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Abstract. Occlusions over facial surfaces cause performance degradation for
face registration and recognition systems. In this work, we propose an occlusion-
resistant three-dimensional face registration method. First, the nose area is de-
tected on a probe face using curvedness-weighted convex shape index map. Then,
probable eye and mouth patches are detected and checked for validity. An adap-
tive model is constructed by selecting valid patches of the average face model.
Finally, registration is handled with the Iterative Closest Point algorithm, where
the adaptive model is used as the reference. The UMB-DB face database is used
to evaluate the registration system: The nose detector has 100% and 93.90% ac-
curacy, for the non-occluded and occluded images, respectively. A simple global
depth-based recognition experiment is done to evaluate the registration perfor-
mance: Our adaptive model-based registration scheme improves rank-1 recogni-
tion rate by 16%, when compared with the nose-based alignment approach.

Keywords: 3D face registration, regional face registration, face registration un-
der occlusion.

1 Introduction

Face is a preferred biometric, due to its contactless acquisition and applicability to non-
cooperative scenarios. Recent studies have shown that in the three-dimensional (3D)
domain; challenges such as illumination and pose can be better handled. However, deal-
ing with extreme occlusion variations remains a challenging task. When occlusions are
present, 3D face registration algorithms fail to provide accurate facial point correspon-
dences due to occluding surface points. The resulting alignment between facial surfaces
is usually incorrect, leading to low recognition rates.

There are only a few studies dealing with the occluded 3D face recognition problem.
In [1], a face recognition system composed of occlusion detection and restoration stages
is proposed. However, experiments are conducted on synthetic occlusions. Initially, the
non-occluded facial surfaces are registered using manually annotated landmark points,
and then the artificial occlusions are added. In [2], a 3D face detection algorithm is
proposed to deal with partially occluded faces where inner eye corners and the nose
tip are detected based on curvature information. Then, a set of candidate triplets are
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Fig. 1. Diagram of the proposed registration method

formed and registered to the average face using a variant of the ICP. In [3], an occlusion
invariant 3D face recognizer is proposed, which employs a nose-based face registration.
The nose region is first localized using curvature information and faces are then aligned
to a generic nose model. Both in [2] and [3], registration is only dependent on the nasal
area, which can be insufficient for a fine alignment. There are other studies regarding
partial or regional matching of 3D surfaces: In [4], a partial ICP approach is proposed, in
which a subset of nearest point pairs are utilized to calculate the alignment. In [5], a two
phase registration scheme is implemented, where the faces are initially registered to a
whole face model, and subsequently separate regional registrations are obtained. In [6],
a similar regional approach is employed, where a large set of regional alignments are
performed. In [7], a semi-rigid region composed of forehead and nose area is utilized for
alignment. Although in [4–7] the aim is to improve the alignment, these methods are
developed to deal with surface deformations caused by expression variations. Hence,
they are not applicable to occlusion variations.

In this work, we propose an occlusion invariant 3D facial registration method. We
handle registration by an adaptive model-based approach which assumes partial visi-
bility of the nose. Prior to registration, nose detection is employed and is used to lo-
cate eye and mouth patches. Detected patches are then evaluated for their validity. The
corresponding valid (occlusion-free) patches of the average face model are selected to
construct an adaptive face model. ICP alignment with the adaptive model is able to dis-
card the occluded surface points for point matching. Experiments on the UMB-DB [8]
database, show that the adaptive registration attains better registration and identification
accuracy under occlusion variations when compared to the nose-based scheme of [3].

2 Proposed Registration System

The proposed face registration system has three phases: (1) nose detection via curvature
maps, providing an initialization for fine registration; (2) facial patch localization and
validation to form an adaptive face model; (3) model based fine registration via ICP.
The overall diagram of the system is given in Figure 1. Details about each phase are
given in the following subsections.

2.1 Nose Detection

For rigid alignment of 3D surfaces, Iterative Closest Point (ICP) algorithm [9] is a
widely used method. However, like many of the other iterative approaches,



Adaptive Registration for Occlusion Robust 3D Face Recognition 559

performance of ICP relies greatly on the initial conditions. Therefore, an initial align-
ment should be provided, which will be improved in further iterations. For the surface
initialization, most of the 3D face recognition systems depend on accurate localization
of facial landmark points [10], [11], [12]. However, when occlusions are present over
the facial surface, localization of fiducial points fails. Since facial occlusions may occur
over the nose area, our nose detector assumes partial visibility of the complete nose
structure with the help of local nasal surface sub-patches (See Section 2.2 for further
details).

