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Abstract. The recently published KITTI stereo dataset provides a new
quality of stereo imagery with partial ground truth for benchmarking
stereo matchers. Our aim is to test the value of stereo confidence mea-
sures (e.g. a left-right consistency check of disparity maps, or an analysis
of the slope of a local interpolation of the cost function at the taken
minimum) when applied to recorded datasets, such as published with
KITTI. We choose popular measures as available in the stereo-analysis
literature, and discuss a naive combination of these. Evaluations are car-
ried out using a sparsification strategy. While the best single confidence
measure proved to be the right-left consistency check for high disparity
map densities, the best overall performance is achieved with the pro-
posed naive measure combination. We argue that there is still demand
for more challenging datasets and more comprehensive ground truth.

1 Introduction

Computational stereo vision is in general an ill-posed problem, and solutions are
approximate in some sense. Situations with no unique solutions are commonly
found in recorded stereo images. Also with strong assumptions imposed to re-
sulting disparity maps, such as piecewise smoothness, no stereo matcher can
guarantee correct results.

Widely used test datasets often use input data of limited complexity [I].
On these, recently developed stereo matchers deliver dense results of satisfac-
tory quality. However, in practice, recorded real-world data are considerably
more challenging; see, e.g., [2I3]. There may be no satisfactory solution to the
stereo problem in many situations displayed in these datasets. For treating un-
matchable regions in disparity maps, there are some attempts to identify these
using so-called confidence measures.

To evaluate quality of stereo matching results and accuracy of detected mis-
matches by means of confidence measures, availability of accurate ground truth
is necessary. However, real-world stereo data in [23] are provided without ground
truth. Recently published stereo-vision test data [4], in the paper briefly called
KITTI data, show real-world scenes and come with ground truth provided by a
laser range-scanner. In this paper, we try to rate the challenge given by KITTI
data and quantify the value of confidence measures in dealing with such datasets.
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Confidence measures can be used in stereo processing to remove spurious dis-
parity matches and interpolate these locations with surrounding disparity values.
The left-right consistency check is the most prominent example. Various confi-
dence measures have been proposed for stereo analysis; see [5l6]. Experimental
studies of quantitative evaluations of confidence measures have been conducted
(on very limited datasets) in [6]. By using the KITTI data, we also discuss
confidence measures on a larger set of real-world data.

Many confidence measures are derived from the graph of cost functions. For
example, consider a parabola fit of the cost function at the taken minimum and
its neighbourhood. The minimum of this parabola can be used to interpolate
disparity with subpixel accuracy. Parameter a defines the curvature of such a
parabola ax? + bx + ¢, and this value is often considered to be a confidence
measure. In [7] it is applied with the intention to improve results for scene flow
computations. An equivalent confidence measure can be defined using the slope
of an Okutomi fit [§], and this may be more appropriate, depending on the stereo
matching cost function used.

However, a confidence measure that only operates locally on the cost function
cannot assign, for example, low confidence to ambiguous matches within repet-
itive textures of the source image. Improved results can be expected when the
costs of all disparity values are taken into account. This was demonstrated by [9]
for the 3D reconstruction of large outdoor scenes where confidence is high if the
cost function has a single well-defined minimum, and low if the cost function is
flat or has multiple strong local minima. It is an open question which confidence
measure has the best performance in a particular matching situation.

Very little has been published on improving the accuracy of confidence mea-
sures by combining different measures. For example, see [10] for confidence mea-
sures in optical flow computations, using a supervised learning process of Gaus-
sian mixture models with classification criteria being the magnitude of the end
point error in optic flow. However, it remained open whether this confidence
measure (obtained as a result of classification in feature space) could actually
improve accuracy. In [I1], flow data is assigned to algorithms found most suit-
able by classification, based on a combination of flow confidence features such as
photo consistency and texture properties. [I12] used similar features for detecting
difficult to match flow regions in order to test whether these regions are occluded.
In both, classification results are obtained using random decision forests.

