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Abstract. This paper proposes a system to depth order regions of a
frame belonging to a monocular image sequence. For a given frame, re-
gions are ordered according to their relative depth using the previous
and following frames. The algorithm estimates occluded and disoccluded
pixels belonging to the central frame. Afterwards, a Binary Partition
Tree (BPT) is constructed to obtain a hierarchical, region based repre-
sentation of the image. The final depth partition is obtained by means
of energy minimization on the BPT. To achieve a global depth ordering
from local occlusion cues, a depth order graph is constructed and used to
eliminate contradictory local cues. Results of the system are evaluated
and compared with state of the art figure/ground labeling systems on
several datasets, showing promising results.

1 Introduction

Depth perception in human vision emerges from several depth cues. Normally,
humans estimate depth accurately making use of both eyes, inferring (subcon-
sciously) disparity between two views. However, when only one point of view is
available, it is also possible to estimate the scene structure to some extent. This
is done by the so called monocular depth cues. In static images, T-junctions or
convexity cues may be detected in specific image areas and provide depth order
information. If a temporal dimension is introduced, motion information can also
be used to get depth information. Occlusion of moving objects, size changes or
motion parallax are used in the human brain to structure the scene [1].

Nowadays, a strong research activity is focusing on depth maps generation,
mainly motivated by the film industry. However, most of the published ap-
proaches make use of two (or more) points of view to compute the disparity
as it offers a reliable cue for depth estimation [2]. Disparity needs at least two
images captured at the same time instant but, sometimes, this requirement can-
not be fulfilled. For example, current handheld cameras have only one objective.
Moreover, a large amount of material has already been acquired as monocular
sequences and needs to be converted. In such cases, depth perception should be
inferred only through monocular cues. Although monocular cues are less reliable
than stereo cues, humans can do this task with ease.
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Fig. 1. Scheme of the proposed system. From three consecutive frames of a sequence
(green blocks), a 2.1D map is estimated (red block)

The 2.1D model is an intermediate state between 2D images and full/absolute
3D maps, representing the image as a partition with its regions ordered by its
relative depth. State of the art depth ordering systems on monocular sequences
focus on the extraction of foreground regions from the background. Although this
may be appropriate for some applications, more information can be extracted
from an image sequence. The approach in [3] provides a pseudo-depth estima-
tion to detect occlusion boundaries from optical flow. References [4,5] estimate
a layered image representation of the scene. Whereas, references [6,7] attempt to
retrieve a full depth map from a monocular image sequence, under some assump-
tions/restrictions about the scene structure which may not be fulfilled in typical
sequences. The work [8] assigns figure/ground (f/g) labels to detected occlusion
boundaries. f/g labeling provides a quantitative measure of depth ordering, as it
assigns a local depth gradient at each occlusion boundary. Although f/g labeling
is an interesting field of study, it does not offer a dense depth representation.

A good monocular cue to determine a 2.1D map of the scene is motion occlu-
sion. When objects move, background regions (dis)appear, creating occlusions.
Humans use these occlusions to detect the relative depth between scene regions.
The proposed work assesses the performance of these cues in a fully automated
system. To this end, the process is divided as shown in Figure 1 and presented
as follows. First, the optical flow is used in Section 2 to introduce motion infor-
mation for the BPT [9] construction and in Section 3 to estimate (dis)occluded
points. Next, to find both occlusion relations and a partition of the current frame,
the energy minimization technique described in Section 4 is used. Lastly, the re-
gions of this partition are ordered, generating a 2.1D map. Results compared
with [8] are exposed in Section 5.

2 Optical Flow and Image Representation

As shown in Figure 2, to determine the depth order of frame It, the previous
It−1 and following It+1 frames are used. Forward wt−1,t, wt,t+1 and backward
flows wt,t−1, wt+1,t can be estimated using [10]. For two given temporal indices
a, b, the optical flow vector wa,b maps each pixel of Ia to one pixel in Ib.
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Fig. 2. Left: color code used to represent optical flow values. Three consecutive frames
are presented in the top row, It−1 ,It in red and It+1. In the bottom row, from left to
right, the wt−1,t,wt,t−1,wt,t+1,wt+1,t flows are shown.

