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Abstract. This paper presents a novel vision based obstacle detection
algorithm that is adapted from a powerful background subtraction al-
gorithm: ViBe (VIsual Background Extractor). We describe an adaptive
obstacle detection method using monocular color vision and an ultra-
sonic distance sensor. Our approach assumes an obstacle free region in
front of the robot in the initial frame. However, the method dynamically
adapts to its environment in the succeeding frames. The adaptation is
performed using a model update rule based on using ultrasonic distance
sensor reading. Our detailed experiments validate the proposed concept
and ultrasonic sensor based model update.
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1 Introduction

In the last decade the mobile robot technologies have made a significant progress.
Beside big budget commercial efforts, we see that small projects which are con-
ducted by individuals or small groups who have limited budgets provide a no-
ticeable addition to its momentum. This work is a part of our efforts where we
aim to transform a model car kit into an autonomous navigating robot using a
camera, electronic sensors and an onboard PC.

For a ground vehicle, an obstacle may be defined as a protrusion or extrusion
of the ground surface, which segments the current planned path. However, in
practice it is not simple to construct a generic method to implement obstacle
detection due to huge variation in environmental conditions [1].

In line with human sensory organization the most used sensor for obstacle
detection is visible light camera. Though analyzing two dimensional images for
obstacle detection is challenging, in the last two decades there are significant
amount of attempts [1,2]. Several concepts have been investigated using two
dimensional images for obstacle avoidance problem such as edge detection [3],
optical flow [4] and pixels values [5]. Additional third dimension information
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can be obtained using more than one camera which involves a pre-calibration
process but it required more computation until recent commercial development
of low-cost depth sensors such as MS-Kinect1.

In addition to a visible light camera various other sensors (e.g. radar, lidar,
and sonar) can be used for obstacle detection [6]. One of the earlier works that
has done by Borenstein and Koren [7] uses only ultrasonic sensors for obstacle
avoidance. Laser based sensors such as 3D-lidar are quite successful in scanning
the environment however they are expensive and require significant computing
resource.

(a) (b)

Fig. 1. (a)Model car equipped with camera and sensors (b)Obstacle free region

Ultrasonic distance sensors provide a cheaper way to measure distance in an un-
structured environment. Any obstacle surface which is parallel to the sensor and
inside the ultrasonic beam region reflects the sound emitted by the sensor. The re-
flected wave is captured by the sensor and time-of-flight is calculated to measure
the distance. However, the measurements can only be localized to a limited preci-
sion (i.e. location in the beam pattern). Moreover, ultrasonic sensors may not give
reliable results on reflective surfaces. In [7] Borenstein and Koren investigated the
limitations of the ultrasonic range finders for obstacle avoidance task.

Our robot is based on a model car, equipped with an RGB color camera,
an ultrasonic distance sensor, a compass and a gps sensor (Figure 1(a)). The
obstacles that we aim to detect may appear in any shape or color in the scene.

Several other algorithms have assumptions about the operating environment
[1,2] and we unavoidably make an assumption about expecting an obstacle free
bounded region in front of the car in the first frame. However, the method
dynamically adapts to its environment in the consecutive frames. Therefore it
can be suitable for both indoor and outdoor environments even in places where
there is no structural nature. Our method mainly relies on a monocular camera
to model the ground plane and other obstacles in the scene. Since the robot is
mobile and also that there are no assumptions about the scene structure, the
ground plane model must be updated continuously. This model update is con-
trolled based on the ultrasonic distance sensor reading to avoid ground plane like
obstacle regions included in the model. Authors of [3,8] also used combination of

1 http://www.microsoft.com/en-us/kinectforwindows/develop/overview.aspx
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a monocular camera and ultrasonic range finder for obstacle avoidance purposes.
In contrast to their work, we utilize ultrasonic sensor’s data only for the decision
of updating the ground plane model.

