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Abstract. Time-of-Flight (TOF) cameras are active real time depth
sensors. One issue of TOF sensors is measurement noise. In this paper,
we present a method for providing the uncertainty associated to 3D TOF
measurements based on noise modelling. Measurement uncertainty is the
combination of pixel detection error and sensor noise. First, a detailed
noise characterization is presented. Then, a continuous model which gives
the noise’s standard deviation for each depth-pixel is proposed. Finally,
a closed-form approximation of 3D uncertainty from 2D pixel detection
error is presented. An applicative example is provided that shows the use
of our 3D uncertainty modelling on real data.

1 Introduction

Time-of-Flight (TOF) cameras open new possibilities in fields such as 3D recon-
struction, Augmented Reality and video-surveillance since they provide depth
information in real-time and at high frame-rates. They are based on the emis-
sion of a modulated infrared light which is thereafter reflected by the objects in
the scene. The signal’s phase shift ϕ is determined and thus the depth value d by
a TOF approach [1]. The depth value, at each pixel, is given by d = cϕ

4πω , where
c is the speed of light and ω is the modulation frequency. This technology has
several limitations, one of them being measurement noise. During the past years,
some works [2–5] have been devoted to enhancing the depth images captured by
a TOF sensor by handling the noise. However, there have been no studies of
noise that provides the TOF measurements uncertainty.

In this paper, we characterize the noise distribution as Gaussian (Section 2).
We show that its standard deviation varies according to the pixel position and
the depth. We propose a continuous noise modelling which gives the noise’s stan-
dard deviation for each depth-pixel (Section 3). Our model uses a 3D smoothing
spline, known as a 3D Thin-Plate Spline, known to work well to model complex
variations. Generally speaking, a measurement is meaningful only if its uncer-
tainty can be compute as well. We present a method for providing 3D uncertainty
for TOF sensors (Section 4). The 3D uncertainty in TOF measurements is the
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combination of pixel detection error and sensor noise. We describe how errors in
2D measurements propagate to error in the 3D measurements, and hence we are
able to compute a confidence interval on any 3D measurement, i.e. a quantitative
assessment of accuracy. The proposed method is a closed-form approximation
from 2D pixel detection error and a continuous depth noise model. The work
has a variety of applications. We present an applicative example in Section 5.

Notation. A 2D point p (pixel) is the 2-vector defined as pT = (u v) with
(u v) the pixel coordinates, a 2.5D point q (depth-pixel) is the 3-vector defined
as qT = (u v d) with d the associated depth and the corresponding 3D point
in the camera coordinate frame is QT = (X Y Z).

2 Noise Characterization

The noise characterization is based on the study of the variation on the depth-
pixel measurements for several TOF images taken in the same conditions. Images
of a white wall were acquired at 7 depths from 0.9 m to 7.4 m. At each depth,
100 depth images were recorded. To characterize the noise distribution, we used
the technique of normal probability plot [6]. The data are plotted against a theo-
retical normal distribution in such a way that the points should form an approx-
imate straight line. Departures from this straight line indicate departures from
normality. An example corresponding to a depth-pixel (Figure 5) shows that the
scatter follows approximately straight lines. To verify graphically the normal-
ity of the noise distribution for more pixels, the images’ centers are considered.
Their associated histograms showing the distribution of the depth measurements
are plotted in Figure 1. These histograms, as can be graphically seen, follow a
Gaussian distribution. After the graphical verification, a more robust Gaussian
test was used. The Lilliefors (adaptation of the Kolmogorov-Smirnov 1) tests the
null hypothesis that the data comes from a distribution in the normal family.
The test returns the logical value h = 1 if it rejects the null hypothesis, otherwise
it returns h = 0. This test is performed for each pixel of the 7 depths, then the
median and mean value of h for all pixels are computed. The median value is
equal to 0 and the mean value is also ‘near’ zero (equal to 0.1472). These values
confirm that the TOF noise follows a Gaussian distribution to a good extent.
We are now interested in noise variation according to pixel position and depth.
The standard deviation σ is calculated for each pixel of the 7 images. Figure 2
present σ values at each pixel for an approximative depth d = 4.23m. As can be
clearly seen, σ increases away from the image center (5 to 7 mm) to the image
boundaries (7 to 27 mm). The highest accuracy is achieved at the image center
where the illumination of the observed object is at its highest value. The same
phenomenon is observed for the other 6 depths. The standard deviation depen-
dency on the depth is shown in Figure 3. The σ at each pixel of the 7 depths
is calculated and plotted against the depths values. σ increases with depth and