Once the optical flows are computed, a BPT is built [11]. The BPT begins
with an initial partition (here a partition where each pixel forms a region).
Iteratively, the two most similar neighboring regions according to a predefined
distance are merged and the process is repeated until only one region is left. The
BPT describes a set of regions organized in a tree structure and this hierarchical
structure represents the inclusion relationship between regions. Although the
construction process is an active field of study, it is not the main purpose of this
paper and we chose the distance defined in [11] to build the BPT: the region
distance is defined using color, area, shape and motion information.

3 Motion Occlusions from Optical Flow

When only one point of view is available, humans take profit of monocular depth
cues to retrieve the scene structure: motion parallax and motion occlusions.
Motion parallax assumes still scenes, and it is able to retrieve the absolute depth.
Occlusions may work in dynamic scenes but only offer insights about relative
depth. Since motion occlusions appear in more situations and do not make any
assumptions, they are selected here. Motion occlusions can be detected with
several approaches [12,13]. In this work, however, a different approach is followed
as it gave better results in practice.

Using three frames It−1, It, It+1, it is possible to detect pixels becoming oc-
cluded from It to It+1 and pixels becoming visible (disoccluded) from It−1 to It.
To detect motion occlusions, the optical flow between an image pair (It, Iq) is
used with q = t± 1. To obtain occluded pixels q = t+ 1, while disoccluded are
obtained when q = t− 1.

Flow estimation attempts to find a matching for each pixel between two
frames. If a pixel is visible in both frames, the flow estimation is likely to find
the true matching. If, however, the pixel becomes (dis)occluded, the matching
will not be against its true peer. In the case of occlusion, two pixels pa and pb
in It will be matched with the same pixel pm in frame Iq:
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pa +wt,q(pa) = pb +wt,q(pb) = pm (1)

Equation (1) implicitly tells that either pa or pb is occluded. It is likely that the
non occluded pixel neighborhood is highly correlated in both frames. Therefore,
to decide which one is the occluded pixel, a patch distance is computed:

D(px,pm) =
∑

d∈Γ

(Iq(pm + d)− It(px + d))
2

(2)

with px = pa or pb. The pixel with maximum D(px, pm) value is decided to be
the occluded pixel. The neighborhood Γ is a 5 × 5 square window centered at
px but results are similar with windows of size 3× 3 or 7× 7.

Occluded and disoccluded pixels may be useful to some extent (e.g. to im-
prove optical flow estimation, [12]). To retrieve a 2.1D map, an (dis)occluded-
(dis)occluding relation is needed to create a depth order. (Dis)occluding pixels
are pixels in It that will be in front of their (dis)occluded peer in Iq. There-
fore, using these relations it is possible to order different regions in the frame
according to depth. In the proposed system, occlusion relations estimation is
postponed until the BPT representation is available, see Section 4.1. The rea-
son to do so is because raw estimated optical flows are not reliable in occluded
points. Nevertheless, with the knowledge of region information it is possible to
fit optical flow models to regions and provide confident optical flow values even
for (dis)occluded points.

4 Depth Order Retrieval

Once the optical flow is estimated and the BPT is constructed, the last step of
the system is to retrieve a suitable partition to depth order its regions. There
are many ways to obtain a partition from a hierarchical representation [14,15,9].
In this work an energy minimization strategy is proposed. The complete process
comprises two energy minimization steps to find the final partition. Since raw
optical flows are not reliable at (dis)occluded points, a first step allows us to
find a partition Pf where an optical flow model is fitted in each region. When
the occlusion relations are estimated, the second step finds a second partition Pd

attempting to maintain occluded-occluding pairs in different regions. The final
stage of the system relates regions in Pd according to their relative depth.

Obtaining Pf and Pd is performed using the same energy minimization algo-
rithm. For this reason, the general algorithm is presented first in Section 4.1 and
then it is particularized for each step in the following subsections.

4.1 General Energy Minimization on BPTs

A partition P , can be represented by a vector x of binary variables xi = {0, 1}
with i = 1..N , one for each region Ri forming the BPT. If xi = 1, Ri is in the
partition, otherwise xi = 0. Although there are a total of 2N possible vectors,
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Algorithm 1. Optimal Partition Selection

function OptimalSubTree(Region Ri)
Rl, Rr ← (LeftChild(Ri),RightChild(Ri))
(ci,oi)← (Er(Ri), Ri)
(ol, cl)← OptimalSubTree(Rl)
(or, cr)← OptimalSubTree(Rr)
if ci < cr + cl then

