantly extends this
early work to perform full classification of team activity. In this paper, we are not
concerned about the region of intent or the region of highest population, and so
consider the work reported here to be an independent piece of work.

3 Team Position Distribution Generation

We investigate the problem in the context of European handball, where the top-
view of the handball field of play is shown in Figure with the team player
positions (a European handball team has 7 players). Given the positions of the
team players at any time, we aim to generate a position distribution of the team
defined on the whole playground. There are many possible probability distri-
bution models (e.g. Gaussians, Laplace or Cauchy distribution), which can be
centered on each player position and then summed up to generate a position dis-
tribution of the team. Since the activity is performed on the bounded playground
and players have to be on the playground to be involved in the team-based ac-
tivity, the position distribution must be zero outside the playground. This can
be achieved by using the truncated versions (e.g. truncated Gaussians) of the
probability distributions. However, all of the probability distribution models,
which can be used to create a smooth distribution and account for uncertainty
for the positions, are parameter dependent and the parameters need to be ad-
justed to optimize the performance of the team activity recognition. In our work,
we choose to solve a particular Poisson equation to generate a position distri-
bution since it has a unique and steady-state solution with respect to the given
team player positions. The proposed Poisson equation is parameter free, and
can model zero probability outside the playground without any truncation. The
solution of the proposed Poisson equation only depends on the players positions.

3.1 Background to the Poisson Equation

In mathematics, the Poisson equation is an elliptic type partial differential equa-
tion [14] which arises usually in electrostatics, heat conduction and gravitation.
The general form of the Poisson equation, in two-dimensions, is given by,
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Fig. 2. The Poisson equation is applied to generate the position distribution. (a) The
top-view of the handball court with player locations. (b) The position distribution of
the team. (c) The color mapped position distribution with level sets.

V2I(x) = -Q(x) 1)

where @ is a real-valued function of a space vector x = (x,y) and it is known
as the source term, I is the solution which is also a real-valued function and V2
is the spatial Laplacian operator. Given a source term ((x), we find a solution
for I(x) that satisfies the Poisson equation and the boundary conditions over a
bounded region of interest. There are three general types of boundary conditions:
Dirichlet, Neuman and Mixed. Here, we explain the Dirichlet condition, which is
used in our algorithm. In the Dirichlet condition, the boundary values (solutions)
are specified on the boundary. These values can be a function of space or can be
constant. The Dirichlet condition is represented as I(x) = ®(x), where ®(x) is
the function that defines the solution at the boundary layer.

3.2 The Proposed Poisson Equation and Solution

The proposed Poisson equation and the resulting distribution (solution) are ob-
tained based on the following considerations. The top-view image of the field of
play is assumed to be a binary image where the player positions are one and the
rest of the positions are zero at any time during the game. Although players are
expected to be in the play area during the game, players sometimes can move
a little outside for a variety of different reasons, such as to serve the ball, when
the ball is out or in order to talk to the coach. Thus, we expand the binary
image of the field of play to include the possibility that the players may move
a little outside the lines. The binary image is defined to be the source term in
the Poisson equation. The boundary condition is Dirichlet which has a specific
solution, I(x) = 0, at the boundaries of the expanded field of play. This means
that there is no possibility for a player to be outside the region of interest. The
proposed Poisson equation problem is,

N
V(z,y) = — <Z5(xrm,yyi)) (2)
i=1

I(z,y) =0, boundary condition

where N is the number of players in the team and (z;, y;) is the position of player
i. The source function is assumed to be a linear combination of
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dirac-delta functions §(.) in two dimensions. It is important to note that the
proposed Poisson equation has a unique and steady-state solution at each frame.
The solution is parameter free, and it only depens on the position of the players.
Therefore, when players change their position from the previous frame to the
current frame, the solution also changes in the current frame.