In this paper we include a naive approach for confidence measure combina-
tions for stereo, which seems to be useful in increasing accuracy, i.e. is reducing
numbers of false positives. Also, we define a simple bound for limits of potential
accuracy improvements by measure combinations. We apply this measure and a
number of popular stereo confidence measures to the recently published KITTI
dataset [4], and evaluate them using a similar sparsification strategy as used in
[].

Section ] contains the definitions of confidence measures used in this paper,
including a multiplicative combination and an upper bound for accuracy im-
provements. Section [3] presents the evaluation method for the performance of
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measures and provides details about experiments conducted. Section [ presents
results. Section [B] discusses limitations of confidence measures and of the used
KITTI dataset. Section [6] concludes.

2 Confidence Measures for Stereo Analysis

For our experiments, we use semi-global matching (SGM) for stereo analysis [13]
due to its best overall performance on synthetic and recorded outdoor data in
terms of quality and computational costs. The data term in the original version
of SGM stereo is derived from a mutual information measure [14]. However, [15]
concludes that the census cost function leads to the best overall performance.
Confidence measures used in this study are not defined on census costs directly,
but on census costs aggregated using SGM with penalty parameters p; = 20 and
p2 = 100. In the following, we denote these aggregated cost A.

A compilation of different confidence measures can be found in [5l6]. We
selected measures which appear to be pairwise “fairly different” by their def-
initions, with an intention to obtain the best possible performance boost by
combining “orthogonal measures”. This is, of course, possible only to a limited
extent. All confidence measures presented here are defined pixelwise. No depen-
dency from neighbouring pixels is introduced, except the dependency defined by
cost aggregation. Contrary to the common practice, we scale values such that
lower values indicate a smaller likelihood of an erroneous disparity estimate (i.e.
a higher confidence).This facilitates the comparison to actual disparity errors.
We define and use the following measures, with dy representing the estimated
disparities D(z,y):

— Curvature. Curvature derived from parabola fitting is a very popular stereo
confidence measure. It is the only confidence measure in the source code of
[1]. We are using the inverse of the opening parameter for scaling:

1

1
—QA(I’y) (do) + A(m’y)(do - 1) + A(I’y) (do + 1) ( )

Fo(l‘,y) =

— Perturbation. The perturbation measure, introduced in [9], computes the
deviation from an ideal cost function that has a single minimum at location
dp and is very large everywhere else. Nonlinear scaling is applied:

7(A<m‘y)(d0>*A(m,y><‘“)2
Nry)=> e <2 (2)
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The parameter ¢ should be chosen such that no numerical underflows appear.
A good choice depends on the range of possible valid cost values.

— Peak ratio. The peak ratio indicates low confidence if there are two candi-
dates with similar matching score. It is defined as

Iay(z,y) = A(ey)(do)/ Aa,y)(dr) (3)
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where d; is the second smallest local minimum, i.e. A, ) (di—1) > Ay, (d1)
and A, ) (dy +1) > A,y (d1). Not requiring a local minimum but only the
second smallest cost value yields a measure similar to parabola curvature.

— FEntropy. Entropy defined on the disparity space was used in steering a dif-
fusion process for cost aggregation in stereo matching [16]. It can be used
as a confidence measure itself. Cost values are normalized for computing the
entropy. Here, p indicates that cost values are converted into a probability
distribution function:

e~ Ay (d)
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Similar to the perturbation measure I7, cost values for all disparities in-
fluence the result. All cost values undergo nonlinear scaling, making these
measures computationally rather expensive.

— Right-left consistency check. Right-left consistency compares the disparities
of the left and right view, denoted by D and D(:

Iy(z,y) = ’D(I,y) - D&?y) ®)

Large discrepancies, intuitively, should indicate a higher likelihood of an
incorrect match. We are also interested in finding out whether there is confi-
dence information extractable from disparities given with subpixel precision,

i.e. for ‘D(wﬁy) - DE;)y))’ < 1.
— Combination of measures. We define a measure combination I" by multiply-

ing all five measures defined above:

Iz, y) = Loz, y) (2, y) Do (2, y) (2, y) L (2, y) (6)

Note that this is not justified in the sense of joint probabilities. Measures
are not pairwise independent. Correlation is quite strong as their definition
is derived from same cost values A.

