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Abstract. We present a robust and efficient framework for facial shape
model fitting. Traditional model fitting approaches are sensitive to noise
resulting from scene variations due to lighting, facial expressions, poses,
etc., and tend to spend substantial computational effort due to heuris-
tic searching algorithms. Our work distinguishes itself from conventional
approaches by employing (a) non-uniform sampling features unified by
the shape model that affords robustness, and (b) regression analysis be-
tween observed features and underlying shape parameters that allow for
efficient model update. We demonstrate the effectiveness of our frame-
work by evaluating its performance on several new and existing datasets
including challenging real-world diversities. Significantly higher localiza-
tion accuracy and speedup factors of 15 have been observed comparing
with the traditional approach.

1 Introduction

Facial model fitting methods are expected to fare well under variety of scene
conditions resulting, for example, due to lighting changes (e.g., shadows), fa-
cial expressions, occlusions, etc. In addition to robustness, practical algorithms
also require real time performance for acceptable use. In this work we propose
a feature extraction and shape model estimation approach that is robust and
computationally efficient.

Previous studies (e.g., [1]) have argued that appropriate combination of lo-
cal information around each feature point (bottom up) and global information
about their layout (top down) is important accurate facial feature localization.

Fig. 1. Robust facial model fitting under variable lighting, complex expressions, and
occlusion conditions
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Two most significant approaches that realize this concept are namely the Active
Shape Model (ASM) [2] and Active Appearance model (AAM) [3], wherein, the
local facial features are integrated by a global “Shape Model”. These approaches
recognized that the facial features lie on a low dimensional linear subspace within
the high dimensional feature space.

ASM and AAM approaches have inspired several other facial feature point
localization and representation methods. For instance, Li and Ito [4] employ
AdaBoosted histogram classifiers that exploit local appearances by means of
texture features. STASM [5] improves the model fitting accuracy of ASM by
exploiting brightness gradient orthogonal to edge direction as local features, over
multiple scales. Building further on the AAM framework, Blanz and Vetter [6, 7]
employed 3D shape model and improved fitting performance to non-frontal face
images. Matthews and Baker [8, 9] reduced computational time by utilizing the
inverse compositional image alignment.

However, in each of these methods the fitting accuracy tends to decrease dra-
matically when the images contain unexpected variations such as shadow or
facial expressions. Additionally, the previously proposed fitting techniques re-
quire a large number of iterations, making the real time robust model fitting a
difficult problem to solve. In order to address these problems, our work proposes
a novel shape model fitting algorithm which has the following main contribu-
tions: (a) non-uniform sampling features unified by the shape model that affords
robustness, and (b) regression analysis between observed features and underlying
shape parameters that allow for efficient model update.

Although [10][11] attempted to control shape parameters by regression, our
proposed fitting method correlates the shape model to feature set sampled in a
structured layout around each node of the shape model. Therefore, we call our
approach as Active Structure Appearance Model (ASAM).

2 Features and Shape Model

2.1 Shape Model

Facial feature point layout can be compactly represented by lower dimen-
sional linear subspace. Let [xm, ym]T represent the coordinates of m-th
feature point node in the face image. Taken together, the feature point co-
ordinates form a 2 × M -dimensional feature point set for the n-th image,
x̂ =

[
[x1, y1]

T , . . . , [xM , yM ]T
] ∈ R2×M , where M is the total number of fea-

ture points in the image.
Let x denote the the normalized coordinates of the feature point set, which

are related to corresponding x̂ by “pose parameters” p = [tx, ty, tθ, ts]
T corre-

sponding to rotation R, translation T, and scaling ts,

x̂ =

[
cos tθ − sin tθ
sin tθ cos tθ

]
xts +

[
tx
ty

]
= Rxts +T (1)

The normalized feature point set x can be compactly represented in a linear
subspace of the high 2 × M -dimensional feature space. Given x for several
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training images, we employ PCA to obtain the reduced orthonormal basis set
retaining top k basis vectors corresponding to k largest eigenvalues of the sub-
space spanned by feature point sets. Let the reduced set of basis vectors be
denoted by Φ̃. Normalized feature x can be reconstructed from its projection b
as x ≈ x̄+ Φ̃b, implying

x̂ ≈ R(x̄+ Φ̃b)ts +T (2)

where, x̄ is the average normalized face model and b is the “shape parameter”.
The pose and shape parameters together represent the model parameter Θ =
[p,b].