The numerical solution methods of the Poisson equation can be categorized
as direct and iterative methods. In [I5], Simchony et al. pointed out that direct
methods are more efficient than multigrid-based iterative methods for solving
the Poisson equation on a rectangular domain, since direct methods can be
implemented using the Fast Fourier Transform (FFT). In our work, since the
field of play is rectangular, we employ FFT-based direct methods to solve the
proposed Poisson equation. The proposed equation has a Dirichlet boundary
condition that needs discrete sine transforms (using FFT) to achieve an exact
solution, where the detailed description of the solution method is given in [I5].
The solution to the proposed equation forms peaks at the player positions. To
smooth these peaks, we apply Gauss-Seidel iterations (5 iterations), as a post-
processing stage, to relax the surface while maintaining the boundary condition
(I(x) = 0) outside the region of interest.

The resultant distribution provides the likelihood of a position to be occupied
by players at any given time, and it is called the position distribution of the
team. Figure shows the position distribution for the given example and
Figure shows the same distribution with color mapping and with level sets.
The resolution of the position distribution image is 220 x 120 in our experiments.

4 Motion-Information Images and Feature Extraction

Computing the position distribution for each frame provides a sequence of po-
sition distributions. We process the sequence of distribution images to gener-
ate motion-information images which can describe motion at each frame. The
motion-information images are created using frame differencing and optical flow.

4.1 Frame Differencing

The simplest way in which we can detect motion is by image differencing. Fig-
ure shows the direction of movement of the team players from the current
frame to the next frame (50 frames later), where the starting point of the arrow
represents the position of the player at the current frame and the end point
represents the position of the player at the next frame. We compute the position
distribution for the team at the current and at the next frames. Since the team
players move from the current positions to the next positions, they create higher
position distribution values in the direction of movement. To detect motion with
the direction, we apply change detection by simply subtracting the current dis-
tribution from the next distribution and keep the positive values while setting
the negative values to zero, i.e. (I(x,y,n+m) — I(x,y,n)) > 0, where I(x,y,n) rep-
resents the position distribution of the team at frame number n and m is the
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Fig. 3. Generating a motion-information image using frame differencing. (a) Team
players movements. (b) The motion-information image.

number of frames between the current and the next frame. Frame differencing
is applied with 50 frames (i.e. m = 50) of temporal extent in our experiments.
Figure shows the frame differencing whereby we keep the positive values
and set the negative values to zero for the given example.

4.2 Optical Flow

Although frame differencing can provide some information about the movement,
we cannot exactly see how the distribution points move. In order to describe
the position changes at each frame, we compute optical flow vectors that can
provide the displacement of the points with directions. We employ the classical
Horn and Schunck (HS) method [I6] for optical flow estimation. This is a dif-
ferential approach which combines a data term that assumes constancy of some
image property (e.g. brightness constancy, gradient magnitude constancy) with
a spatial term that models how the flow is expected to vary across the image
(e.g. smoothness constraint). An objective function combining these two terms is
then optimized. In our experiments, we observed that using the gradient magni-
tude constancy assumption (i.e. |VI(x,y,n)| = |VI(x+u,y+v,n+m)|) instead of
using the brightness constancy (i.e. I(x,y,n) = I(x+u,y+v,n+m)) can estimate
better optical flow, where u is the horizontal optical flow and v is the vertical
optical flow. Therefore, in our work, we use the gradient magnitude constancy
assumption together with the smoothness constraint to compute the optical flow
on the playing field. The gradient of the position distribution is computed using
the Sobel operator and the optical flow is computed from the current frame to
the next frame with 8 frames of temporal extent. There are also two parameters
that affect the solution of the HS method: a parameter that reflects the influence
of the smoothness term is set to 0.1, and the number of iterations to achieve the
solution is set to 200. Figure shows the position distribution image and the
estimated optical flow. For better illustration, Figure shows the zoomed
image from the red box in Figure Note that this is a novel algorithm to
compute the motion field on the top-view of the playground. Kim et al. [17]
compute the motion field on the top-view of the playground by interpolating the
player’s motion vectors, where the player’s motion vectors are generated using
the specific positions of the players. On the other hand, in our algorithm, we use
the specific positions to generate the position distributions, and then estimate
the motion field using optical flow.
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Fig. 4. Computing the directional speed images to represent the motion-information
images. (a) The position distribution and the estimated optical flow. (b) The zoomed
image from the red box in (a). (¢) Directional speed image in the direction of positive
x-axis, (d) negative x-axis, (e) positive y-axis and (f) negative y-axis.

