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Abstract. We propose a method to automatically extract a sketch of a common
object structure present in a small set of real world weakly-labeled images. Ap-
plying a part-based deformable contour matching technique gives the location of
repeatable contours. An initial deformable search strategy selects a set of salient,
repeatable contours robust to a large range of non-rigid deformations. A contour
completion technique based on a locally greedy bi-directional search strategy
is adopted to merge the repeatable contour fragments for obtaining a complete
shape. The output of our algorithm is used as an input to a sketch-based object-
recognizer with results that are either better, or on par with those obtained with
the ground truth sketches provided with the dataset.

Keywords: Salient Contours, Part-based Deformable Contour Matching, Con-
tour Completion.

1 Introduction

Building a contour model using edge information is an important problem in computer
vision that has received considerable attention from many researchers. In this paper, we
propose a technique to extract a compact sketch of an object from a few training images.
The object shape is allowed to vary under conditions such as non-rigid deformations,
affine transformations and a cluttered background. However, we believe that the com-
mon object shares a similar geometrical structure across the training images. We intend
to capture this common shape in terms of a rough sketch through a completely auto-
mated process. While most established methods [[1,12]] obtain the training images from
carefully chosen dataset elements, or are captured against a uniform background, we
allow the system to automatically extract a set of training images from any resource
including web-engines.

Popular methods rely on either part-based [3], region based [4] or a combination of
both shape and region based cues [S]. Contour-based methods are attractive since it is
well-known that humans are able to identify an object simply from its contour or shape.
Furthermore, while the region-based approaches [6] perform well only on good quality
images, learning-based approaches [[1H3l[7] are becoming increasingly popular due to
their ability to handle a wide range of deformations for object recognition. However, in
most cases, the basic prerequisite of these approaches is a huge set of positive training
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images with annotated bounding boxes, except an appearance-based model proposed
by Bagon et.al. [8]. This requirement may be expensive and hard to obtain. The weakly
supervised learning based techniques [5}19] typically perform well in terms of learning
an object model from the data by indicating the presence of an instance from a category
without specifying its exact location in the training images.

Our contour based deformable matching technique helps in extracting a common
shape from a handful of weakly labeled images and can therefore be treated as a cost-
effective alternative. Our multi-stage automatic sketching process first attempts to iden-
tify a non-trivial commonality from training images using FDCM [10]], with a localiza-
tion up to rough bounding boxes. The next step involves extracting a group of repeat-
able, salient contours which combined together represent almost the whole structure
of the common object shape. The resultant rough sketch can be used as an input to
any sketch-based object-recognizer [11-13] for object recognition. The entire process
is described in Figure[Tl

The main contributions of this paper are: 1) Proposing a completely automatic pro-
cess for drawing a sketch of the common object from a set of weakly labeled data using
only contour based cues. 2) Proposing an efficient contour matching technique, which
can handle a cluttered environment, scale, orientation and view point variations to a cer-
tain extent. 3) Shortlisting some repeatable contours in a deformation invariant fashion
based on a novel deformable matching technique proposed by Ravishankar et.al. [L1].

The rest of the paper is organized as follows: Section [2] describes the process of
extracting a set of salient contours and the process of localization up to rough bounding
boxes is explained in Section [3l Section [ illustrates the process of obtaining a set
of repeatable contours and Section [3] elaborates on the mechanism for completing the
repeatable salient contours using a bi-directional search strategy to obtain an initial
model. Finally, the experimental results are shown in Section [6l

2 Extracting a Set of Salient Contours

Given a set of training images {I1, ..., I }, we first resize them to a predefined standard
width in order to reduce the effect of large scale variance. We use the Berkeley edge
detector [14] to get the edge map of the images in the training set and then use hysteresis
thresholding followed by an efficient contour grouping proposed by Zhu et. al. [[15] for
extracting a set of potential contour groups from the output edge map. The saliency of
a contour is defined using the following three components:

1. Length of a contour: A contour should be sufficiently long to represent some
meaningful feature. Small spurious contours are eliminated as noise. The thresh-
old on the contour length is calculated based on the size of the image.

2. Salient points on a contour: The number of high curvature points on a contour
is an important cue to represent the descriptive power of a contour. However, too
many high curvature points close to each other indicate that the contour probably
originated from a cluttered background or some other kind of noise.