Our ground plane modelling scheme is inspired from ViBe [9] which is a back-
ground subtraction algorithm that is proposed for motion detection. ViBe keeps
positive samples for every pixel location and classifies a previously unseen pixel
according to its distance from stored samples. In other words, every pixel lo-
cation has an independent classifier to decide whether a given candidate pixel
for that location is from the ground plane or not. Through time, some random
samples are updated with some random new pixels collected and classified from
the scene. This update mechanism gives ViBe its dynamic adaptive behavior and
robustness against local illumination changes, reflections and shadows. ViBe [9]
is simple, efficient and faster than its counterparts which suits well to our robot
where we cannot operate with high performance computers due to limitations
of size and payload.

We also incorporate a methodology of a simple obstacle detection algorithm
developed by Ulrich and Nourbakhsh [5] which assumes that the area in front of
the mobile robot is the ground plane and can be modeled by hue and intensity
histograms. A previously unseen pixel is classified as a ground plane pixel if
corresponding index in one of the histograms has accumulated sufficient samples
(i.e. above a threshold). Moreover, they propose a post-update rule based on
odometry information and successful passing from a region. Thus the method
relies on a feedback mechanism which has some trial and error nature which
cannot be assumed to be safe under many conditions. In contrast to their method,
our ground plane model update rule is based on a pre-update mechanism that
uses the ultrasonic distance sensor to control the ground plane model update.

This paper is organized as follows: In Section 2, we present our proposed
method. In Section 3, we discuss the parameters of our method and give the
results of our experiments. Our conclusions and future work are presented in
Section 4.

2 Method

2.1 Initialization

Following the work of [5], our obstacle detection technique is based on the as-
sumption that the square region in front of the mobile robot is free of obstacles
at the initialization step of the algorithm (Figure 1(b)). As in [9], we define and
maintain a sample set S(x, y) for each pixel location (x, y) of the image I of
dimensions WxH where W is width and H is height of the image. Each sample
set S(x, y) stores N samples.

S(x, y) = {p1, p2, p3, ...pN} (1)

For initialization, in the first frame, random pixels are chosen from the obstacle-
free square region (OFR) in front of the robot and their values are added to
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S(x, y) for every (x, y) in I. The set of sample sets S whose size is NxWxH
forms our ground plane model. The size of OFR must be determined based on
the width of the car and camera’s field of view. If the region that we collect
samples from gets larger, the chance of including obstacle pixels in the ground
plane model increases whereas a smaller area would mean less variation in the
model. Because the ground plane model S is created using only the first frame,
the initialization is very fast.
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Fig. 2. Original Image

2.2 Obstacle Detection

After initialization, each new frame is processed to detect ground plane and
obstacle pixels. A given pixel value at location (x, y) is classified as an obstacle
or not using its S(x, y). The classification is based on finding similar values to
the pixel’s own value in its S(x, y). Finding at least M similar pixels in S(x, y)
is sufficient to mark the pixel in location (x, y) as ground plane pixel.

Let the pixel value at position (x, y) be q, then we can express the number of
similar pixels (SPC) as follows:

SPC = ‖dist(q, pi) < R)‖, where pi εS(x, y) , i = 1, ..., N (2)

dist is the Euclidean distance metric which measures how close two sample
are and R is the distance threshold which defines being similar with a limiting
distance value.

Our camera produces images in RGB (Red-Green-Blue) color space (Figure 2).
We operate our algorithm in normalized RGB color space in order to provide
illumination invariance (Figure 4(a) (b)). Figure 3(a) shows an example distance
image which is formed by pixel values that indicate the distance between S(x, y)
and corresponding pixel value q at location (x, y). Distance image is obtained
by calculating average of N distance values between the values in S(x, y) and q.
Euclidean metric is used when calculating the distances. After classifying each
pixel of the input image I, a binary obstacle map is generated (Figure 3(b)).
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Fig. 3. (a)Distance image (b)Binary obstacle map

2.3 Updating Sample Sets

ViBe applies a random update rule to the background model [9]. If the pixel q
at position (x, y) is classified as background, its value is used to update a ran-
dom value in S(x, y). The update is not carried out at every frame, instead the
update decision depends on a term called “subsampling factor”. For each found
new background pixel the probability of inclusion in the sample set is (1/sub-
sampling factor) and decision is made using a random value. Moreover, one of
the neighboring pixel’s sample set of q is updated using the same probabilis-
tic approach. Motivation here is that the adjacent pixels often share a similar
temporal distribution [10].