The nose detection algorithm [3] utilizes surface curvature information, which pro-
vides an advantage due to its rotation and translation invariance. Two curvature maps
are computed for a given surface, namely the shape index map and the curvedness
map. These measures of the local surface, was introduced in [13], computed using the
maximum (κmax) and the minimum (κmin) curvatures. The transformation separates
components that are dependent or independent of scale [14]. Scale-independent com-
ponents, such as shape index, provide the distinction between spherical and cylindrical
surfaces. On the other hand, the scale-dependent components, such as curvedness, give
the magnitude of the curvature. The shape index value SI(i) at surface point i can be
computed from κmax and κmin:

SI(i) =
1

2
− 1

π
tan−1κmax(i) + κmin(i)

κmax(i)− κmin(i)
(1)

The shape index map SI takes values in [0, 1] and provides a smooth transition between
concave (0 < SI(i) < 0.5) and convex (0.5 < SI(i) < 1) shapes. As the scale-
dependent counterpart of shape index, curvedness measures the rate of curvature at
each point:

C(i) =

√
κmin(i)2 + κmax(i)2

2
. (2)

A planar surface will have a curvedness of zero, whereas a non-planar surface will
have a curvedness value proportional to its rate of curvature. The nose detector first
constructs shape index and curvedness maps. Since nose is a convex structure, the SI
map is thresholded (by 0.5) to eliminate concave regions. The convex SI map, denoted
as SIcx, is defined as

SIcx(i) =

{
0 if SI(i) < 0.5

SI(i) otherwise.
(3)

After concave regions are eliminated, SIcx is weighted with curvedness [15] to inte-
grate scale-dependent and scale-independent components:

WSI(i) = SIcx(i) ∗C(i) (4)

Here, WSI denotes the curvedness-weighted convex shape index. In Figure 2, the
maps constructed at each step are given for an example facial image. The maps illus-
trated are: SI , SIcx, C , and WSI .

As illustrated in Figure 2, the nose region appears as a distinct fork-shaped structure
in the WSI map. To locate the nose area, template matching is employed. For the con-
struction of the nose template, an average face model is created by the Thin Plate Spline
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(a) (b) (c) (d) (e)

Fig. 2. Curvature maps utilized for nose detection are illustrated on an example image: (a) depth
image, (b) shape index, (c) convex shape index, (d) curvedness, and (e) weighted convex shape
index.

warping, where a set of registered non-occluded neutral training images are used [16].
Then, the average nose model is obtained by manually cropping the face model. The
WSI map for the nose model is constructed to serve as the nose template. Given a test
image, template matching is performed by normalized cross-correlation, and the region
which mostly resembles the nose structure is located.

2.2 Patch Selection and Adaptive Registration

In [3], only local nose regions were considered for occlusion invariant registration. After
nose detection, the probe surface was registered using an average nose-region model.
However, this approach has shortcomings. Relying solely on the nasal region for the
overall face alignment might be suboptimal; especially if the borders of the nose region
are affected by occlusions. Additionally, any problems on the nose surface structure,
either due to acquisition errors or uncommon nose shapes, may lead to inaccurate facial
surface registration. Here, we propose to utilize an adaptive face model. The idea is
to adaptively detect and include other non-occluded facial regions such as eyes and
mouth automatically to form an adaptive face model for registration. For instance, if
the left side of a face is occluded by a hand (See Figure 1), our adaptive face model will
automatically be constructed using the non-occluded regions such as right eye, mouth
and nose. Then, combined regional models are used for alignment estimation instead of
using only the nasal region.

Using the detected location of the nose area, we find other patch locations. In Fig-
ure 3, the patch division scheme is shown on the first image. However, not all of the fa-
cial patches are beneficial for registration. Therefore, we use a subset of these patches.
The patches we use are: nose, left/right eye, and mouth. We also have sub-patches
such as left/right nose halves, upper/lower nose halves. Hierarchical division of patches
into sub-patches enables us to discard regions where occlusion artifacts are present. To
construct average patch models, initially an average face model is generated using the
method of [16]. Afterwards, for each patch, an average patch model is constructed by
cropping the average face model. From each model, the WSI map is computed to de-
fine the patch template. Using these templates, corresponding patch regions on a given
face are detected via template matching based on normalized cross correlation. To limit
the search space for the localization of each patch, we compute the probable patch cen-
ter of a probe face using the relative displacements vectors between patch centers of the
average face model. Additionally, a predefined bounding box around each patch center
is utilized. Due to occlusions over the face, some patches will not be visible and cannot
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Fig. 3. Facial patches and the adaptive models utilized in registration are given. The first image
shows the division scheme utilized for patch construction. To construct the adaptive models,
combination of nose, eye, and mouth patches are considered.