1 The Kolmogorov-Smirnov test is used to decide if a sample comes from a population
with a specific distribution.
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varies approximately from 0 to 40 mm (the mean value of σ is 8 mm) as shown
in Figure 4. The noise’s standard deviation gives an information about the ac-
curacy of measurement. This information is essential in any application, since it
denotes the degree to which a measurement result will represent the true value.
The calculated standard deviation from the 7 depths is however not sufficient.
In practice, it is important to have a continuous noise modelling.
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Fig. 1. Noise’s standard deviation distribution graphs. Each graph represents the distri-
bution of the 100 depth measurements of the image center (of a white wall). Graphically,
these histograms correspond to Gaussian distribution, as confirmed by the Kolmogorov-
Smirnov test.

3 A Continuous Noise Modelling

The TOF noise has a Gaussian distribution, thus, the proposed noise modelling
is based on standard deviation. The noise’s standard deviation depends on both
the pixel position and the depth. These variations cannot be well modelled by
a simple constant or linear function. A more complex model is needed. It must
also provide continuity, since it must give for each depth-pixel (2.5D point)
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(a) depth image (b) intensity image (c) standard deviation

Fig. 2. Standard deviation σ (c) of a depth image (a) (of a white wall (b) at approx.
4.23 m) measured at each pixel. It is calculated out of 100 depth measurements at each
pixel. σ increases from the image center (5 to 7 mm) to the image boundaries (7 to 27
mm).

Fig. 3. The standard deviation calculated at each pixel of the 7 depths (of a white
wall). σ is calculated out of 100 depth measurements at each pixel.

Fig. 4. Distribution of standard deviation calculated at each pixel of the 7 depths (of
a white wall). σ is calculated out of 100 depth measurements at each pixel. σ increases
with depth from 0 to 40 mm with a mean value equal to 8 mm.

the associated noise’s standard deviation. A 3D Thin-Plate-Spline function is
therefore chosen, since it verifies all these conditions. The 3D-TPS R

3 → R is
a smooth function [7] known to be an efficient approximation to several types
of deformation that minimizes the ‘bending energy’. It is flexible, controlled by
l 3D centers ck (ck ∈ R

3, k = 1, . . . , l) that may be placed anywhere in space
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-0.2 in

Fig. 5. Normal probability plot corresponding to a depth-pixel. The scatter (plotted
in blue) follows approximatively the straight line of the theoretical normal distribution
(plotted in red).

and is driven by assigning target values αk to the l 3D centers ck. It is usually
parametrized by an l + 4 coefficient vector hT = ( wT aT ) computed from
the target vector α (described in the following) and a regularization parameter
λ ∈ R

+. There are l coefficients in w and 4 coefficients in a. The coefficients in
w must satisfy P̌Tw = 0, where the kth row of P̌T is given by

(
cTk 1

)
. These 4

‘side-conditions’ ensure that the TPS has square integrable second derivatives.
Let �Tq = ((d(q, c1)) · · · (d(q, cl)) qT 1), the 3D-TPS at a point q is given by:

ω(q,h) = �Tqh =

(
l∑

k=1

wkd(q, ck)

)

+ aTq̌. (1)

where d(q, ck) is the distance between q and ck.
We use the 3D-TPS to model the Gaussian noise’s standard deviation by

defining a set of l centers positioned throughout the working volume (Figure
6). This parametric function is chosen for many reasons. First, it efficiently
approximates the noise’s standard deviation being considered as a deformation.
Second, it limits the memory requirement, in fact, only the l+4 parameters and
the l centers have to be saved. The proposed model is based on the standard
deviation and defined by the function f :

f : Ω → R
⎛

⎝
u
v
d

⎞

⎠→ σ , (2)

where Ω ⊂ R
3, Ω = [umin;umax]× [vmin; vmax]× [dmin; dmax] and σ is a scalar

that represents the standard deviation. f(q)
def
= �Tqh and f lies in L2(ψ) 2.