OptimalSubTree(Ri) ← (oi, ci)
else

OptimalSubTree(Ri) ← (ol

⋃
or, cl + cr)

end if
end function

only a reduced subset may represent a partition, as shown in Figure 3. A given
vector x is a valid vector if one, and only one, region in every BPT branch has
xi = 1. A branch is the sequence of regions from a leaf to the root of the tree.
Intuitively speaking, if a region Ri is forming the partition P (xi = 1), no other
region Rj enclosed or enclosing Ri may have xj = 1. This can be expressed as a
linear constraint A on the vector x. A is provided for the case in Figure 3:

Ax = 1

⎛

⎜⎜⎝

1 0 0 0 1 0 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0 0 1 0 1 1

⎞

⎟⎟⎠x = 1 (3)

Where 1 is a vector containing all ones. The proposed optimization scheme finds
a partition that minimizes energy functions of the type:

x∗ = argmin
x

E(x) = argmin
x

∑

Ri∈BPT

Er(Ri)xi (4)

s.t. Ax = 1 xi = {0, 1} (5)

where Er(Ri) is a function that depends only of the internal characteristics of
the region (mean color or shape, for example). If that is the case, Algorithm 1
uses dynamic programming (Viterbi like) to find the optimal x∗.

Fitting the Flows and Finding Occlusion Relations. As stated in Section
3, the algorithm [10] does not provide reliable flow values at (dis)occluded points.
Therefore, to be able to determine consistent occlusion relations, the flow in
non-occluded areas is extrapolated to these points by finding a partition Pf and
estimating a parametric projective model [16] in each region. The set of regions
that best fits to these models is computed using Algorithm 1 with Er(Ri):

Er(Ri) =
∑

q=t±1

∑

x,y∈Ri

∣∣wt,q(x, y)− w̃t,q
Ri

(x, y)
∣∣+ λf (6)
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Valid x = (x1, . . . , x7)
T :

x1 = (1, 1, 1, 1, 0, 0, 0)T

x2 = (0, 0, 1, 1, 1, 0, 0)T

x3 = (1, 1, 0, 0, 0, 1, 0)T

x4 = (0, 0, 0, 0, 1, 1, 0)T

x5 = (0, 0, 0, 0, 0, 0, 1)T

Not valid:

xI = (1, 1, 0, 0, 1, 0, 0)T

R7

R5

R1 R2

R6

R3 R4

R7

R5

R1 R2

R6

R3 R4

Fig. 3. Right: list of all the possible prunings and the invalid pruning of the rightmost
figure. Center: Small BPT with green nodes marked forming the pruning x3. Right:
Same BPT, but the marked nodes form an invalid pruning xI .

Fig. 4. From left to right. Keyframe with the region borders overlaid in white. Forward
and backward estimated flows (top, bottom respectively) and modeled flows. Keyframe
with occluded (red) and occluding (green) pixels overlaid.

The modeled flow w̃t,q
Ri

is estimated by robust regression [17] for each region Ri.

The constant λf = 4 × 103 is used to prevent oversegmentation and was found
experimentally and proved not to be crucial in the overall system performance.

Occlusion relations estimation. With the partition Pf and a flow model available
for each region, occlusion relations can be reliably estimated. The (dis)occluding
pixel is the forward mapping from It to Iq using w̃t,q

Ri
, back-projected to image It

using wq,t . q = t−1, t+1 for disocclusions and occlusions relations respectively:

po = pu + w̃t,q
Ri

(pu) +wq,t(pu + w̃t,q
Ri

(pu)) (7)

with pu ∈ Ri. Flow fitting and occlusion relations are shown in Figure 4.

Finding the Final Depth Regions. Once the motion flows are modeled
for each region of Pf , occlusion relations can be estimated using (7). Since each
relation comprises two different pixels (pu,po), we can use the region information
in the BPT to propagate these relations to obtain occlusion relations between
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Fig. 5.Depth ordering example. From left to right, top to bottom. Final depth partition
with region number. Estimated occluded points in red and occluding points in green.
Initial graph. Final graph where cycles have been removed. Depth order image (the
brighter the region, the closer).

regions. Therefore, given a partition P , if pu is in a region Ri and po is in a
different region Rj , we can conclude that Rj is in front of Ri. However, if both
pixels belong to the same region, no relation can be established, since a region
cannot be in front of itself. As a result, the pruning idea is to obtain a partition Pd

(generally different from Pf ) from the BPT which maintains occluded-occluding
pairs in different regions, keeping a simple partition. The Algorithm 1 is also
used with energy function:

Er(Ri) =
∑

(pu,po)∈Ri

1

No
+ λo (8)

Where No is the total number of estimated occlusion relations. Equation (8)
establishes a compromise between the number of occlusion relations kept and
the simplicity (the number of regions) of the partition. To avoid oversegmented
solutions for Pd, λo = 4× 10−3 is introduced.