3. Complexity Measure: Complexity of a salient contour gives information about its
smoothness. It is defined as the sum of the supplementary inner angles between line
segments constituting the salient contour. A less complex salient contour doesn’t
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Fig. 1. (a) Training Images, (b) Salient Contours of the Training Images, (c) Classifying the train-
ing images, (d) Some example images with annotated bounding boxes obtained using method
described in Section[3.1] (e) Binarized edge response of Berkeley edge detector on those images,
(f) Examples of some salient contours extracted, (h) Explains the deformable matching technique
adopted for getting the deformation component of the repeatability score of a salient contour us-
ing the 'neck’ of a giraffe in (g), (i) Some examples of repeatable contours, a small set of distinct
contours shown in (j) is obtained and used to draw an initial sketch shown in (k).

possess unique shape information while a highly complex one ends up making the
system rigid.

Initially, a bunch of salient contours are identified using the first two saliency crite-
ria. In order to reduce the effect of noise and partial matching, the salient contours are
broken at every branch point into smaller fragments. We then calculate the Elastica
measure [[16[17] at each branch point of the contour. Given two consecutive tangent
directions, ¢1 and ¢2, the quantity El(c1,c2) = 4(¢3 X 93 — @1 X ¢2) provides a good
approximation of the Elastica energy for curvature consistency at the junction of con-
tours ¢; and co(see figure Bl(b)). The pair of fragments having the minimum curvature
inconsistency (min. Elastica cost) are then combined to resolve the branch point. The
process is repeated till all the branch points in the shape have been resolved.

3 Identifying Repeated Contours Following a Deformable
Matching Strategy across Images

Given a set of images represented by a collection of initial salient contours, the sys-
tem attempts to extract a recurring shape structure (if any) across many of these image
instances. The proposed system needs to be flexible enough to deal with the problem
of occlusion, intra-class deformation and cluttered background. Our proposed matching
strategy is based on the observation that, in some images at least some of the object parts
are clearly visible. Clearly visible parts help the system to get the repeated salient con-
tour set (wherever available). The salient contours of a particular image are represented
at various levels of granularity - Child Contours and Parent Contours.
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1. Child contour: The salient contours are represented in terms of a set of child con-
tours. Child contours are constructed by first decomposing all the salient contours
according to the first two saliency criteria mentioned in Section 2l Of those con-
tours that do not satisfy both criteria, those which satisfy the length criterion alone
are also considered as child contours.

2. Parent contour: Parent contours are formed by merging consecutive child con-
tours, where the extent of merging is governed by the complexity measure. This
process ends when the complexity measure reaches a predefined threshold Cpyy,.

The similarity values between all pairs of images computed using the proposed match-
ing strategy, explained in Section[3.1] are finally stored in our repository.

3.1 Matching Strategy

In order to retrieve a mutual commonality among images, the basic matching algorithm
using edges as features should be tolerant to small deformations of shapes and fragmen-
tations of edges. In this work, we use Fast Directional Chamfer Matching (FDCM) [[18]]
which works much better in such a scenario. The local maxima for a given matched
contour in an image are determined by non-maximal suppression and represented on
a map overlaid on the image by the location of their mid and the two end-points. The
FDCM score M., evaluating the goodness of a match found in the image, is also re-
tained for each subsegment. From such information, a rough scale and rotation angle of
the match are also precomputed for later use.

Given a Parent contour P}, originating from an underlying image I, FDCM is used to
extract a few smaller windows (if any) as a set of potential matched locations. We add
Parent contour P}, into the Matched Contour Set M C' by adding its constituent child
contours.We then identify its nearest neighboring child contour ¢; from M Cp, in I.
The relative location of ¢; with respect to M C'p, can extract a roughly similar region in
I (Figure ), which is searched for a potential match for ¢; using FDCM. A match is
declared as reasonably good, if ¢; satisfies the goodness measure G(c;). We again add
the constituting child contours c¢; of Py, into M Cp, in I. The above steps are repeated
until no nearest neighbor is found and the region in / " with respect to ¢; is marked using
dynamic programming to prevent it from being matched multiple times to the contour
in the model image. The Matched Contour Set M Cp, grows with each match.

G(cf\f]?) = wg X Mdc(cf\fj?) + wp X A(cf\f]?) + w, X T(cfvj) (1
AeYe) = [L— e 18] )
2 2
, D,

’
;.; — 0i,; accounts for

local angular inconsistency where 0; ;, 9; ; represents the relative spatial information in

where N, is the total number of child contours in I;, A§; ; = 0

between two neighboring Child contours in I and [ ' respectively. T (cfvj) represents a
quantitative measure for translational inconsistency to evaluate the amount of deviation
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Fig. 2. (a) Model image highlighted with Parent Contour. (b) Target image shown with multiple
matches with respect to parent contour. (c) Identifying the nearest child contour using bidirec-
tional search technique. In (d) and (e), with respect to the already estimated locations for Parent
contour, similar regions are explored in the target image to obtain a suitable match for the Child
contour. The System failed to obtain a suitable match for Child contour in (d). The final Repeated
Contours are shown in (f).

of the present position of cf\;‘ from its estimated position with respect to its parent
segment cf\;‘ 1 Where D is the [>-diagonal length of the image I.