— Accuracy. Ideally confidence measures exactly predict the magnitude of the
error in disparity estimation, so as to discard largest errors first. For com-

parison with I,..., Iy and I' we include this ideal measure, given by the
absolute difference A between disparity estimate D and ground truth G:
A@@,y) = |Dizy) — Gaw| (7)

In practise, finding such a confidence measure was equivalent to the stereo
problem being solved.

Thus, it is more realistic to compare a combination of confidence measures rather
against a measure that identifies an error if at least one of the contributing
confidence measures can detect it. The amount of remaining errors s is then
the cardinality of the union set of all undetected erroneous pixels for a specific
sparsification ¢ of the disparity map D:

s(¢) = card{ Dy, l(x,y) € RN Az, y) > 3AVi([i(z,y) < 7(e))}  (8)
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Here, v;(¢) is the value of the confidence measure I; which induces a sparsifica-
tion ¢. Note, that values from this definition cannot be derived without ground
truth. It merely gives a lower limit of remaining disparity errors. The bad-pixel
criterion is deviation of estimated disparities from ground truth being larger
than 3. This is in accordance with the default in [4] and due to limited accuracy
of laser range finder measurements.

3 Evaluation of Confidence Measures

We test SGM stereo and derived confidence measures on a small subset of the
recently introduced KITTI Dataset [4]. We choose stereo frames which expose
some interesting behaviour, e.g. the ones challenging for SGM stereo. Challenging
are considered the frames which produce most errors in comparison to ground
truth. We also include two frames where only few errors between SGM results
and ground truth can be observed.

For comparisons, we use raw disparities D, i.e. do not attempt to improve
results by consistency checks, interpolation, median filtering, or any other kind of
postprocessing. Any such steps may introduce some bias to findings. However, we
exclude such disparities from evaluation, which have been found to be occluded
according to the method described in [13]. It may be beneficial, to use occlusion
ground truth instead, if such was available with [].

Furthermore, we restrict the evaluation to pixels where:

— Ground truth is available. In KITTI data there is no ground truth for upper
parts of images, areas usually depicting sky in road vehicle based recordings.

— The cost function contains valid values for all possible disparities. This ex-
cludes the left image border in the left view with its width equalling the
number of disparities, the reason being scaling issues in the presense of un-
known cost values in the definition of confidence measures based on the entire
cost function.

— Disparity estimates are supported by data term values, i.e. we do not rely on
extrapolation introduced by SGM. This excludes a narrow band along the
image border (e.g. 3 pixels for a 7 x 7 cost matching window).

A sparsification function is computed by summing the remaining errors of match-
ing results when a certain percentile of the disparity map is filtered according to
the locations having least confidence assigned. Locations with lowest confidence
are removed first.

Measure comparisons often refer to the area under the sparsification curve.
However, errors for very sparse maps are of little interest and should not bias a
comparison of confidence measures. Thus, we do not compare the areas under
the sparsification curves. We are merely interested in measure performance for
disparity map densities in a range corresponding to proportions of good disparity
pixels, typically between 70 % and 95 % when using the SGM stereo algorithm
without postprocessing disparities on the KITTI dataset (see intersection of
ground truth optimum with x-axis in Figures 2] and []).
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Fig. 1. Visualization of stereo results without postprocessing (left column) and laser
range finder ground truth (right column) of frames included in this study. Close objects
are red, distant objects green.
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Fig. 2. Sparsification plots for selected frames of KITTI data with high amount of bad
pixels in the evaluation domain excluding locations detected as being occluded by the
stereo matcher. Numbers of remaining bad pixels are plotted against disparity map
density.