This continuous update rule provides a dynamic adaptation to environmental
changes in illumination, reflections. However, to adapt the sudden significant
changes in the ground plane model, (e.g. from carpet to tiles) we needed another
mechanism. We keep histograms of both OFR and sample pixels S(x, y). We re-
initialize S(x, y) if these histograms differ significantly and also if ultrasonic
sensor indicates that OFR is free. Significant difference of one of the histograms
(normalized red or normalized green) is sufficient for the model re-initialization.
The significant change is detected by a percentage threshold (Figure 4(c)-(d)).
Figure 5 shows a situation where both histograms are similar therefore there is
no need to re-initialize sample sets.

Effect of Ultrasonic Distance Sensor on Update. In our work, the update
mechanism of S is dependent on the ultrasonic distance sensor data (UD). At
each frame, we read ultrasonic distance sensor (UD). The reading gives us the
distance to the closest obstacle in front of the robot in terms of centimeters in
range (10,300). We let the update of S if the mobile robot can safely move one
step forward afterwards. In other words, we control the update using a “safe-to-
move-threshold” value (t).

Thus, this pre-update rule mechanism that is based on the safe distance
check prevents our robot to update the model unselectively. If the ultrasonic
distance sensor is not used, the ground plane model continues updating from
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Fig. 4. (a)Normalized red image (b)Normalized green image (c)Normalized red his-
togram (d)Normalized green histogram
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Fig. 5. (a)Normalized red histogram (b)Normalized green histogram. Both histogram
pairs (sample set and OFR) are similar.

OFR whether there is an obstacle or not in the front. Moreover, if the appear-
ance of the ground plane changes suddenly (e.g. carpet to tile), the robot cannot
move towards to the different appearing ground plane because the robot treats
this new appearance as an obstacle. However, when the ultrasonic distance sen-
sor gives a safe-to-move-threshold for the new ground plane, the robot updates



532 İ.K. İyidir, F.B. Tek, and D. Kırcalı

its ground plane model effectively. If UD is above t, we replace two samples from
S(x, y) with values one is randomly chosen from OFR and the value of q at the
location (x, y). Also one of the adjacent pixel’s sample set is updated in the
same way. Note that, during the update process, only the sample sets of pixel
locations that are classified as ground plane are updated. Figure 6 shows the
distribution of S at two different time lines. Only two samples for each S(x, y)
are drawn on the scatters.
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Fig. 6. Distribution of sample sets at different time lines

3 Experiments

During the tests, we run the algorithm in normalized RGB color space. Normal-
izing red and green channels eliminate problems that occur due to differently
illuminated ground plane areas. However, we also performed some preliminary
experiments using HSI (Hue-Saturation-Intensity) color space but we observed
that using Hue value creates more problems than normalized red-green does in
dark or saturated bright regions. We validated our proposed method using three
different recorded videos which included manually segmented ground truth data
that can be reached through our website2. The videos were recorded in our labo-
ratory resting pitch which has illumination reflections, shadows, different colors
of floor and it contains many obstacles that have different colors and shapes.