The motion-information images, using the optical flow, are generated with the
following considerations. The horizontal and vertical components (i.e. u and v)
of the flow are two different scalar fields. Each of these components is half-wave
rectified to generate four non-negative channels: u*, v =, v+, v™, sothat u = vt —
v~ and v = vT — v~. These channels, u*, =, v and v~, represent directional
speed images in the direction of positive x-axis, negative x-axis, positive y-axis
and negative y-axis respectively. Note that the directional speed images have
also been used in [I8] for individual action recognition, but their usage for group
activity recognition as proposed here is novel. The directional speed images are
illustrated in Figure 4(c) [4(d)} [4(e)| and [4(f)| for the given example.

4.3 Feature Extraction

We use five motion-information images to describe motion at each frame, where
one of them is obtained with frame differencing and the other four are obtained
with optical flow. Frame differencing is applied with 50 frames of temporal extent
while the optical flow is computed with 8 frames of temporal extent, so that
frame differencing captures motion in a longer period of time while the optical
flow captures motion in a shorter period of time. Our experiments show that
describing the motion in this way performs better than other options.

Next, we compute weighted moments for each motion-information image to
represent motion features at that frame. The discrete form of the equation is,

Mpg = Z Z w(x,y)zPyl Ax Ay (3)
Ty

Here, mp, is the moment of order p and ¢, w(x,y) is the weight function, which
we substitute for each motion-information image, Ax = Ay = 1 are spacing sizes
of a pixel. We compute moments up to order p 4+ ¢ = 2, resulting in 6 moments
per image and 30 moments in total to describe the motion at each frame.
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Table 1. Team activities with their numbering

. Slowly going into offense

. Offense against set-up defense

. Offense fast break

. Fast returning into defense to prevent fast break
. Slowly returning into defense

. Basic defense

DU W N

5 Classification Using the Motion Descriptors

We investigate the use of the proposed features with Support Vector Machine
(SVM) classification. SVM is a powerful technique in classification. It maps each
training data to higher dimensional space and constructs a separating hyperplane
such that the distance between the hyperplane and a data point is maximized.
Test data is then classified by the discriminant function. In our work, the test
frame is classified using the 141 by 141 neighborhood frames (141 from past and
141 from future neighborhoods), which is determined experimentally. This means
that the window size is 283 (including the test frame). Each of the frames in the
window is labeled with the SVM classifier by using the one against all method.
Then the most frequent class is selected to represent the activity of the test frame.
In SVM, a Gaussian radial basis function kernel is used and the scaling factor
is 2.4. The upper bound on the Lagrange parameters is 10. In addition, we use
the sequential minimal optimization method to find the separating hyperplane
since we have a large dataset and this method is computationally efficient.

6 Evaluation and Results

The proposed model is evaluated on the European handball which is usually an
indoor game. In handball, there are seven players and it is played on a 40 by 20
meters court. The dataset for the handball game is from the publicly available
CVBASE dataset [12]. The dataset consists of ten minutes of a handball game.
The playground coordinates of the seven players of the same handball team are
available throughout the sequence. The sequence consists of 14978 frames (ap-
proximately 10 minutes). These trajectories are extracted from two bird-eye view
cameras, one above each part of the court plane, with semi-automatic tracking,
where the details on trajectory extraction are given in [I9]. The dataset providers
obtained error estimates on players positions in the playground between 0.3 and
0.5 meters. There are mainly six different team activities in this dataset, where
the starting and end times of the activities are also annotated. The definition of
the six team activities with their numbering is given in Table [l The length of
each activity sequence ranges from 125 frames to 1475 frames. It should be noted
that some of these activities can be split into more complex activity classes; how-
ever more information is required such as the ball trajectory or the trajectories
of the opposing team to represent more complex activities, which is not provided
in this dataset.
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We evaluate our approach while comparing with a model, proposed by Bluns-
den et al. [6], which analyses the explicitly defined trajectories for team activity
recognition. This method is designed to recognize the same activities in the same
dataset, which we believe to be the best comparison we can perform given the
current status of work in this area. They extract 5 features (i.e. positions, speed,
directions) from each player trajectory, and then all the players features are
concatenated to form 35 dimensional feature vector to represent the activity at
each frame. A SVM classifier is then trained upon this data. They use the one
against all method for classification. The test frame is classified using the 99
by 99 neighborhood frames that make the window size 199 (including the test
frame). Each frame in the window is labeled with the SVM classifier and then
the most frequent label represents the class of the test frame. A Gaussian kernel
function is used and the scaling factor is 2.4. The upper bound on the Lagrange
parameters is 10. The sequential minimal optimization method is used to find
the separating hyperplane.

