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Abstract. We present a new descriptor-sequence model for action recognition 
that enhances discriminative power in the spatio-temporal context, while main-
taining robustness against background clutter as well as variability in inter-
/intra-person behavior. We extend the framework of Dense Trajectories based 
activity recognition (Wang et al., 2011) and introduce a pool of dynamic Baye-
sian networks (e.g., multiple HMMs) with histogram descriptors as codebooks 
of composite action categories represented at respective key points. The entire 
codebooks bound with spatio-temporal interest points constitute intermediate 
feature representation as basis for generic action categories. This representation 
scheme is intended to serve as visual code-sentences which subsume a rich vo-
cabulary of basis action categories. Through extensive experiments using KTH, 
UCF Sports, and Hollywood2 datasets, we demonstrate some improvements 
over the state-of-the-art methods. 

1 Introduction 

We have seen great improvements in the domain of action recognition in videos over 
the past few decades, especially in modeling of as well as feature representation for 
action categories [1]. In regard to local features, the most notable advancement is the 
proposal of spatio-temporal interest points by Laptev and Lindeberg (2003) [9], which 
provides a substrate of stable representations of actions, and the original local feature 
and its variants are now widely used by researchers in the field of action recognition. 

Stable representation of action categories in cluttered scenes is still a challenging 
problem that needs to be solved with a representation framework rich discriminative 
power. For example, we need the ability to distinguish similar categories like running 
and jogging, while we also need to neglect individualities observed as personal differ-
ences that are typically measured by speed and appearance (e.g., body shape, clothing, 
and personal belongings). Background clutter and view-point diversity further chal-
lenge action recognition. 

Recently, methods using trajectories, extracted based on spatio-temporal interest 
points and tracking scheme, have been very successful in recognizing actions [5, 14, 
15, 23, 25]. Despite their success, they have difficulty in discriminating spatio-
temporal contexts, albeit maintaining stability and robustness in recognition. 
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In this paper, we address these problems with a trajectory-based approach. The main 
contributions of this paper are twofold: 1) Introduction of a pool of dynamic Bayesian 
networks or DBNs (e.g., multiple HMMs) bound with positional information in respec-
tive trajectories. Each HMM is organized to provide an intermediate representation of 
basis action primitives as a code-sentence, a set of code words with temporal dependen-
cy. This repository of DBN enhances discriminative power in the spatio-temporal con-
text since each DBN can capture the spatio-temporal ordering of composite action pri-
mitives. 2) Introduction of histogram-based description of trajectory-bound intermediate 
features that inherit robustness and stability of BoW-like representation. 

Thus, in the proposed framework of Dense Trajectories based action recognition, 
we seek balance between discriminability in spatio-temporal dependencies and stabili-
ty against intra and inter-person behavioral variations as well as background clutter. 

2 Related Work 

Local spatio-temporal words/features have been exploited to recognize actions ([6, 8, 
9, 11, 18, 22]). Models of human actions based on key point descriptors have been 
shown to perform well in action recognition from videos. 

Modeling efforts in action recognition have a long history. Bag-of-words models 
devoid of spatio-temporal ordering information have also been exploited in action 
recognition [4, 10, 13]. Because of independence on spatio-temporal relationships, 
BoW-based approaches are limited in their ability to represent and differentiate such 
dependencies. Several models attempt to alleviate this limitation; new types of fea-
tures capture spatio-temporal correlation [21], modeling spatio-temporal relationships 
by coarse spatio-temporal grid regions. 

One of the standard approaches for recognizing human actions uses dynamic Baye-
sian networks [19, 28]. The simplest form of this approach is HMM. For modeling 
complex behaviors, several extensions of HMM have been advocated: coupled hidden 
semi Markov models [16], hierarchical HMM [12, 17], and hidden CRF [29]. Hierar-
chical approaches have been taken in modeling complex activities: probabilistic topic 
models [26], hierarchical spatio-temporal context in trajectories [23], and hierarchical 
HMM ([12, 17]). 

Trajectory-based approaches in human action recognition have recently attracted 
attention in research communities and demonstrate the state-of-the-art method [25] 
for the challenging datasets UCF Sports, Hollywood2, and YouTube. 

