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Abstract. A multi-viewpoint integration scheme is introduced to rec-
ognize scene features prior to physical access. In this schematics, chro-
matic complexity of vehicle’s- and bird’s-eye-views of roadway scenes are
matched to extend GPS tracks towards possible destinations. Saliency
patterns arising in destination images are anticipatively extracted to con-
trol the focus of inherent and machine vision to what to be analyzed.

Keywords: Multi-viewpoint Image, Scene Analysis, Chromatic Com-
plexity, GPS Signal Processing, Image Saliency.

1 Introductory Remarks

By networking on-board vision system with global positioning and earth obser-
vation systems, we can localize landmark objects in distant scenes along roadway
patterns to be followed. This implies that a multitude of intelligent vehicles can
be exploited for over-the-horizon cooperation of the maneuvering processes; the
scene images provided by probe vehicles are re-used by future visitors as antici-
pative visualization of landmarks to be recognized. Such augmented perception
can be utilized as the basis of spontaneous coordination of participant vehicles
through the localization [8] and regulation [9] of maneuvering processes. To ac-
tivate the localization and/or regulation processes, the future visitors should
retrieve the probed images along feasible trajectories and anticipatively control
the focus of recognition.

Within the framework of the the satellite-roadway-vehicle networking, we can
implement an access path to ‘future’ scenes as illustrated in Fig. 1; a scene image
is matched with a local section of satellite image including GPS track; detected
roadway pattern is extended towards possible destinations to observe landmark
distribution in the probed scenes prior to physical access. It has been pointed out
that image features can be organized to extract saliency distribution including
various types of objects-to-be-observed [3,7]. However, due to significant discrep-
ancy of photographing conditions, it is not easy to predict what will be observed
in the future scenes through the analysis of the probed images; based on such ill
conditioned observation, in many practical situations, the on-vehicle vision are
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Fig. 1. Schematics of Anticipative Scene Analysis

required to yield a man readable visualization to maintain the consistency of the
over-the-horizon maneuvering processes. Noticing that human’s inherent vision
is endowed with not-yet-explicated focusing mechanism in chromatic diversity,
in this paper, we consider saliency based integration of multi-viewpoint images
connected by GPS tracks.

2 GPS Tracking on Satellite Image

Suppose that bird’s-eye-views and perspectives of roadway scenes are jointly
captured through the earth observation systems and on-vehicle cameras, re-
spectively, to generate multi-viewpoint images on an image plane Ω endowed
with longitude-latitude or camera specific coordinate system. Let GPS tracks
be identified with stochastic processes to be segmented in terms of 2D vec-
tors vt = (ωt, θt), t = 0, 1, 2, . . . , k, with origin ωt and direction θt. By non-
deterministically associating a sequence of vt within GPS residual [4], we have
a noisy observation of not-yet-identified roadway pattern on a cut of satellite
image.

To correct the GPS residual, the scene image captured at ωt is matched with
a local section of the satellite image. In this association process, first, an open
space in a roadway area is recognized in the scene image and scanned to collect
a set of color samples S = { f RGBi , i = 1, 2, . . . } with size ‖S‖. Let the pixel value
f RGB be mapped into the positive part of a unit sphere; through the mapping
φ
(
f RGB

)
= f RGB/

∣
∣f RGB

∣
∣, we can evaluate the local complexity of the sample S in

terms of 2D Gaussian measure

gα (φi|φj) = 1

2πα
exp

[
−|φi − φj |2

2α

]
. (1)
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Define local similarity by RS = e−σ
2
φφ/2α/2πα based on the following statistics

σ2
φφ =

1

‖S‖(‖S‖ − 1)
×

∑

fRGBi ,fRGBj ∈S,fRGBi �=fRGBj

∣
∣φ
(
f RGBi

)− φ(f RGBj )
∣
∣2 .

By selecting the representatives f RGBi∗ ∈ S with respect to the equivalence criterion
RS , we have a palette s = { f RGBi∗ } to nondeterministically re-draw the essential
part of the roadway area. Let the consistency of a pixel f RGBω , ω ∈ Ω with s be
evaluated in the locally Gaussian space as follows:

max
fRGBj ∈s

gα
[
φ
(
f RGBω

) |φ (f RGBj

)]
> RS ⇒ f RGBω

RS∼ s. (2)

To associate the bird’s eye view with the perspective of the vehicle, a local section
including ωt is scanned to generate another palette š =

{
f̌ RGBi

}
. By applying

the association rule (2), we have an estimate of the roadway palette:

ŝ =
{
f̃ RGBi

RS∼ š
∣
∣ f̃ RGBi = f RGBi +

(
¯̌s− s̄

)
, f RGBi ∈ s

}
, (3)

where s̄ and ¯̌s designate mean colors of s and š, respectively. In (3), the spec-
tral shift due to the disparity of photographing conditions are compensated via
the mean value adaptation; samples from the exterior of the not-yet-identified
roadway area are eliminated as non-equivalent pixels. By evaluating the con-
sistency within the bird’s eye view in terms of (ŝ, gα)-information, thus, we
can apply Hough voting to roadway pattern detection; vt(ωt, θt) is adapted to

v̂t(ω̂t, θ̂t) spanning significant chromatic discrepancy between scene- and satellite
images.