6.1 Temporal Segmentation and Recognition

In our evaluation, the second half of the video is used for training (i.e. 7600
frames, 5 minutes and 4 seconds) and the first half is used for testing (i.e. 7328
frames, 4 minutes and 53 seconds). Both the first and second half include the six
different team activities. In the first half, there are 1, 3, 3, 1, 2 and 3 instances
and in the second half there are 3, 3, 2, 2, 2 and 4 instances for activity number
1, 2, 3, 4, 5 and 6 respectively. Since proper training is required for robust
classification, we choose the second half for training purposes. The second half
includes more activity samples than the first half, e.g. the activity number 1
is performed once in the first half and three times in the second half. In the
training, there are at least two segments and at most four segments to represent
an activity. On the other hand, in the testing, there are at least one segment
and at most three segments to represent an activity. In addition, since we are
testing the continuous sequence, there are also time-out segments which occur
when the ball is out or when play is stopped. In handball, when it is time-out,
teams keep moving and start to perform the next activity, e.g. if they are serving
the ball, they move around to create space, on the other hand if the opponent
team is serving the ball, they move around to prevent the pass. Therefore, each
of the time-outs in the test sequence is defined to be the following activity in
our experiments.

In continuous classification, we classify all individual frames. We evaluate our
features with the SVM classification and all the details related to the classifica-
tion are provided in section 5. The same evaluations are also conducted for the
method proposed by Blunsden et al. [6] for comparison purpose. In evaluations,
this model is denoted by FET+SVM, which means that Features are obtained
using the Explicitly defined Trajectories and the classification is achieved using
the Support Vector Machines. Figure shows the temporal segmentation and
recognition results obtained by the FET+SVM, while Figure show the re-
sults obtained by the proposed features with SVM (Proposed features + SVM)
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Fig. 5. Temporal segmentation and recognition of activities (a) FET4+SVM (proposed
by Blunsden et al. [6]) (b) Proposed Features with SVM

Table 2. Correct classification rates (CCR%) of the Proposed Features with SVM,
and FET+SVM (total frames: 7328)

Methods FET+SVM [6] Proposed Features+SVM
CCR% 89.74% 94.61%

respectively. The blue graph represents the ground truth and the red graph
represents the prediction. It is observed that the proposed features with SVM
achieve better temporal segmentation and recognition than the FET+SVM. The
FET+SVM cannot identify activity number 4 which is fast returning into de-
fense, and confuses this with activity number 5 which is slowly returning into
defense. The FET+SVM also confuses between the activity number 2 and 5,
which is offense against set-up defense and slowly returning into defense respec-
tively. There are also some errors when the activity switches in FET4+SVM. The
proposed features with SVM can recognize the six different activities and the
errors occur when the activity switches.

As stated by [20], there are two basic units for scoring in the evaluation
of activity recognition: frames and events. They are alternative to each other.
Our evaluation is based on scoring the frames which is an acceptable validation
method and which we believe puts us in line with best practice. We classify 7328
test frames in the evaluation, and Table Pl shows the correct classification rate
(CCR%) for each method. The CCR% is computed as CCR% = (C./T.) x 100,
where C. is the number of correct classification and T, is the number of total
classification. The FET+SVM achieves 89.74%, and the proposed features with
SVM achieves 94.61% recognition rate. Results show that the proposed features
with SVM performs around 4.9% better than the FET-+SVM. Results show that
the proposed features perform significantly better than the FET features [6] with
the same classifier, i.e. SVM.