For modeling the dynamic structure of trajectory-aligned features, a few approach-
es using like a dynamic Bayesian networks as the models of trajectory-aligned fea-
tures were proposed: modeling velocity histories of tracked key points [15], and tra-
jectory transition descriptor based on a Markov stationary distribution of quantized 
displacement vectors [23].  

3 Visual Code-Sentences 

We model arbitrary actions by a set of hypothetical action primitives as visual  
code-sentences in the sense that sentences correspond to actions, while the visual 
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code-sentences constitute visual code-words necessary to represent meaningful action 
categories. Here, sentences are defined as descriptor-sequences along the trajectories 
extracted from video, and each sentence is hypothetically generated from a certain 
component model, code-sentence, capturing the temporal order of state transitions. It 
is well known that such a model is generally given by dynamic Bayesian networks 
(DBN). We note that each sentence is position-bound (e.g., bound with key points 
along specific trajectory) and a generative model of a sentence is represented as a 
mixture of code-sentences that capture a dynamic structure of sentences. Entire code-
sentences are pooled in a repository so we can generate arbitrary sentences. 

We will show that, in the Dense Trajectories based approach, a histogram based 
description of the trajectory bound component models can also be used for the stabili-
ty and robustness of action recognition. Changes in the dynamic structure of spatio-
temporal ordering as categorical changes in actions are assumed to be distinguishable 
based on histogram representation, while suppressing inter- or intra-person variations. 

3.1 Summary of Our Representation and Classification System 

To extract the code-sentence representation, we need to extract a number of sentences 
from video by aligning descriptors at each key point along trajectories [25]. The com-
ponent model which presumably generated the sentence is determined based on the 
likelihood of the sentence corresponding to each component model. Each component 
is modeled by a generative model of DBN that represents dynamical properties of 
code-sentence. We use HMM a simple DBN. A pool of HMMs is learned with a vid-
eo dataset (see 3.3). Finally, a BoW-like representation is constructed based on the 
histogram of each component model which possibly generated the sentence. 

 

Fig. 1. Illustration of our representation and classification system summary 

In the classification stage, we similarly extract visual code-sentences and the asso-
ciated histogram description from the Dense Trajectories of the input data. The resulting 
BoW-like representation from the input video is finally classified using multiple SVMs. 
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3.2 Model Definition of Code-Sentences 

The visual code-sentences (VCS) as generative models of spatio-temporal sequence 
shall be defined so as to serve as basis features of actions in the sense that any action 
categories can be represented by such composite, intermediate-level description of 
actions. For a given L length trajectory extracted from video, the continuous-valued 
descriptor (e.g. HOG, MBH, etc. as shown in subsection 4.1) sequence along the tra-
jectory, x1, x2, …, xL, and X = {x1, x2, …, xL} is assumed to be generated from latent 
states {zt}, so that the sequence can be described by continuous HMMs. Using a pa-
rameter vector, θ = {π, A, φ}, the probability of observing the sequence X={xt}, is 
given by: 

,࣊|ࢄሺ݌  ,࡭ ሻ࣐ ൌ ෍ ,ଵݖ|૚࢞ሺ݌ሻ࣊|ଵݖሺ݌ ሻ௭భ࣐ ෑ ෍ ,௧ିଵݖ|௧ݖሺ݌ ,௧ݖ|࢚࢞ሺ݌ሻ࡭ ሻ௭೟,௭೟షభ࣐
௅

௧ୀଶ . (1) 

θ = {π, A, φ} is a set of parameters of probability functions, ݌ሺݖଵ|࣊ሻ,  ݌ሺݖ௧|ݖ௧ିଵ,  ሻ࡭
and ݌ሺݖ|࢚࢞௧, φሻ. Let દ = {θ1, θ2, …, θM} be a set of M parameter vectors of each 
HMM. Then, using these parameters, we consider a sentence, indexed by l(X), for a 
given video sequence is represented by a VCS that gives the highest probability: 

 ݈ሺࢄሻ ൌ argmax௠  ሻ. (2)࢓ࣂ|ࢄሺ݌

In the proposed framework, a VCS is given by a set of indices, l(X), that represents a 
primitive action category in a vector quantized state space. Thus we quantize each 
sequence data not based on the Markov stationary distribution [23] but based on the 
above generative models (HMMs) which are directly modeling sequence data. 