4.2 Depth Ordering

Once the final partition D is obtained with the energy defined in (8), a graph
G = (V,E) is constructed to allow a global reasoning about local depth cues to be
done and in particular to deal with conflicting depth information. The vertices V
represent the regions of D and the edges E represent occlusion relations between
regions. An edge ei = (va, vb, pi) goes from node va to node vb if there are
occlusion relations between region Ra and region Rb. The weight pi = Nab/No

where Nab is the number of occlusion relations between both regions.
To be able to determine a depth order between regions, G should be acyclic.

To this purpose, the algorithm defined in [11] is used. It iteratively finds low con-
fident occlusion relations and breaks cycles. Once all cycles have been removed
in G, a topological partial sort [18] is applied and each region is assigned a depth
order. Regions which have no depth relation, are assigned the depth of their most
similar adjacent region according to the distance in the BPT construction. The
complete process is illustrated in Figure 5 with a simple example.
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Fig. 6. Results on the CMU dataset. From left to right, for the two columns. 1)
Keyframe image and 2) image with occlusion relations (green occluding, red occluded).
3) estimated depth partition, with white regions meaning closer and black meaning fur-
ther. 4) Figure/ground assignment on contours with green and red overlaid marking
figure and ground regions, respectively.

Table 1. Our method vs. [8] on the percentage of correct f/g assignments

Dataset CMU BDS

[8] 83.8 % 68.6 %

Proposed system 88.0 % 92.5 %

5 Results

The evaluation of the system is performed at keyframes of several sequences,
comparing the assigned f/g contours against the ground-truth assignments.When
two depth planes meet, the part of the contour belonging to the closest region is
assigned figure, or ground otherwise, see Figure 6. The datasets are the Carneige
Mellon Dataset (CMU) [19] and the Berkeley Dataset (BDS) [8]. Results contain
sequences with ground-truth data (30 for the CMU, 42 for the BDS). Table 1
shows the percentage of correct f/g assignments on detected contours.

It can be seen in Table 1 that the proposed system outperforms the one
presented in [8], showing that motion occlusions are a reliable cue for depth
ordering. Results of depth ordering can be seen in Figures 6 and 7, showing that
motion occlusions may work over a variety of situations: static scenes, moving
foregrounds, moving background or even multiple moving objects.

It is interesting to take a closer look at results in Figure 6 and the occlusion-
relation estimation, shown in the second column for each image. In spite of the
simplicity of the optical flow estimation algorithm, occlusion points were reliably
estimated. Modeling the flows with a projective model provides reliable flow
information and proved to be a crucial step for occlusion relations estimation.
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Fig. 7. Results on some of the sequences of the BDS dataset. For each column, the
right image corresponds to the keyframe with figure/ground assignments on contours
overlaid. The left image correspond to the final depth ordered partition.

6 Conclusions

In this work, a system inferring the relative depth order of the different regions of
a frame relying only on motion occlusion has been described. Combining a vari-
ational approach for optical flow estimation and a region based representation
of the image we have developed a reliable system to detect occlusion relations
and to create depth ordered partitions using only these depth cues. Comparison
with the state of the art shows that motion occlusions are very reliable cues. The
presented approach, although using only motion information to detect bound-
aries, achieves better results on f/g assignment than [8] which is considered as
the state of the art in f/g assignment.

There are many possible extensions to the proposed system. First, to provide
more occlusion information on a given frame, a bigger temporal window could be
used to retrieve motion occlusions. Second, we can take profit of other monoc-
ular depth cues, such as T-junctions and convexity to help on motionless depth
relations. Although state of the art results on these cues [11] show that they are
less reliable than motion occlusions, they could be a good complement to the
system. We believe also that occlusions caused by motions can be propagated
throughout the sequence to infer a consistent depth ordering across multiple
frames. Since results on single frames are promising, sequence depth ordering
seems plausible.
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