4 Results

Recall that Frames 8 and 128 were selected due to their apparent amenability
to the stereo problem. The illustration in Fig. [l however, reveals that low error
rates are only a result of missing ground truth in locations where stereo solutions
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Fig. 3. Sparsification plots for selected frames of KITTI data with low amount of bad
pixels in the evaluation domain excluding locations detected as being occluded by the
stereo matcher. Numbers of remaining bad pixels are plotted against disparity map
density.

are not accurate. Nevertheless, this may not corrupt an evaluation of confidence
measures, as these areas are ignored.

Sparsification plots in Figures Bl and [B] show that the curvature confidence
measure I in general identifies disparity errors much less accurately than other
confidence measures included in this study. In Frame 43 the selection of bad
pixels appears to be almost random (straight line). However on Frame 43, de-
picting some vegetation in close proximity, other confidence measures also do
not seem to work well. Useful accuracy of I, according to our experiments, can
be observed in Frames 8 and 122.

The remainder of confidence measures, regarding accuracy, is almost on a
par at low sparsifications. From the measures I} to Iy, the entropy confidence
measure I3 is most often the worst one. The left-right consistency check is not
helpful within higher sparsifications, especially not if I’y < 1.

For most frames, the naive combination I of confidence measures outperforms
single confidence measures at a sparsification determined by numbers of bad
pixels. However, the left-right consistency check Iy can be on a par at this
sparsification level.

Regarding the proposed bound for combined confidence measures it can be
found that at the level of sparsification necessary to remove all bad pixels, there
is usually a remainder of half the amount of bad pixels found by the proposed
combination I, which cannot be identified by any confidence measure.

5 Discussion

In the following, we discuss accuracy of confidence measures on the frames in-
cluded in this study and try, where possible, to link their behaviour to scene
structure and quality of ground truth and stereo results.

The curvature confidence measure, although widely used, is not much bet-
ter than randomly removing pixels. Reasons may include limited sharpness of
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recorded images. This measure only performs rather well on Frames 8 and 122.
This finding may not be significant for Frame 8, due to low numbers of bad
pixels involved. The reason for apparently improved accuracy of curvature on
Frame 122 may be the detection of homogeneously textured areas on road sur-
faces, which are wrongly estimated by SGM stereo. For detection of textureless
areas, however, there may exist better indicators, such as the structural tensor
[17.

That, in all frames, the consistency check I'y does not perform well at higher
sparsifications is not surprising, as subpixel estimation only is based on interpo-
lated cost function values and therefore compromised by so-called pixel locking.
However, the consistency check is also not successful in detecting errors resulting
from surface over-extension or foreground fattening [I§], as these occur likewise
in left-right and right-left matching.

Frame 87 visually does not seem to contain 20 percent bad pixels showing
in Fig. Bl Also, confidence measures do not detect these bad pixels well. Such
results pose the question whether a fixed tolerance of 3 pixel for disparity errors
is appropriate. In particular, in practise, it may be advantageous to define error
tolerance based on physical distance and with a lower limit in disparity space.

Another problem of the KITTI dataset is missing ground truth in large image
areas. It is most often absent where image regions are challenging for stereo. This
is, e.g., the case on fences (Frames 94 and 128) and car windows (Frames 82,
120 and 180). However, it should be noted that there is no agreement or even no
approach regarding evaluation strategies for such image regions exposing stereo
matchers to semi-transparencies.

6 Conclusion

Compared to previous benchmark data which was recorded under controlled
lighting conditions, some frames of KITTI data are more challenging for com-
putational stereo due to outdoor scenes with suboptimal lighting conditions.
However, extremely difficult recordings of road scenarios are absent. To our ex-
perience, these include tunnels, back-light, night scenes with street lights and
lights of other traffic participants, wet road surfaces and precipitation.

Missing ground truth at locations challenging for stereo vision reduces the
significance of our findings and makes it hard to draw comprehensive conclusions.