3.3 Learning Visual Code-Sentences Method 

Let {X1, X2, …, XN} be a set of N sequences extracted from various sets of video data. 
We propose to learn VCSs by generating a pool of HMMs for sequences of data. In 
contrast to [27], the procedure for obtaining VCS begins by random initialization of 
all labels, {l(X)}, and all parameter vectors, દ. We then update the parameter of each 
HMM based on sequences of data to obtain the approximate estimate of the following 
parameter (3) 

࢝ࢋ࢔࢓ࣂ  ൌ argmaxࣂ ෑ ሻୀ୫ࢄሻ௟ሺ࢓ࣂ|ࢄሺ݌  (3) 

 ሻ is defined as in Eq. (1). This step is intended to obtain approximate cluster࢓ࣂ|ࢄሺ݌
centers of the sequences of data like a cluster center calculation step of the k-means 
clustering algorithm. Next, the labels of respective sequence data are updated in a 
manner (2). This step is assumed to be an assignment to cluster step of the k-means. 
After all labels are updated, the parameter of each HMM is updated similarly to  
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approximate (3). These two steps are repeatedly performed until the update step  
converges. This approach is similar to modeling a set of varied sequence data by 
HMM mixture models. We do not exploit ordinary EM algorithms to obtain HMM 
mixture models. Instead, we generate a set of parameters of HMMs to explore diversi-
ty and completeness in the resulting models and avoid obtaining only similar models. 

VCSs as multiple HMMs are learned with a plurality of sequence data from train-
ing video sequence, yielding 2,000 HMMs with 480,000 sequences sampled randomly 
from video for each descriptor type. These 2,000 HMMs include three types of 
HMMs: 1) Ergodic HMMs with two latent states for cyclic action primitives, 2) Left-
to-Right HMMs with four latent states for action primitives corresponding to slow 
motions and 3) Left-to-Right HMMs with six latent states for action primitives cor-
responding to fast motions. The last type is permitted to skip one latent state. We 
obtained 400 Ergodic HMMs and 800 x 2 Left-to-Right HMMs, respectively.  

The learning phase typically converges after by repeating the assignment and up-
date step about 100 times. When too many pieces of sentence data are assigned to a 
particular component label in the learning phase, we divided such agglomerated data 
to obtain ‘hard-assignments’ to different class labels. The resulting VCSs as reposito-
ry of multiple HMMs are used for video representations. 

 

Fig. 2. Learning system for VCSs. The Sequence Dataset is constructed from various sets of 
video data. (Assign Step): Generating probability for each HMM is calculated, and each se-
quence is assigned to the most probable HMM. (Update Step): Each HMM’s parameter is up-
dated independently by sequence data assigned to each HMM. The ‘Assign’ and ‘Update’ steps 
are performed repeatedly until the HMM parameters converge. 

4 Experimental Setup 

In this section, we describe the experimental setup, which uses visual code-sentences 
to evaluate the performance of our video representation method. 

4.1 Extracting Sentence Data from Video 

We use the trajectory base feature extraction method (Dense Trajectories recently 
proposed by Wang et al. [25]) to extract sentences from video. Trajectories are ex-
tracted by tracking points located on grid points till each length becomes L (we use a 
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length L = 15) with a dense optical flow field in multiple spatial scales. In their origi-
nal setup, the trajectories are removed if tracked points exist in the neighborhood of 
the start points of the trajectories. In our framework, we do not remove these trajecto-
ries to avoid heterogeneous sampling. 

Descriptions on tracked points of the trajectories which constitute the sentences are 
the same descriptors as the ones in Dense Trajectories, i.e., motion descriptors for 
tracked points [25], HOG [2], HOF [10] and MBH [3]. We also use the same descrip-
tors directly as in [25], but do not perform temporal integration and concatenation as 
in [25]. We treat them as sequence data so that the temporal context is retained and 
discriminated in the classification stage. 