The l + 4 TPS coefficients in h are computed from the target σk (the standard
deviation). Applying the TPS Equation (1) to the center cr with target values
σr gives: (

l∑

k=1

wkd(cr, ck)

)

+ aTčr = σr. (3)

2 The Hilbert space of square-integrable functions.
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Combining the equations obtained for all the l centers with the side-conditions
in a single matrix equation gives:

(
Kλ P
PT 0

)

︸ ︷︷ ︸
D

(
w
a

)

︸ ︷︷ ︸
h

=

(
σ
0

)
with Kλ =

{
λ r = k
d(cr , ck) r �= k.

(4)

In practice, we set λ to some small value such as λ = 10−4, to ensure that Kλ

and thus D are well conditioned. This is a linear system, the TPS coefficients in
h are thus easily solved.

Fig. 6. The 7 depth images plotted together with the 3D TPS centers

4 Propagating Pixel Uncertainty to 3D

Pixel detection and extraction, whether manual or automatic, can only be per-
formed to a finite accuracy. In addition to pixel detection error, depth-pixel
extracted from TOF images are subject to sensor noise. One objective here is
to consider how these errors propagate through the measurement formulas in
order to quantify the uncertainty on the final 3D measurements. This is based
on noise modelling. We concentrate in geometric measurements like object width
and height, although, the method is not limited to those. This is achieved by
using a first order error analysis. From pixels detected or clicked in the image, we
want to estimate the geometric measurement and its uncertainty by propagating
the uncertainty from the 2D point p to a 3D point Q. We proceed in three steps:
the first one is the uncertainty propagation from 2D (a pixel p) to 2.5D (q), the
second one is the uncertainty propagation from 2.5D (corresponding point q) to
3D (corresponding point Q) and the third one is the uncertainty propagation
from 3D to the final geometric measurement.

4.1 Propagating Pixel Uncertainty to 2.5D

The uncertainty of a 2D point p is the click or the detection error. This error is
defined by the variance matrix on p denoted by Σp (2× 2 matrix). We suppose
that Σp is given. We define the transformation T 1 between p and q:
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T 1 : Γ → Ω

(
u
v

)
→
⎛

⎝
u
v
d

⎞

⎠ , (5)

where d = d(u, v) and Γ = [umin;umax] × [vmin; vmax] defined by the image
resolution.

A first order approximation for the variance-covariance matrix Σq
inter of q is

given by:

Σq
inter = JT1Σ

pJT1
T, (6)

where J is the 3× 2 Jacobian matrix of the function T 1 defined as:

JT1 =

⎛

⎝
1 0
0 1

d(u + 1, v)− d(u, v) d(u, v + 1)− d(u, v)

⎞

⎠ , (7)

4.2 Propagating 2.5D Uncertainty to 3D

In addition to the uncertainty of a 2D point detection, there is the uncertainty
of the depth measurement. It is defined by the standard deviation σ modelled
by the 3D TPS function f (Equation (2)). Incorporating the depth variance σ2

in the variance-covariance matrix Σq
inter gives:

Σq = Σq
inter +

⎛

⎝
0 0 0
0 0 0
0 0 σ2

⎞

⎠ , (8)

Fig. 7. 2.5D point q versus 3D point Q

We show in the following that a trans-
formation T 2 exists between the two
spaces. We assume that the camera’s
intrinsic parameters are known. Thus,
the transformation from q to Q in
the metric space can be estimated
(as shown in the Figure 7). We call
(cu cv) the optical center on the sen-
sor array, fc the camera focal length,
(du dv) the pixel pitch in the u (resp.
v) direction. Neglecting lens distortion, the transformation between q and Q is
given by:

T 2 : Ω → ψ
⎛

⎝
u
v
d

⎞

⎠→
⎛

⎝
X
Y
Z

⎞

⎠ with

⎧
⎪⎪⎨

⎪⎪⎩

X = Z (u−cu)du

fc

Y = Z (v−cv)dv

fc

Z = d fc√
f2
c +((u−cu)du)2+((v−cv)dv)2

(9)
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where ψ is a subset of R3: ψ = [Xmin;Xmax] × [Ymin;Ymax] × [Zmin;Zmax]. A
first order approximation of he variance-covariance matrix ΣQ of T 2 is given by:

ΣQ = JT2Σ
qJT2

T, (10)

where JT2 is the 3× 3 Jacobian matrix of the function T 2.