be located correctly. Therefore, in order to determine the validity of each patch, thresh-
olding is applied on template matching scores. The thresholds used for patch validity
are calculated from patches of a separate non-occluded neutral database, namely the
neutral subset of the FRGC v.2 [17]. The probe patches that have dissimilarity scores
below the threshold define the valid parts. Here, the patch localization and validation
steps are not used to detect patches of the probe face to be used in registration. The va-
lidity information of patches are only used for the model selection: The respective valid
patches are selected from the average face model to constitute the adaptive patch-based
model for the respective probe face. In Figure 3, the 17 adaptive models utilized in
the registration process are shown (the first image was included to show patch division
scheme). After adaptive model construction, the whole probe surface is aligned to the
adaptive model via ICP, where ICP estimates the alignment parameters using only the
non-occluded regions. Hence, the overall registration approach becomes insensitive to
occlusions.

3 Experimental Results

3.1 Databases

In our experiments, we have used two face databases: (1) The FRGCv2 [17], including
non-occluded acquisitions; (2) The UMB-DB 3D database [8], including expression
and large range of occlusion variations. The FRGCv2 is used for the construction of the
average face and patch models, and for the determination of threshold values used for
validity check over template matching scores. This database consists of 4007 scans and
we use only the neutral faces (2365 scans of 466 subjects). The UMB-DB database is
acquired from 142 subjects with a total of 1473 scans. The non-occluded acquisitions
include four facial expressions. The number of non-occluded scans is 883, and 441 of
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Fig. 4. Sample faces from the UMB-DB

these are neutral. The remaining 590 scans constitute the challenging occlusion sub-
set. The occlusions can be caused by hair, eyeglasses, hands, hats, scarves, and other
objects (see Figure 4 for images taken from [8] and Table 1 second column for the num-
ber of scan variations). For the occluded faces, ground truth occlusion masks are also
available.

3.2 Nose Detection Accuracy

We have located nose regions automatically in the whole UMB-DB database and in-
spected the results visually. In Table 1, the number of correct detections are given in the
third column. The nose regions in the non-occluded scans are successfully located. In
the occluded subset, the nose detector obtains high performance with a detection per-
formance of 93.90%. Our nose detector is quite robust to occlusions: In 245 of the 590
occluded images, the nose area was occluded and for 75% of the incorrectly detected
36 images, the nose area was more than 50% occluded. Even for the scarf occlusions,
where the nose area is not visible, the detection rate is quite high (92.72%). In Figure 5,
some detection examples of challenging occlusions are given. Our detection rates are
similar to the face detection results provided in [8] (553 detections out of 590). We also
applied our detection algorithm on the FRGCv2, where the nose areas are detected with
100% accuracy (by visual inspection) both on the neutral subset (2365 scans) and the
non-neutral subset (1642 scans). As stated earlier, it is sufficient for us to detect the
nose area approximately since the subsequent ICP registration handles fine registration
using patch-based adaptive models.

Fig. 5. Correct (first row) and incorrect (second row) nose detections.
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Table 1. Nose detection performances on the UMB-DB database

Acquisition Sample Detected Noses
Type Count (Detection Rates)
Neutral (Gallery) 142 142 (100.00%)
Neutral (Probe) 299 299 (100.00%)
Non-neutral 442 442 (100.00%)
Occlusion 590 554 (93.90%)
Occlusion Type
Scarf 151 140 (92.72%)
Glasses 75 74 (98.67%)
Hair 33 27 (81.82%)
Hand 165 152 (92.12%)
Hat 183 181 (98.91%)
Other 38 33 (86.84%)

3.3 Patch Validation and Selection Accuracy

After nose detection, the patches of a probe face are estimated and checked for valid-
ity. Using validated patches, the corresponding model of the probe face is constructed
adaptively. The thresholds used for patch validation are determined from the template
matching scores of the FRGCv2 neutral subset. These thresholds are used to set patch
validity flags of the UMB-DB scans. When the model selection results are analyzed, it
is seen that in 77 out of 590 occlusion scans, the model selection is erroneous. In 36 of
the 77 errors, the nose detection prior to patch validation fails. In the other 41 scans,
some of the patches are selected incorrectly: These errors appear mostly in the mouth
area.