2.2 Feature Sampling

Several feature representations have been evaluated in context of faces [5, 8, 12–
15]. Face images have been exhaustively scanned by Gabor [13] and Harr-like [14]
features for feature extraction. Most of ASM based methods represent features
as one dimensional sampling along the edge normal at the feature node [5]. Such
a representation is relatively low dimensional and does not robustly capture
the underlying feature. Instead, features are easily affected by noise caused by
shadow, occlusions, facial expression, etc., and therefore cannot result in reliable
shape model fitting.

On the other hand, AAM based methods generally define a homogeneous sam-
pling grid on the average shape model, which is transformed to obtain sampling
coordinates for other face images [8]. In these cases, the feature vector tends to
be high dimensional, thus requiring high computational cost for shape transfor-
mation. Furthermore, such a representation captures unessential information in
areas which do contribute to model deformation (e.g. cheek, forehead). In fact,
this superfluous information tends to be harmful for model fitting under noisy
conditions.

To address these problems, we employ feature sampling method called “Retino-
topic Sampling” [12], in which sampling points radiate out from each node of the
shape model. In contrast to [12], where sampling was done independently at each
feature node, our work associates the non-uniformly sampled features together
by means of the shape model. Since the sampling distribution is associated with
the shape model structure, we call this sampling method as Structural Retino-
topic Sampling. In this work we manually select a particular sampling pattern
as shown in fig. 2. A sampling operation given the model parameters Θ will be
indicated as:

f = S(p) (3)

here f is a sampled feature vector.

3 Feature Perturbation Analysis

In this section we show the relative shift between the ground truth position
can be inferred based on a feature subspace learned during off-line training.
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(a) (b)

Fig. 2. (a)Shape model and (b) corresponding sampling points

This reduces the required number of search iterations and enables accurate fea-
ture localization.

Fig.3(a) shows a test image and selected feature sampling layout. In this
experiment the inner corner of the right eye is selected as the basepoint. For
training we use 200 images and we extract 5 perturbation samples from each
image, resulting in a total of 1000 training examples. Features are perturbed in
the following range: shift = within 20% of eye width, rotation = within +/ −
30 deg, and scale = 0.5 - 1.5 of the original. For this experiment, we employ pixel
brightness at sample locations as feature descriptor. Reduced feature subspace
is obtained by applying PCA to this perturbation feature set.

Fig.3(b) shows first two dimensions of the feature subspace, where half the
perturbation features are centered to the left of the eye corner and the other
half centered on the other side. Samples are obtained from 100 facial images
which are different from training examples. Feature perturbation is limited to a
distance of 20% of eye width. Similarly, fig.3(c) shows feature subspace spanned
by 2nd and 3rd principal components. In this case, half the perturbation feature
are sampled at +30 deg orientation with respect to the base feature, and the
remaining are sampled at −30 deg orientation.

These examples clearly demonstrate that the perturbation feature subspace
is discriminative in terms of the induced perturbations. These results, further
reinforces the idea that we can estimate the induced perturbation by utilizing
the compact subspace of perturbation features.

(a) (b) (c)

Fig. 3. (a) Sampling points. (b), (c) Feature vector plots on the feature subspace, circle:
inside, x: outside, rectangle: −30 deg, +:+30 deg.
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4 Shape Model Correlation with Perturbation Features

This section extends the concept and describes an algorithm to estimate the
perturbation of the shape model parameters by learning a relationship between
perturbed features and perturbation condition of the shape model during train-
ing. We employ Canonical Correlation Analysis (CCA) to learn the correlation
between sampled features and the shape model parameters.

4.1 Canonical Correlation Analysis

Let f = [f1, · · · , fk]T and p = [p1, · · · , pl]T denote the k dimensional feature
vector and l dimensional parameter vector, respectively. For some vectors, a and
b, u = aT f and v = bTp represent arbitrary linear transformations of f and p,
respectively. In order to find optimal values of a,b that maximize the correlation
between u and v, the following covariance should be maximized:

Cov(u,v) = aTΣb (4)

where, Σ is the cross covariance matrix between f and p. This problem can
be solved as a standard eigenvalue problem by using Lagrange multipliers after
normalizing variance of both u,v to 1.

Let (ea1, . . . , eak) and (eb1, . . . , ebl) denote the k and l eigenvectors, respec-
tively, obtained as a solution to this problem. Assuming, k > l, u,v can be
written as u = [ea1, . . . , eal]

T f = AT f and v = [eb1, . . . , ebl]
Tp = BTp.