4.3 Propagating 3D Uncertainty to Distance Measurement

When making measurements between 3D points Qi, uncertainty arises from the
uncertain localisation of the 3D points modelled by their associated variance-
covariance matrix ΣQi . Here, we are concerned with measurement of the distance
between two 3D points. Given two points Q1,Q2 and their associated variance-
covariance matrices ΣQ1 and ΣQ2 , the distance between Q1 and Q2 is defined
by the function D:

D : ψ2 → R
(
Q1

Q2

)
→ ‖−−−→Q1Q2‖2 . (11)

Assuming a statistical independence between Q1 and Q2, a first order approxi-
mation of the variance σ2

D is given by:

σ2
D = JD

(
ΣQ1 0
0 ΣQ2

)
JD

T, (12)

where JD is the 1× 6 Jacobian matrix of the function D.

5 Applicative Example

We give a simple example of use of our uncertainty modelling on real data. The
TOF camera used is a PMD CamCube2 with a resolution of 204×204 pixels [8].
It is assumed to be calibrated (its internal parameters are known). The example
consists in measuring the width and the height of a calibration checkerboard.
These measurements are obtained from the 4 points clicked on the image p1,p2

and p3,p4 (see Figure 8(b)). For each 2D point (pi)
4
i=1, the Σ

pi is computed:
multiple-clicks are performed and the standard deviation in each direction (u, v)

is computed. Then, the corresponding 3D point (Qi)
4
i=1 and their covariance-

variance matrix (Σqi)
4
i=1 and

(
ΣQi

)4
i=1

are computed as explained in Section
4. The first point p1 is considered as an example to present the uncertainty
propagation. The covariance matrices Σp1 , Σq1 and ΣQ1 are:

Σp1 =

(
2.52 0
0 1.72

)
Σq1 =

⎛

⎝
6 0 24.7
0 2.9 1.3

24.7 1.3 154.3

⎞

⎠ ΣQ1 =

⎛

⎝
286.3 −64.4 230.2
−64.5 202.9 −7.9
230.2 −7.9 275

⎞

⎠ .

From these matrices, the uncertainty ellipse of p1 (Figure 8(c)) and the un-
certainty ellipsoids of q1 (Figure 8(d)) and Q1 (Figure 8(e)) are drawn. Then,
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the checkerboard width D(Q1,Q2) and height D(Q3,Q4) values are computed
from Equation (11). Their values are respectively equal to h = 1250 mm and
w = 906mm, the ground truth are respectively 1200 mm and 900 mm. The error
between measured and ground truth distances is not only due to sensor noise.
The TOF camera are subject to depth distortion [9–11]. There are several causes
for depth distortion, one of them is the called systematic error. In this paper,
this latter is corrected [12]. After width and height computation, their variance
values are computed from Equation (12) and the uncertainty (which is equal to
standard deviation) are deduced. They are respectively equal to σh=28.4 mm
and σw=17.9 mm. Note that ground truth values fall within the confidence in-
tervals [h− 2σh;h+ 2σh] and [w − σw;w+ σw] with levels of confidence 3 equal
to 95% and 68%.

(a) intensity image (b) depth image

(c) p1 uncertainty ellipse (d) q1 uncertainty ellipsoid (e) Q1 uncertainty ellipsoid

Fig. 8. Measuring the checkerboard width and height from depth-pixels: (a) the inten-
sity image and (b) the depth image corrected for radial distortion. Computed width and
height are respectively equal to 1250± 28.4mm and 906± 17.9mm. The computed (c)
uncertainty ellipse of p1 and uncertainty ellipsoid of (d) q1 and (e) Q1 are presented.
The associated uncertainly ellipses are drawn in blue around the ellipsoids.

3 The level of confidence would indicate the probability that the confidence interval
contains the ground truth value. Not that greater levels of confidence give larger
confidence intervals, and hence less precise estimates of the parameter.
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6 Conclusion

We have characterized the noise distribution of TOF sensors as Gaussian. A 3D
Thin-Plate-Spline is used as a noise’s standard deviation model. A method that
approximates the uncertainty associated to TOF measurements is proposed. A
simple example on real data demonstrate an application of the proposed ap-
proach. Future work will improve the robustness of TOF algorithms using the
uncertainty information. It would also be interesting to test the proposed ap-
proach for the Kinect sensor.
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