1
SC(85 Pr) = D Gleiy) + D Seonst X wm + Mac(Pe) X wp  (4)

where n and m are the number of matched and skipped child contours respectively, w.,
is the defined as ]\}C, wy, is defined as NL where N, is the number of Child contours
constituting the parent contour Py and Sc;m is the penalty for those child contours that
do not find a match in the target image. We take w,=1, wp=0.5, w, is set based on the
image size. We repeat the above process for each parent contour and the Matched Con-
tour Set M C' of those with the minimum dissimilarity score is considered a Repeated

Contour Set. Finally, the pairwise image score P.S(%, j) is defined as follows:

PS(i, ) = min {SC(S{, Py)}, (5)

3.2 Bounding Box for the Positive Images

For getting the bounding box for image I;, we calculate the repeatable contours RC'(1;)
across the remaining training images in the training set which satisfy the repeatability
threshold Ryy,.

RO(L;) = { Rep(c]l;) > Rth}k ©6)

th

where Rep(cy, ;) is the repeatability of 4" child contour in i** image and 1 < i < k.

The bounding box for I; is the tight bounding box for RC(I;).

4 Extracting a Set of Candidate Foreground Contours
from Images

Due to the influence of noise and other external clutter, the prediction of the bound-
ing box described above is rough. In order to reduce the effect of scale, images are



68 S. Marvaniya et al.

cropped along their annotated bounding boxes and resized in a standardized frame for
further consideration. Given an image, only salient contours lying within its cropped
sub window are retained for describing it.

4.1 Repeatability of a Contour

The repeatability measure of a salient contour is defined using its Deformable Match-
ing Score, a Shape Context [[19] based similarity score and its length. In the following
subsections we will discuss each of these components in detail.

Deformable Matching Score: In order to be repeatable, a salient contour c;, origi-
nating from I; should have a potential match at a similar location in another training
image I;. Unlike most existing methods that rely on rigid matching, we attempt to han-
dle shapes that may undergo an amount of non-rigid deformation. In order to do so, we
use the deformable Fine Matching strategy proposed by Ravishankar et.al. [[11] to deal
with a large set of non-rigid deformations and assign a deformable matching score to
every salient contour from an image. The algorithm had shown to achieve among the
best results on the standard ETHZ dataset, if only a sketch was available.

The tight bounding box around ¢; extracts a patch P; from I;. Patch P; from a sim-
ilar location in the edge map of one of the remaining training images is found. While
treating P; as a model sketch of the contour, the deformable fine-matching strategy was
adopted to find its good match in P;. Each model contour is broken at high curvature
points to be represented in terms of k-segments and a dynamic programming based
matching strategy finds a suitable match in the target image. The resulting comprehen-
sive matching cost(Q) takes into account inter-segment scale and orientation variations
as well as edge strength and intra-segment bending deformations of the matched con-
tour segment in P;. Finally, the repeatability score 2, (e~?) is computed as a function
of @, ensuring a goodness measure for c;. By its very definition, the value of () always
lies within a tractable range, ensuring an effective repeatability score for c;.

Accumulated Weighted Repeatability Score (AWR Score): Any true object contour
should have reasonably good matches in many training images which in turn would in-
crease its repeatability score (defined above in Section[4.I)). The accumulated weighted
repeatability (AWR) score of a contour ¢; is thus computed as follows:

Riey) = S((1 —weMCD) xSC; (i) x Ry (i) )
‘ LOG)

where LC(i) works as a weighing term providing a positive bias to longer matched
contours. SC; (i) computes a Shape Context [19] based similarity score obtained from
matching c; in i*" image. While R; computes a goodness measure from a deformable
point of view, the shape context based matching score aims to extract the amount of
overall similarity between c; and its match in each training image. These measures
prove to be an effective combination for achieving a robust AWR score. A smaller

group of salient contours having nonzero repeatability scores are shortlisted as Cyp.
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Fig. 3. (a) An example of the neighborhood search for contour completion using oriented sectors,
(b) Contour continuity at the adjoining end points e and e} of two contours ¢; and cs is measured
using Elastica completion cost

(b)

However, a contour completion strategy is required to verify and merge the potential
candidate contours to extract a fully (or mostly) complete sketch for an object category.