4.2 Video Representation with Visual Code-Sentences 

We use a bag-of-features type of video representation with visual code-sentences. The 
representation data is a histogram with bins of each feature type's HMMs, such as 
motion descriptors for tracked points, HOG, HOF, X-direction MBH, and Y-direction 
MBH. There are 2,000 HMMs for each feature-type, so the representation data is 
obtained by concatenating five histograms each of which consists of 2,000 bins. Se-
quences of data are extracted from the video, and the generating probabilities of each 
sequence data are computed with each HMM of each type. We assume that the ob-
tained sequence data corresponds to the most probable HMM. 

We use a non-linear SVM with a χ2-kernel [10] for predicting action category. A 
χ2-kernel K(hi, hj) is described as follows: 

,࢏ࢎ൫ܭ  ൯࢐ࢎ ൌ ݌ݔ݁ ቎െ ෍ ఊܣߩ1 ෍ ൛݄௜ఊሺܾ݅݊ሻ െ ௝݄ఊሺܾ݅݊ሻൟଶ݄௜ఊሺܾ݅݊ሻ ൅ ௝݄ఊሺܾ݅݊ሻ௕௜௡ఊ ቏ (4) 

݄௜ఊሺܾ݅݊ሻ is the bin-th element of histogram for feature type γ. Aγ is the mean value of 
χ2 distances of the training data about feature type γ [30], and ߩ is a parameter for 
adjusting kernel width.  

We perform the estimate of the action categories based on the following category 
score ܵ௖ሺࢎሻ corresponding to category c: 

 ܵ௖ሺࢎሻ ൌ ෍ ,ࢎ൫ܭ௜,௖ߙ ௌ௏೎אࢉ,࢏ࢎ൯ࢉ,࢏ࢎ ൅ ௌ௏ெ೎ߚ ൅ ܾ௖ 
(5) 

where hi, c is i-th support vector corresponding to category c, and αi, c is the coefficient 
for the i-th support vector. βSVMc is a bias parameter obtained by learning SVM for 
category c, and bc is a second bias parameter particular to category c to adjust un-
evenness of the number of training data. In classification task, the test data is classi-
fied to the category which gave the highest category score. In the retrieval task, the 
result lists categories in descending order of the scores. 
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4.3 Datasets 

Video representation with visual code-sentences is evaluated on three standard human 
action datasets: KTH [22], UCF Sports [20] and Hollywood2 [13] shown in Figure 3. 
We describe each dataset in this section. 

KTH Dataset. The learning process is performed with the training dataset, and hy-
per parameters (i.e., soft margin parameter of SVMs and parameter to adjust kernel 
width) are optimized with the validation dataset. Based on the original experimental 
setup, we evaluate average accuracy over all categories. 

UCF Sports Dataset. We evaluate average accuracy over all categories by a leave-
one-out setup. In training we use horizontal flipped data. Because the amount of train-
ing data per category is uneven, we optimize the second bias parameter. Thus, soft 
margin, kernel width, and second bias parameter are optimized. 

Hollywood2 Dataset. The dataset is treated for retrieval task, and we evaluate the 
performance by the mean average precision. In this case, two hyper parameters are 
optimized, as in the case the KTH Dataset. 

 

Fig. 3. Some example frames from video pulled from KTH (first row), UCF Sports (second 
row) and Hollywood2 (last row) datasets 

5 Evaluation Results 

In this section, we report evaluation results of the datasets, and compare our method 
with the state-of-the-art methods shown in Table 1. 

We note that, for KTH, our method gives a slightly worse result than the state-of-the-
art methods. Most failures came from the confusion between similar categories like 
“running” and “jogging”, probably due to robustness of VCS representation for varia-
tion in motion speed. We demonstrated improved performance over the state-of-the-art 
method in Gaidon et al. [5] on UCF Sports with parameter tuning to each category. 