An example of experimental results of roadway pattern detection is shown
in Fig. 2; a GPS track from the ‘gateway’ to the ‘branch’ is marked on the
satellite image in terms of vt-sequence in (b); a perspective image at the branch
is captured by the camera to generate the palette s on a sampling area indi-
cated in (a); the palette s is adapted to š extracted from the satellite image as
illustrated in (c); resulted estimate ŝ is applied to detect a segment of the road-
way pattern at the branch area. As indicated in (d), the segment was allocated
along really existing roadway patterns; furthermore, by iterating the segmen-
tation process, a ‘robotic probe’ was deployed to simulate the θ̂t-sequence of a
GPS track towards the ‘cross’ as indicated in (e); thus, the GPS tracks was ex-
tended to connect possible destinations. By invoking experimental results using
various complex roadway scenes, we can simulate feasible trajectories of 1.3–1.9
km length towards future scenes [5]; via the adaptation-and-elimination process
(3), 1/2,000–1/2,500 of color samples are used in the Hough voting process; in
the adaptation process shown in (c), the complexity of roadway area is finally
represented by 29 feature colors.

3 GPS-Based Graph Generation

Suppose that possible destinations N =
{
ndi , i = 1, 2, . . .

}
are localized in the

satellite image. By identifying the simulated GPS track with a route graph
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Fig. 2. GPS Track Extension via Multi-viewpoint Association

spanning the distribution of N , we can extract a image of ‘future’ scenes which
has been captured by probe vehicles. To implement efficient search scheme, we
introduce a dynamic matching algorithm in a stochastic sense.

Conditional Brownian Motion Model: Let a landmark n ∈ N be localized at
n⊥ ∈ Ω and consider the probability distribution to capture 2D Brownian motion
with origin landmark n at time σ, i.e.,

gσ (ω|n) = 1

2πσ
exp

[

−|ω − n⊥|2
2σ

]

. (4)

Noticing the following approximation

gσ(ω|n)− δn⊥ =

∫ σ

0

1

2
Δgs(ω|n)ds ∼ σ

2
Δgσ(ω|n),

and extending the representation (4) to the distribution of the localization image

χN =
1

‖N‖
∑

n∈N
δn⊥ , we have the following probability distribution to finally

capture at least one Brownian motion shifted from N :

σ

2
Δϕσ (ω|N) + [χN − ϕσ (ω|N)] = 0. (5)

By identifying the information arising from the landmarks N − n with indepen-
dent noisy background, we have the following decomposition:

ϕσ (ω|N) = gσ (ω|n) + χΩ, (6)

where χΩ denotes the uniform distribution standing for the background noise.
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Dynamic Detection: Let the origin be randomly re-selected in each unit time
interval. In such a situation, the probability to capture a Brownian motion iter-
atively conditioned until time t > 0 is given by

g̃nt (ω|N) =

(
1

‖N‖
)t
gt (ω|n) = e−ρtgt (ω|n) , ρ = log ‖N‖. (7)

Thus, we can apply the dynamic likelihood test [10] to the identification of the
segment v̂t with the conditional Brownian motion process. To this end, first, the
variation is evaluated as follows:

dϕt = −∇ϕσ (ω̂t|N)
T
v̂tdt. (8)

Noticing ϕσ ∼ gσ within the area |ω − n̂⊥| < √
σN and

∇gσ (ω|n) = − 1

σ
(ω − n̂⊥) gσ (ω|n) ,

next, we have the following stochastic differential:

dϕ̃t =
dϕt
ϕt

= φ̃tdt+
√
σwdwt,

where φ̃t = (ω − n̂⊥)
T
v̂t and the fluctuation due to the background distribution

χΩ is simulated in terms of Wiener process wt with
√
σw . By modifying the

Wiener measure in terms of the iteration factor e−ρt induced in (7) and noticing
that the likelihood ratio satisfies the stochastic differential equation

dΛt
Λt

=
φ̃t
σw

dϕ̃t − ρdt, (9)

finally, the nearest localization n̂⊥ can be detected in a rectangle dΩ̂t with
diagonal vertexes ω̂t and ω̌t given by

ω̌t = ω̂t + 2

√

−2σ log

[
ϕσ
ϕmax

] ∇ϕσ
|∇ϕσ| , (10)

where ϕmax = max
ω∈Ω

ϕσ (ω|N). The estimation process (10) is activated at each

segment v̂t consistent with one of gσ (ω|n), n ∈ N ; this implies that the landmark
search process is controlled by the dynamical system (9) to confine within a
restricted region dΩ̂t.