3.4 Registration Accuracy

To evaluate the registration performance, we have constructed a simple recognition ex-
periment. As facial features, we have used depth images: The depth images are obtained
by resampling the surfaces from a regular grid, which enables sufficient computation
of distances using only the z coordinates. To evaluate the performance of registra-
tion, ground truth masks are employed, where non-occluded parts are annotated for the
UMB-DB occlusion variations. Using these masks, the occluding parts are discarded
from the registered depth images. Then, a depth-based classifier is employed: the aver-
aged l1-norm between occlusion-removed probe and gallery depth images are computed
and 1-nearest neighbor classification is performed. The identification experiment is con-
ducted with three different registration approaches: (1) global face model-based ICP, as
a baseline approach; (2) nose model-based ICP, which was previously used in [3]; and
(3) the proposed adaptive model-based registration. In Table 2, recognition rates for the
UMB-DB database are given in the columns labeled by “manual occlusion removal”.
The gallery set contains first neutral scan of each of the 142 subjects.

When the identification results (with manual occlusion removal) in Table 2 are ana-
lyzed, it is clear that using a larger model is beneficial for the non-occluded scans: For
the neutral and non-neutral subsets, best performances are obtained when the whole
face model is utilized. The adaptive model based registration has comparable results
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Table 2. Identification performances on the UMB-DB database. The reported baseline identifica-
tion accuracy for the occlusion subset of this database is 56.50% [8].

Recognition Rates(%)
Acquisition Manual Occlusion Removal Automatic Identification
Type Face Model Nose Model Adaptive Model Adaptive Model
Neutral (Probe) 98.66 88.63 97.32 96.99
Non-neutral 71.49 67.87 70.14 82.35
Occlusion 44.58 48.98 65.08 67.63
Occlusion Type
Scarf 21.85 28.48 41.72 41.72
Glasses 84.00 64.00 80.00 88.00
Hair 54.55 48.48 66.67 66.67
Hand 16.36 32.12 58.79 63.64
Hat 63.40 73.77 83.61 81.42
Other 28.95 52.63 60.53 68.64

with the facial model, even though the adaptive model has at least 47.7% fewer surface
points. This shows that the patch regions provide sufficient information for registration.
It is also clear that the adaptive model based registration is superior to the face or nose
model based ICP, when faces have occlusions. The face model based registration is not
successful on occluded faces (44.58%). By comparing classification results, we clearly
see the advantage of the adaptive model (65.08%) over the nose model (48.98%). Fur-
thermore, analysis of performances for different occlusion types are included in Table 2.
In most of the scarf occlusions, the lower half of the face including the nose area is oc-
cluded. Therefore using a face or a nose model cannot provide acceptable registration.
However, for the adaptive approach, the valid eye patches are used and the identifica-
tion rate is improved. In the hair, hand, and hat occlusions, the adaptive model is always
better than face and nose model registrations. In comparison, the nose model covers a
much smaller area, and is less prone to occlusions. However, even a small portion of
an occlusion appearing in the nasal area will affect the final registration significantly.
When valid eye and mouth regions are included in the model, alignment disruptions
will be corrected. For the eyeglasses case, the registration scheme depending on a face
model is slightly better than the adaptive method since glasses can sometimes invalidate
the eye regions.

It should be stressed that depth-based identification performances with manually re-
moved occlusions are only provided to indicate the relative standing of the registration
approaches. A recognition approach based on a more advanced representation method
is expected to give better recognition performance. We are continuing our studies to
develop such an approach. However, we have obtained preliminary occlusion-invariant
automatic classification results, where the adaptive model of the probe face is used to
define the validity mask for classification. The respective valid points on the probe and
gallery faces are then used to compute dissimilarity values. This system is automatic,
since no manually labeled occlusion masks are considered. The identification rates of
the fully automatic system are given in the last column of Table 2. It is clear that, for the
neutral scans, it is beneficial to use the whole face. However, for non-neutral and oc-
clusion scans, automatically defining valid regions and using them at the classification
phase by the adaptive model is beneficial: It achieves even better identification rates
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(67.32%) than by using manually removed occlusions (65.08%). Our automatic iden-
tification results are also better than the results presented in [8] where the PCA-based
classifier attains 56.50% identification rate on restored faces after occlusion removal.

4 Conclusion

In this work, we have proposed a 3D face registration system which is robust to occlu-
sions: For the experiments, we have used the challenging UMB-DB, which is reported
to have a baseline identification accuracy of 56.50% [8]. Our experiments show that the
adaptive model based registration is beneficial for occluded faces: Noses on the non-
occluded scans can be detected with 100% accuracy, whereas for the occluded scans,
the performance of the nose detector is still very high (93.90%). With an identification
experiment, we have shown that, under extreme occlusions, face and nose model-based
registrations fail. The proposed scheme, on the other hand, is able to cope with occlu-
sions: The depth-based classifier on occlusion-removed faces shows an improvement
of 16%: from 48.98% (nose model) to 65.08% (adaptive model). The preliminary auto-
matic identification results show that it is beneficial to use the adaptive model regions
for classification.
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