Each RGB frame in the recorded dataset has an image size of 160x120 pixels
where the square that we collect samples from (OFR) contains only 20x20 pixels.
During the experiments, we set the size of the sample sets (N) as 20 and UD
threshold (t) as 100cm. In addition, we set the threshold value for the number
of close samples (M) as 2, and we set distance threshold value (R) as 0.05

In addition to first Figures 2, 3(b), Figure 8 shows more input-output-ground
truth triplets of our algorithm. We defined the ground plane as the negative
class and the obstacles as the positive class. We observed that the method detects
obstacles generally successfully. However, false negatives occur when the obstacle
is in the same color with the ground plane (see Figures 2-3(b)). We also observed
that the algorithm performs not well specifically for gray colored ground plane
and gray colored obstacles (e.g walls, doors) with the above parameter settings.

2 http://ravlab.isikun.edu.tr
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Table 1. Performance of the algorithm on different data sets

Dataset Name True Positive False Positive Accuracy

Dataset-1
0.8251 0.1685 0.8221

±0.1897 ±0.1153 ±0.1026

Dataset-2
0.8102 0.1853 0.7737

±0.1949 ±0.2826 ±0.2268

Dataset-3
0.7269 0.1471 0.8119

±0.2301 ±0.1726 ±0.1532
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Fig. 7. ROC curve for varying M values

In order to quantify the results, wemeasured the overall accuracy, true and false
positive rates for each frame in the different datasets (Table 1). As it can be seen,
we achieved over 70% of true positive rate while false positive rate is under 20%
in all datasets. Note that, these are quite challenging sequences and many errors
occur during frame transitions from one ground plane character to another.

The distance threshold R value was set to 0.05 for all datasets to provide con-
sistency through processing all the datasets. However, we observed that changing
this value could improve performance of different datasets because lower R val-
ues perform better for gray colored ground plane and grayish obstacles. This is
possibly due to the fact that a constant threshold value is not optimal through
normalized red-green color space.

Furthermore, to observe the effect of parameters N and M , we plot a ROC
curve for their different values for dataset-3. It can be seen in Figure 7 that choos-
ing larger values of M lowers both false and true positive rates whereas lower
values produce opposite condition. From different ROC curves obtained from
different N = 20, 40 values, we observed that the algorithm is not so sensitive
to the sample set size N , so we set it as 20.

In overall, we observed that our combined obstacle detection algorithm per-
formed acceptable while we noted above mentioned points for improvement.
Furthermore, most false positive detections were either isolated pixels or very
small regions. Hence, they can be removed using morphological operations like
erosion. During above experiments, such post-processing was not used to show
the reader the exact outputs of our algorithm.



534 İ.K. İyidir, F.B. Tek, and D. Kırcalı

Fig. 8. Input image, obstacle map and ground truth triplets are shown in left, center
and rights columns respectively

4 Conclusion

In this paper, we introduced a novel vision based obstacle detection method.
Our method relies on images acquired by a monocular color camera and an as-
sisting ultrasonic distance sensor to update its ground plane model over time.
The method is adapted from ViBe which is an efficient background subtraction
algorithm that is used for motion detection. ViBe model gives robustness against
local illumination changes, reflections and shadows. Ultrasonic distance sensor
is used to control the update decision of the ground plane model. Addition-
ally, we detect sudden significant changes in the ground plane appearance using
histograms and let re-initialization of the ground plane model.

This paper can be seen as an initial step to develop a vision based obstacle
detection algorithm which has no assumptions about the scene structure and
ground plane. The only assumption we made is an obstacle free region in front
of the car in the first frame. However, this assumption is not a strong necessity,
instead of “expecting”, it is possible to “seek” an obstacle free region. If the car
happens to be in front of an obstacle in the first frame (that can be detected by
the ultrasonic sensor), it can perform small maneuvers through backwards and
search for an obstacle free region.

The only visual feature that was used by the algorithm is the normalized red-
green pixel values. It may be possible to extend this work by adding a compu-
tationally feasible textural feature. Also, we did not use any supervised learning
mechanism nor a history of observed previous ground planes. Addition of such
features can lead to more accurate detection of obstacles.
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