5 Contour Completion Using Neighborhood Search

In order to evaluate the relative structural configurations of a set of salient contours
Cr(€ Cyep) originating from I, we propose a deformable contour completion that re-
sults in a sub-sequence of contours from C;. Given a repeatable primary contour ¢ orig-
inating from an image I, a bi-directional search process (redrawn from Ravishankar
et.al [11]] as shown in Figure Bl(a)) explores neighborhoods at both end points of a con-
tour in parallel. In a one-Vs-many matching strategy, if there is a similar spatial contour
layout observed in many training images, we declare that contour extension to be valid.
The entire contour chain is built in steps. The comprehensive compatibility score corre-
sponding to the goodness of an extended contour is dependent on its length, curvature
continuity at the connections computed using Elastica Completion cost [[16L/17] and an
average repeatability score computed as follows:

L(cr)
(L(c1) + L(e2))

where, CC(cq, c2) evaluates the goodness score at the connection point of ¢; and ¢3. In
the case that there are multiple candidates for extension, we follow a locally greedy ap-
proach to choose the locally best neighbor for merging (Figure[3[b)). The search process
at both its end points is continued until we reach a stage where there is no reasonably
compatible neighbor to extend it further. A similar iterative process is repeated until C;
is empty. However at this stage it would be unrealistic to assume that only one com-
plete contour would be able to cover the entire object shape. In contrast, we may land
up achieving a set (.S) of contour chains. Initiated with the highest repeatable contour
chain, contours are iteratively merged with all the other elements of S if their relative
spatial configuration is mostly similar in many images.

CC(Cl,Cz) = El(Cl, CQ) X X Rmean(cl, CQ) (8)

6 Experimental Results

Given a user-specified object category, we performed experiments using different num-
ber (n) of training images. We conducted tests on automatically downloaded images
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Fig. 5. Some results using a small training set of four images, taken from Caltech101 dataset
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Fig. 6. Our results are shown in the second row
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from a search engine and also on images from the ETHZ [20]/Caltech101 dataset. The
comparative study is reported on the ETHZ dataset which has different classes of ob-
jects: Apple logo (40), Bottle (48), Giraffe (87), Mug (48) and Swan (32). The objects
in the images are at various scales, orientations, illumination changes and a substantial
amount of intra-class variations which make it a difficult dataset to work on. For each
value of n in the range 4-10, results of some experiments on five training images of each
category chosen from the ETHZ dataset and on four training images from Caltech101
dataset are shown in Figures [ and Bl respectively. As seen in Figure[@] the sketch ob-
tained by Bagon et.al [8] loses important information in the deformable parts of the
object, such as giraffe’s legs and swan’s beak, while we are able to obtain such details
due to a deformable approach.

The best extracted sketch is treated as the output of our system. The parameters used
to obtain such a sketch are set independent of the image category. A sketch obtained
from a particular iteration was used for object recognition using the algorithm of Rav-
ishankar et.al [[11]] on the ETHZ dataset and the corresponding detection rate was used
to evaluate the quality of the sketch. Table 1 shows the detection rates at 0.4 and 0.3
FPPI averaged over 100 iterations. We have also referred to other state of the art results
for completeness. However, the important observation is that the same algorithm pro-
posed by Ravishankar et.al [11] sometimes performs better than the original sketches
due to some additional information extracted by our system. In other cases, the per-
formance achieved by Ravishankar et.al using some hand-drawn sketches remains the
same. Our system’s improved performance on the giraffe category is due to the more
complete sketch obtained by it. It was partly successful in obtaining ’legs’ that enabled
it to achieve a better result, rather than by using the ground truth model provided along
with the dataset. We have achieved a detection rate of 93.4% at a FPPI as low as 0.1
on giraffe images. The results on swan category were again marginally better due to
the better sketches obtained by our system. We allowed it to include some outliers at
random so that its robustness to outliers would systematically evolve(ref. Table 1).

Table 1. Comparison of detection rates of objects at 0.4 FPPI/0.3 FPPI

Ref Applelogo Bottle Giraffe Mug Swan
Ravishankar et al. [11] 97.7/95.5 92.7/90.9 93.4/91.2 95.3/93.7 96.9/93.9
Luetal. [13] 92.5/92 95.8/95.8 92.0/86.2 85.4/83.3 93.8/93.8
Zhu et al. [21] 80.0/80.0 92.9/92.9 68.1/68.1 74.2/64.5 82.4/82.4
Riemenschneider et al. [22] 93.3/93.3 97.0/97.0 81.9/79.2 86.3/84.6 92.6/92.6
Our System 97.7/97.7 92.7/90.9 93.4/93.4 95.8/95.8 96.87/96.87

7 Conclusion

We have demonstrated a method for drawing an automatic sketch from a very small set
of training images that may have outliers. Such a sketch was found to be effective for
object recognition. Apart from a visually appealing output, our work can form a part
of a complete object recognition system that can automatically find objects in images
obtained using a text query from a search engine.
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