Table [ illustrates the precision and recall results, for each activity class,
obtained using each method. Here, the precision for a class is defined as P% =
(P./P;) x 100, where P, is the number of frames correctly predicted as belonging



80 C. Direkoglu and N.E. O’Connor

Table 3. Precision and recall of the Proposed Features with SVM, and FET4+SVM
for each activity

Activity # of FET+SVM [6] Proposed Features+SVM
Number Frames Precision(P%) Recall(R%) Precision(P%) Recall(R%)
1. 164 82.41% 100.0% 88.17% 100.0%

2. 2914 86.48% 98.79% 97.98% 98.28%

3. 675 96.96% 61.48% 84.76% 84.88%

4. 225 0.0% 0.0% 97.38% 66.22%

5. 675 83.92% 70.37% 99.46% 82.07%

6. 2675 94.19% 98.80% 92.79% 98.28%

to that class and P; is the total number of frames predicted as belonging to that
class. The Recall for a class is defined as R% = (R./R:) x 100, where R, is the
number of frames correctly predicted and R; is the total number of frames that
actually belong to that class. In this table, both the precision and recall must be
high for a method to show that it can handle the activity switches and provide
sufficient discrimination. There is only one activity, i.e. Activity 6, in Table 3
where the FET+SVM [6] has slightly better precision and better recall than
the Proposed features+SVM. In general, the proposed features+SVM has bet-
ter performance than the FET+SVM [6]. The main problem of the FET+SVM
method is that it cannot discriminate the activity number 4 and it is sensi-
tive to activity switches. On the other hand the proposed features with SVM
can discriminate all activities, and can handle activity switches better than the
FET+SVM [6]. Figure[llshows sample frames with the automatically recognized
activities by the proposed features with SVM.

6.2 The Effect of Window Size

We present the effect of differing window size in the classification performance
(CCR%). Figure show the CCR% for the proposed features with SVM and
for the FET4+SVM model [6]. The window size ranges from the 51 to 351 in our
evaluation. It is observed that the proposed feature with SVM performs better
than the FET+SVM model at each window size. The optimal window size for
the proposed features with SVM is 283. For the FET4+SVM model, it is 199.

6.3 The Effect of Motion-Information Images

We present the influence of motion-information images and report what the
temporal segmentation and the classification results would be if only frame dif-
ferencing or only optical flow was used. Figure shows the result obtained
by using only frame differencing (one motion-information image). Figure
shows the result using only optical flow (four motion-information image), and
Figure illustrates the result using the combination of them (five motion-
information image). Only frame differencing achieves 90.96%, only optical flow
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Fig. 6. The effect of window size and the effect of motion information images. (a) The
classification performances (CCR%) with differing window size. (b) Temporal segmen-
tation and recognition using only frame differencing, (c¢) using only optical flow.
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Table 4. The computation time for each stage of the methods

Stages FET+SVM [6] Proposed Features+SVM
Feature extraction in whole video 1.48 seconds 13702 seconds
Training all activities in the second half 19.89 seconds 25.25 seconds
Classifying all activities in the first half 0.31 seconds 0.29 seconds

gainst set-up defense  _

(a) W)

Fig. 7. Team activity is automatically recognized by the proposed features with SVM

achieves 92.82% and the combination achieves 94.61%. Results indicate that
using the combination improves the CCR% and the discrimination.

6.4 Computational Efficiency

The computational time for each stage of the methods are given in Table [l
Results are obtained using Matlab 7 on a Windows 7 Operating System with
Intel Core 13-870, 2.93GHz and 8MB RAM. It is observed that the FET+SVM
method is more efficient than proposed method with SVM especially in feature
extraction. Although, the proposed features with SVM is computationally less
efficient in feature extraction, it has significantly better classification accuracy
in comparison to FET4+SVM.

7 Conclusions and Future Work

We have presented an approach for team activity recognition in sports. Given the
positions of team players from a plan view of the playing field at any given time,
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we solve a particular Poisson equation to generate a position distribution for the
team. Computing the position distribution for each frame provides a sequence of
distributions, which we process to extract motion features at each frame. Then
the motion features are used to classify team activities. Results show that the
proposed approach is effective, and performs better than a method (FET+SVM)
that extracts features from the explicitly defined trajectories. Currently, we are
working on field hockey datasets and our preliminary results indicate that it is
possible to use the proposed approach in this domain as well. In future, we will
present our results on other sporting domains.
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