The performance of the detection scheme is illustrated in Fig. 3 where a series
of GPS track data (vt) is matched with landmark set; in this case, the distribu-
tion of 18 landmarks are allocated in a cut of satellite image of 640×480 reso-
lution to yield the field information ϕσ in subwindow (a) where the GPS track
consisting of 336 v̂t-vectors is matched with ϕσ. The transition of Λt is displayed
in (b); in this subwindow, the level of background noise χΩ and dΩ̂t-generation
time are indicated by thin white line and large white circles, respectively; the
scene image of the latest landmark is displayed in the subwindow (c). Through-
out the GPS track analysis, a route graph spanning 5 landmarks was generated
as an access path to the future scenes along roadway pattern.
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Fig. 3. GPS-based Route Graph Generation

4 Saliency Indexing for Scene Feature Detection

In many practical roadway scenes, various types of objects to be recognized
are randomly distributed in complex background. This implies that the probed
images should be articulated into a not-yet-identified set of landmark objects to
adapt the on-vehicle vision to the future scenes. To this end, the probe vehicles
are required to recognize the diversity of naturally complex scenes in terms of
transferable information.

It should be noted that the perception of chromatic diversity is essentially
mental processes supported by stochastic neuronal dynamics [2]. To visualize
the performance of the mental process, let the chromatic diversity of naturally
complex scenes be represented in a linear color space

Γ � γ = eRGBφ, eRGB =
[
eR eG eB

]
,

where e(·) = [ cos θ(·) sin θ(·) ]
T with θR = π/2, θG(B) = θR + (−)2π/3. In

this color space, the chromatic diversity is visualized as a random aggregation

of δ-measure χs =
∑

φ∈s

δγ(φ) as well as the N -allocation. By identifying the

distribution χs with a degenerate version of a not-yet-identified fractal attractor,
we can design a set of fixed points of an iterated function system [1]; through the
adaptation of the fractal dynamics to a non-degraded version of the distribution
χs, a global features, called as-is primaries Π̂ = { π̂i } [6], are recognized.

According to the fractal visualization of the color perception process, the chro-
matic diversity spanning the roadway scenes should be accepted via parametric
restoration of a fractal attractor; hence, the complexity of ‘neuronal computa-
tion’ can be evaluated in terms of the as-is primary. To this end, first, the proba-

bility of the neuronal photopigment selection is evaluated by p (φ|π̂i) =
(
φT π̂i

)2
.

Next, the a posteriori probability of the neuronal selection under the observation
φ is evaluated by
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p (π̂i|φ) = p (φ|π̂i) p (π̂i)∑

π̂i∈Π̂
p (φ|π̂i) p (π̂i)

, p (π̂i) =
1

‖Π̂‖ .

As the result, finally, we can index the complexity of the neuronal process in
terms of the Shannon’s entropy:

Sφ = −
∑

π̂i∈Π̂
p (π̂i|φ) log p (π̂i|φ) , (11)

The complexity index (11) is applied to the extraction of saliency distribution
in roadway scenes as demonstrated in Fig 4; the fluctuation of γ-representation
arising in the scene image Fig. 2(a) is displayed in (c); resulted distribution χs

is identified with a fractal attractor to specify a scene specific deviation of the
primary as indicated in (b). By using the evaluation (11), the following pixel-wise
filter is designed and applied to the distribution φ

(
f RGB

)
at ω ∈ Ω:

ψω = 1− exp

⎡

⎣−1

2

(
log ‖Π̂‖ − Sφω

log ‖Π̂‖ − Sm

)2
⎤

⎦ , (12)

where Sm designates the mean value of Sφω on entire Ω. In this filtering, the
computational cost for neuronal color preference is evaluated in terms of Sφ to
emphasize the ‘easy-to-select’ pixels. As demonstrated in the main window, Fig.
4(a), the ψω-filtering is effective to extract random distribution of landmarks
to be noted by on-vehicle vision and inherent perception as well. The result of
RGB-based recognition is displayed in Fig. 5 where the ψ-distribution is evalu-
ated in terms of conventional RGB primary; the comparison with the RGB-based
recognition demonstrates that the as-is primary based saliency distribution pro-
vides more sensitive filter to ‘low-keyed’ landmarks, in particular. Thus, we can
exploit the as-is primary to control the focus of the on-vehicle vision.