If λ1, · · · , λl denote the corresponding eigenvalues, the liner regression from
u to v can be written as:

v = diag[λ1, · · · , λl]u = Λu (5)

Finally, the mapping f ⇒ p can be obtained as:

p = Gf , such that G = (BT )−1ΛAT . (6)

4.2 Training Procedure and Model Fitting

The training procedure for learning regression model is outline in Algorithm 1.
Ground truth feature point locations are assumed to be available for the training
images. Briefly, for each training image model parameters, random perturbations
are generated and corresponding sampled features are obtained. The relationship
between known perturbed model parameters and sampled features is learnt using
CCA (Sect. 4.1).

As an example to demonstrate the efficacy of the learning algorithm, fig. 4
shows scatter plots of ground truth values (horizontal axis) versus the estimation
result (vertical axis) of model parameters predicted by learned regression model.
Correlation coefficient, r, is shown under each plot. All parameters have a posi-
tive correlation value greater than 0.5 indicating that transformation matrix, G
captures the relationship between features and model parameters effectively.
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Input: N Training images with annotated feature point coordinates x̂1, . . . , x̂N

Output: Regression matrix, G
for n← 1 to N do

Obtain model parameters Θn from x̂n as described in Sect. 2.1;
for r ← 1 to R do

Generate, Θerr = Θn +ΔΘr, where ΔΘr is random a perturbation;
Sample feature fr corresponding to Θerr according to eqn. 3;

end

end
Apply CCA to {ΔΘ} and {f} to obtain G, such that ΔΘ = Gf ;
return G

Algorithm 1. Training procedure to learn regression function G

At run time the model fitting procedure described in Algorithm 2 is employed.
As an input to model fitting, we assume that rough face parameters (location,
rotation, and size) are available from the underlying detection method, e.g., [14].
The fitting algorithm starts from the initial model parameters to obtain corre-
sponding sampled features, f . The learned transformation G (eqn. 6) is used to
determine the parameter perturbation ΔΘ. A correction is applied to update
the model parameters and the process is repeated until convergence. Several
different convergence criterions are conceivable, e.g., maximum number of iter-
ations, ‖Δpi‖ < ε, or use of a trained classifier to evaluate the feature score,
etc.

5 Experiments

We conducted exhaustive experimental evaluation of the proposed algorithm on
various complex face databases and compared the performance with a state-
of-the-art algorithm. The four datasets employed for testing include two public
datasets, BioID [16] and the extended Yale face database B [17], and two new
datasets INC and Snap. These datasets contain large variations in lighting con-
ditions, facial expressions, occlusions, etc. A summary of dataset composition
can be found in table 1. A total of 10,000 images across all datasets were used
for training.

Fig. 4. Scatter plots of model parameters: Ground truth (horizontal axis) vs. estimated
values (vertical axis) are shown for pose parameters (tx, ty, tθ, ts) and shape parameters
(b1, b2, b3). r denotes correlation value in each case.
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Input: Face image with rough estimate of pose parameters p0 = [t̂x, t̂y, t̂θ, t̂s]
Output: Optimal model parameters, Θopt

initialize i← 1, Θi = [p0, 0
T ];

repeat
Sample feature fi corresponding to Θi according to eqn. 3;
Obtain parameter perturbation ΔΘ = Gf i;
Update parameter Θi+1 = Θi + ηΔΘ /*η is learning rate */

i← i+ 1;

until convergence;
Θopt ← Θi−1;
return Θopt

Algorithm 2. Model fitting procedure estimates optimal model parame-
ters given rough initialization.

Table 1. Evaluation Datasets

Condition Facial expression Number of
images

BioID indoor, homogeneous light-
ing

including open, closed eyes
and mouth

1,521

YaleB indoor, homogeneous and
directional lighting

neutral (frontal pose only) 601

Snap various lighting condition in-
cluding indoor room lighting
and outdoor natural lighting

various expressions includ-
ing smile

2,325

INC indoor, homogeneous light-
ing

neutral(N), close eyes(E),
open mouth(M), smile(S).

300 for each
expression

For experiments, Haar-like features [14] with different shapes and orientations
were extracted at sampling locations. A total of 6 features at 235 sampling loca-
tions resulted in feature dimension of 6×235 = 1410. The proposed algorithm is
compared with the state-of-the-art ASM based STASM [5] approach as baseline.
Unlike AAM approaches which estimate appearance, a comparison with ASM
based approach used for feature localization is more in line with the proposed
framework.