In the case of Hollywood2, our method yielded the best result of 58.3%. We obtained 
average accuracy of 93.75%, 93.28% and 93.17% for the size of VCS 1000, 500, and 
250 respectively on KTH dataset. Thus, for the larger size of VCS, recognition 
 

boxing hand-clapping hand-waving jogging running walking

Diving Golf-Swing Lifting Swing-Side Walking

Answer Phone Get Out Car Hand Shake Kiss Run
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Table 1. Recognition performance 

KTH UCF Sports Hollywood2 

Laptev et al. [10] 91.8% Kläser et al. [7] 86.7% Gilbert et al. [6] 50.9% 
Kovashka et al. [8] 94.53% Wang et al. [25] 88.2% Ullah et al. [24] 55.3% 

Wang et al. [25] 95.0% Gaidon et al. [5] 90.3% Wang et al. [25] 58.3% 
Our method 93.98% Our method 91.1% Our method 58.3% 

 
performance tended to be slightly higher. We also compare average precision pre action 
categories for Hollywood2 dataset shown in Table 2. Our method achieved the best 
results for 5 out of 12 action categories.  

Table 2. Average Precision pre action categories for Hollywood2 dataset 

 Our Method Wang et al. [25] Ullah et al. [24] 
AnswerPhone 

DriveCar 
Eat 

FightPerson 
GetOutCar 
HandShake 
HugPerson 

Kiss 
Run 

SitDown 
SitUp 

StandUp 

27.9% 
92.7% 
66.2% 
80.9% 
44.9% 
33.5% 
49.9% 
63.7% 
84.9% 
66.0% 
20.1% 
69.0% 

32.6% 
88.0% 
65.2% 
81.4% 
52.7% 
29.6% 
54.2% 
65.8% 
82.1% 
62.5% 
20.0% 
65.2% 

24.8% 
88.1% 
61.4% 
76.5% 
47.4% 
38.4% 
44.6% 
61.5% 
74.3% 
61.3% 
25.5% 
60.4% 

mAP 58.3% 58.3% 55.3% 
 

To gain a more concrete view on the functionality of the proposed VCS based re-
presentation, we investigate the contribution of specific VCS in the KTH dataset. 
Some of the VCSs act as specific components to represent a class of particular action 
categories. The specific VCSs are shared to represent similar categories. Some VCSs 
are specific to a particular category, while other VCSs are specific to discriminate 
small differences among similar categories. For example, “hand-waving” includes a 
composite action of “lifting-up right hand”, and we actually found a corresponding 
type of motion descriptor sequence as VCS, shown in Figure 4 (a). Figure 4 (b) 
represents a sequence for upper body motion that does not include information on 
swinging arm motion (this can be used to discriminate “running” from “walking”), 
which is given by MBH based descriptor sequence modeled as a VCS. We also found 
some shared basis of action categories for foot movement commonly used in 
representing “running” and “walking” in MBH-based VCSs (Figure 4 (c)).  
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Fig. 4. Example of some specific VCSs and trajectories corresponding to each VCS 

Table 3 gives ‘Assignment Rate’ that represents the probability of VCS found in a 
sentence extracted from a video of a certain category. 

Table 3. ‘Assignment Rate’ that show exemplary VCSs found in specific action datasets 

        category 
VCS type 

boxing 
hand 

clapping 
hand 

waving 
jogging running walking 

(a) hand-waving 7.7E-5 2.2E-5 6.7E-3 1.3E-6 5.0E-6 1.4E-5 
(b) running vs walking 7.9E-4 5.6E-4 2.3E-4 1.2E-3 3.9E-4 4.4E-3 

(c) foot movement 3.6E-4 1.6E-4 1.3E-4 2.7E-3 2.8E-3 1.7E-3 

6 Conclusion 

We proposed a method of video representation with visual code-sentences and dem-
onstrated its validity through extensive experiments with several challenging datasets. 
We achieved competitive performance using a code book half the size of the method 
by proposed Wang et al. [25] with approximately 3% improvement in performance 
for a challenging dataset (e.g., UCF Sports). We also validated the proposed frame-
work with supporting evidences to show that VCS can be shared and used as a basis 
for representing a variety of action categories. 

The proposed method can be poor in distinguishing categories that differ only by 
motion speed (e.g., distinguishing “jogging” from “running”), however it is effective 
in identifying categories with inter-/intra- person variations in motion speed. In the 
experiments, we did not optimize descriptor parameters suitable for VCSs, and further 
performance improvement through parameter optimization is left for future work. 
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