A comprehensive analysis, however, can be conducted if sufficiently diversified
datasets with ground truth are available. Apart from the low coverage with
ground truth at interesting image locations, another shortcoming of the KITTI
dataset is the low dynamic range and luminance resolution of the imagery. Being
eight bit only, preventable stereo problems are introduced, which may disguise
more interesting problems. We conclude that a sufficiently challenging and rich
dataset for stereo benchmarking with ground truth is not yet available.



Analysis of KITTI Data with Stereo Confidence Measures 167

References

10.

11.

12.

13.

14.

15.
16.
17.
18.

19.

Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms. International Journal of Computer Vision 47, 7-42
(2002)

The University of Auckland: .enpeda.. image sequence analysis test site (EISATS),
http://www.mi.auckland.ac.nz/EISATS

Heidelberg Collaboratory for Image Processing: Robust Vision Challenge,
http://hci.iwr.uni-heidelberg.de/Static/challenge2012/

Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The
KITTI vision benchmark suite. In: Computer Vision and Pattern Recognition
(CVPR), Providence, USA (2012)

Banks, J., Corke, P.I.: Quantitative evaluation of matching methods and validity
measures for stereo vision. I. J. Robotic Res. 20, 512-532 (2001)

Hu, X., Mordohai, P.: Evaluation of stereo confidence indoors and outdoors. In:
[19], pp. 1466-1473

Wedel, A., Brox, T., Vaudrey, T., Rabe, C., Franke, U., Cremers, D.: Stereoscopic
scene flow computation for 3D motion understanding. International Journal of
Computer Vision 95, 29-51 (2011)

Shimizu, M., Okutomi, M.: Precise sub-pixel estimation on area-based matching.
In: ICCV, pp. 90-97 (2001)

Merrell, P., Akbarzadeh, A., Wang, L., Mordohai, P., Frahm, J.-M., Yang, R.,
Nistér, D., Pollefeys, M.: Real-time visibility-based fusion of depth maps. In: ICCV,
pp. 1-8 (2007)

Gehrig, S.K., Scharwéchter, T.: A real-time multi-cue framework for determining
optical flow confidence. In: ICCV Workshops, pp. 1978-1985 (2011)

Aodha, O.M., Brostow, G.J., Pollefeys, M.: Segmenting video into classes of
algorithm-suitability. In: [19], pp. 1054-1061

Humayun, A., Aodha, O.M., Brostow, G.J.: Learning to find occlusion regions. In:
CVPR, pp. 2161-2168. IEEE (2011)

Hirschmiiller, H.: Stereo processing by semiglobal matching and mutual informa-
tion. IEEE Trans. Pattern Anal. Mach. Intell. 30, 328-341 (2008)

Egnal, G.: Mutual information as a stereo correspondence measure. Computer and
Information Science, University of Pennsylvania, Philadelphia, USA, Tech. Rep.
MS-CIS-00-20 (2000)

Hirschmiiller, H., Scharstein, D.: Evaluation of cost functions for stereo matching.
In: CVPR (2007)

Scharstein, D., Szeliski, R.: Stereo matching with nonlinear diffusion. International
Journal of Computer Vision 28, 155-174 (1998)

Shi, J., Tomasi, C.: Good features to track. In: CVPR, pp. 593-600. IEEE (1994)
Okutomi, M., Katayama, Y., Oka, S.: A simple stereo algorithm to recover pre-
cise object boundaries and smooth surfaces. International Journal of Computer
Vision 47, 261-273 (2002)

The Twenty-Third IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2010, San Francisco, CA, USA, June 13-18. IEEE (2010)


http://www.mi.auckland.ac.nz/EISATS
http://hci.iwr.uni-heidelberg.de/Static/challenge2012/

	Analysis of KITTI Data for Stereo Analysis with Stereo Confidence Measures
	Introduction
	Confidence Measures for Stereo Analysis
	Evaluation of Confidence Measures
	Results
	Discussion
	Conclusion
	References