All algorithms are implemented in C/C++ and executed on a Pentium D
3.2GHz PC. Shape model parameters for test images are initialized by face de-
tection algorithm of [18]. Model fitting relies on 6 feature point locations, namely,
corners of eyes and mouth. To accommodate for error in ground truth, feature
localization results that fall within 10% of eye-to-eye distance are considered
positive detections.

Fig. 5 shows the average localization accuracy results for eye and mouth cor-
ners for different datasets. For a better perspective, the results for Yale database
are broken down as yaleB1, consisting of lighting angles less than 20 deg, and
yaleB2, denoting other lighting conditions. Similarly, the INC database is
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Fig. 5. Detection accuracy for (a) Eye and (b) Mouth of the proposed approach
(ASAM) compared to the baseline (STASM) on several evaluation datasets

Fig. 6. Qualitative model fitting results comparing the outputs of proposed ASAM (1st

row) and baseline STASM (2nd row) algorithms

sub-categorized based on facial expressions. Detection accuracy is defined as the
ratio of number images with successful feature localization to the total number
of evaluation images.

Detection accuracy for both of ASAM and STASM are similar for datasets
which contain only neutral expression and homogeneous lighting (INC N, BioID,
yaleB1). However, ASAM demonstrates significantly superior performance com-
pared to STASM for datasets with complex facial expression (INC E, INC M,
INC S). Although both methods show lower performances for extreme direc-
tional lighting condition in yaleB2, ASAM still has a better performance than
STASM. Lastly, ASAM again outperforms STASM with significant margins on
the Snap dataset which includes various facial expressions and lighting condi-
tions.

The average frame processing time for ASAM is 0.017 sec compared to 0.264
sec for STASM. This corresponds to a speedup of 15.

5.1 Discussion

The superior performance and efficiency of the proposed method can be at-
tributed mainly to the novel (1) structural retinotopic sampling integrated by
the shape model and (2) perturbation estimation using CCA.
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Fig. 7. Model fitting failure results

Structural Retinotopic Sampling: For facial model fitting, areas such as
cheek and forehead carry less discriminative information compared to other
features such eye, nose, and mouth corners. Homogenous feature sampling ap-
proaches get distracted by noise due to shadows, facial expressions (wrinkles),
etc., in these relatively unimportant facial regions and tend to result in poor
model fitting accuracy. On the other hand, if model fitting approaches only fo-
cus on the distinctive features such as eye, nose, and mouth corners, then they
are susceptible to minor misalignments and tend to getting stuck in local minima,
thus again resulting in poor fitting.

To address the limitations of both global and local feature sampling ap-
proaches, our proposed non-uniform feature sampling strategy offers a robust
solution. The discriminative corner features are densely sampled to give higher
weight to local information, while at the same time modeling semi-global ap-
pearance through sparse sampling to allow for smooth search space for model
parameters.

Fig. 1 shows fitting results obtained by our proposed approach on several
difficult examples including various facial expressions, occlusions, deformations,
poses, and lighting variations. Additionally, fig. 6 provides further qualitative
assessment by showing examples of model fitting results of ASAM compared
with those obtained by STASM. As shown, our method can successfully recover
the face model under various challenging, real-world, diversities.

Nevertheless, the approach still has difficulties in obtaining a good model
fit under extremely adverse conditions such as sudden contrast variations, sub-
stantial occlusions, extreme poses, and their combinations. Some examples of
incorrect model estimation are shown in fig.7.

Perturbation Estimation from Feature: Conventional model fitting ap-
proaches, including the baseline STASM, refine the model parameters by it-
eratively searching for individual feature node positions, thus requiring long
processing times. In contrast, our proposed framework achieves significant speed
up because instead of tracking individual features, it can update the entire shape
model quickly by relying on the learned correlation between features and model
parameters in a single step matrix multiplication. The model parameters can be
refined with fewer iterations.

Although we have found CCA to be very effective in learning the correlations
between said features and model parameters, one aspect of our future work
involves evaluating other frameworks such as support vector machines, relevance
vector machines, etc., for regression modeling.
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6 Conclusion

We presented a novel shape model fitting framework which is robust to noise due
to structural retinotopic sampling features and is efficient in estimating model pa-
rameters by directly obtaining model perturbation based on feature observations.
As future work, we will study optimal sampling patterns and investigate into other
regression techniques to improve performance even for more extreme conditions.
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