(a) (b)�

(c)

Fig. 4. As-is Primary Based Saliency Pattern Fig. 5. RGB-based Recognition
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5 Transferability of As-is Primary

To support the over-the-horizon cooperation, the as-is primary should be trans-
ferred to future visitors spanning significant discrepancy of photographing condi-
tions and object allocation. The robustness of the as-is primary is demonstrated
trough experimental studies. Figure 6 indicates a part of recognition results
where the as-is primary extracted in the branch scene, Fig 2(a), is applied to
various perspectives of the cross scene; these results shows that the as-is primary
can be transferred to distant scenes spanning considerable discrepancy in pho-
tographing conditions and physical degeneration processes. Figure 7 illustrates
another results where the as-is primary extracted in previously probed image of
cross scene; these results demonstrates that the as-is primary provided by probe
vehicles can be re-used by future visitors to the scenes.

cross-1: fRGBω from branch: ψωf
RGB
ω

cross-2: fRGBω from branch: ψωf
RGB
ω

cross-3: fRGBω from branch: ψωf
RGB
ω

cross-4: fRGBω from branch: ψωf
RGB
ω

Fig. 6. Transferability of As-is Primary: branch→cross

The effectiveness and transferability of the as-is primary is evaluated in terms
of the complexity arising in the saliency distribution (·) given by

S(·) = − 1

C(·)

∫

Ω

(·)ω log(·)ωdω + logC(·), (13)

where C(·) denotes the normalization constant. The experimental results are
summarized in Table 1 where the reduction of the computational complexity is
evaluated in terms of the difference between the Shannon’s entropy with respect
to the uniform distribution S∅, i.e., dS(·) = S∅ − S(·). In this table, saliency
distribution and the gray level distribution are invoked to yield Sψ and SG via the
evaluation (13), respectively; the distribution ψ is computed by using the as-is
primary detected in each scene image; ψb and ψp are associated with perspective
images transferred from branch and cross-p scenes, respectively; ψ� designates
the saliency distribution based on RGB primary. As shown in this table, the ψω-
filter well concentrate the information distributed in the image plane into a set
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Fig. 7. Transferability of As-is Primary: probe→visitor

of saliency patterns to reduce the essential length of focus control programs to
e−1.3−e−0.42 of random search in image plane; by this concentration, on-vehicle
vision can reduce the delay to activate object recognition processes no less than
30%− 72% of focus control based on gray level distribution. The comparison of
dSψ- and dSψb -results implies that future visitors can concentrate the focusing
area to 6–68% of saliency patterns in destination images via the prediction by
using observed scene image; this implies that the forward transfer of the as-
is primary along the simulated GPS track yields a efficient focus control to
scene-transversal object images; while the reference to probed image can be
exploited as an effective backup in the sampling-based palette generation. In
comparison with the RGB based complexity reduction, the saliency indexing based
on native- and/or transferred as-is primary was proved to maintain sensitivity
to considerably ‘low-keyed’ object images.

Table 1. Relative Complexity Reduction

scene dSψ dSψb dSψp dSψ� ‖Π̂‖ dSG
branch 1.342628 – 0.310515 1.435720 7 0.080535
cross-1 0.583304 0.640835 0.514303 2.276305 8 0.138044
cross-2 0.829417 0.900230 0.474707 1.828937 4 0.162454
cross-3 0.421347 0.947673 0.454722 1.576738 4 0.182304
cross-4 0.434097 0.542789 0.290063 0.577541 5 0.131293

probed 0.587654 1.315543 – 2.084636 7 0.115865

As demonstrated in Fig. 4, we can exploit the ψω-filter for the extraction of
the saliency distribution including various types of objects to be observed; in
contrast with the conventional method, resulted ψωf

RGB
ω -pattern is controllable

in terms of the as-is primary. The transferability of the as-is primary makes it
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possible to anticipatively control the focus on the saliency patterns prior to phys-
ical access as demonstrated in Figs. 6 and 7. Despite that the ψω distribution is
not sufficient for unique identification of natural objects, we can significantly re-
duce the complexity of decision steps by machine vision exhibiting man readable
visualization.

6 Concluding Remarks

Complexity-based image analysis and GPS-based route graph generation jointly
provide an access path to destination images through satellite-roadway-vehicle
network. By simulating neuronal computation process of chromatic diversity in
terms of a fractal dynamics, the as-is primary can be detected to extract saliency
patterns in noisy background. Experimental results demonstrated that we can
recognize and transfer the as-is primary to control the focus of machine vision
to various types of man readable saliency patterns.
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