
Robust and Computationally Efficient Face

Detection Using Gaussian Derivative Features
of Higher Orders

John A. Ruiz-Hernandez1, James L. Crowley2, Claudine Combe2,
Augustin Lux2, and Matti Pietikäinen1
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Abstract. In this paper, we show that a cascade of classifiers using
Gaussian derivatives features up to fourth order can be used efficiently
to improve the detection performance and robustness as well when com-
pared with the popular approaches using Haar-like features or using
Gaussian derivatives of lower order. We also present a new training
method that structures the cascade detection so as to use the least
expensive derivatives in the initial stages, so as to reduce the overall
computational cost of detection. We demonstrate these improvements
with experiments using two publicly available datasets (MIT+CMU and
FDDB), in the face detection problem, in addition we perform several
experiment to show the robustness of Gaussian derivatives when several
transformations are presented in the image.

Keywords: Higher-Order Gaussian Derivatives, Cascade of Classifiers,
Face Detection, Half-Octave Gaussian Pyramid.

1 Introduction

Improvements in the cascades of classifiers to deal with the constraints of speed
and robustness can be performed in two different ways, optimizing the cascade
learning algorithm or finding a more robust set of features. In this paper we
propose a combination of these two techniques. In a first time, to address this
limitation, we have explored the use of a cascade detector using Gaussian deriva-
tive features of higher order, computed in real time with a half-octave Gaussian
pyramid [1] as was proposed by Ruiz-Hernandez et al. [2]. We have found that
including derivative features up to the fourth order in the cascade can reduce
the overall computational cost, while providing improved robustness to image
plane rotation and as well as extend detection to lower resolution images. Gaus-
sian derivative features also make it possible to structure the detection cascade
in a manner that further reduces computational cost by using lower cost fea-
tures in the lower levels of the cascade where the great majority of empty face
sub-windows are rejected. We will take profit of this property to propose a new
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training algorithm that takes into account the computational cost of each deriva-
tive order.

1.1 Principal Contributions

– We propose a speed-optimized cascade framework which takes into account
the computational complexity of Gaussian derivatives and the local appear-
ance information provided by different derivative orders to select its adequate
position in the cascade.

– Use of Gaussian derivatives up to the fourth order are considered in a cascade
of classifiers. Despite its high sensitivity to noise, experiments show that
inclusion of higher order derivatives improves detection rates.

– We propose a new metric to compute computational load based on the num-
ber of requests to the image representation which is more suitable for evalu-
ating feature performance in face detection.

– We perform several experiments for comparing the performance between
Gaussian derivative features and Haar-like features when the input image is
modified by different transformations such as contrast, noise and rotation.

To present and develop our hypothesis, this paper is organized as follows: Re-
lated works and theoretical background are reviewed in Section 1.2. A cascade
framework for training speed-optimized cascades of Gaussian derivatives features
is presented in Section 2 and experimental results are presented in Sections 3.
Section 4 closes the paper with some concluding remarks.

1.2 Related Work and Theoretical Background

In this section we provide review of previous works related with these paper. For
a more comprehensive summary of works in face detection we refer the reader
to [3] and recently to [4].

A number of researchers have recently proposed methods to improve detection
speed by using different feature types in the same cascade. Meynet et al. [5]
proposed a cascade in which the first five nodes were composed of Haar-like
features followed by nodes composed of anisotropic Gaussian filters. Xiaohua
et al. [6] have explored the use of Haar-like features in the first nodes followed
by nodes computed using an approximation of Gabor filters computed from
an integral image. Roy and Marcel [7] proposed Haar Local Binary Patterns
and Yan et al. [8] Locally assembled Binary features. Ruiz-Hernandez et al. [2]
proposed to use Gaussian derivatives features up to the second order with some
promising results, nevertheless the the paper does not propose to use higher
derivatives orders, in addition, there is no intention to find an optimization
method that takes into account the computational cost of each derivative order
or a large experimental protocol to show the performance of their approach.
Despite the detection speed and robustness improvements in the approaches
above mentioned, the use of multiple image representations to perform a single
task can pose serious problems in embedded systems because of tight constraints
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on available memory and computing. Using a Gaussian Pyramid to compute
Gaussian derivatives can avoid such problems by providing image features of
increasing complexity from a single underlying image representation, besides
Gaussian derivatives can be used as image representation in a complex processing
pipeline for embedded facial analysis and biometrics systems.

1.3 Computational Cost of Cascade Classifiers

A quantitative measure for the run-time computational cost has been proposed
by Brubaker et al. [9]. This measure, referred to as ”Computation load”, captures
the computational cost for classifying a sub-window with the node, including the
cost of features belonging to previous nodes.

E[Ti] = ri

i∑

k=1

Mk where ri = (i − pi)

i−1∏

j=1

pj (1)

Where E[Ti] is the expected computational load for an stage i in the cascade,
Mk is the number of features in the node k, pi is the fraction of sub-windows
rejected by the node i and ri is the fraction of the decided sub-windows in the
node i.

Brubaker et al. [9] defined the decided sub-windows for a node i as the sub-
windows that are not passed on to a following node, either because they have
been rejected as non-face, or because they have been accepted as a face in the
case of a terminal node.

1.4 Computational Cost with Different Types of Features

As shown in Equation 1 the computational load is calculated based in the number
of features applied by layer. To extend this concept to compare cascades with
different types of features, we propose to use the number of requests for features
per mode Rk.

E[Ti] = ri

i∑

k=1

Rk (2)

A request is defined as a simple memory access made by the cascade to the image
representation such as an integral image or a Half-Octave pyramid. Multiple
requests may be necessaries to compute a simple feature in the node k of the
cascade.

1.5 Gaussian Derivatives as a Feature Set

The choice of feature set has an important impact on detection rate as well as
the scan speed of a cascade detector. We have explored a feature space composed
by derivative orders up to four. Derivatives are computed at four different ori-
entations θ = {0, π/4, π/2, 3π/4} in a 24× 24 pixel window for all the real sample
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positions available in a Gaussian pyramid of three levels σ =
{√

2, 2, 2
√
2
}
. In

this way, a 24× 24 pixel window gives rise to 8064 possible derivative features.
To test the performance of Gaussian derivatives features, we defined four

different feature sets as shown in Table 1. We trained four cascades (one for each
feature set) using the algorithms and the training set explained in preceding
sections. Each cascade is composed of 21 nodes, except for the cascade trained
with the feature set number 3 that has 22. For each trained cascade, we measure
the node performance as the false negative rate in the validation set for each node
in each cascade and we show the results in Figure 1, the experiment demonstrate
that adding high-order Gaussian derivatives reduces the false negative rate for
a given node during the training process. In this experiment, the false positive
rate in the first three nodes is similar in all the feature sets and then for deeper
nodes the inclusion of higher derivative orders dramatically improve the node-
performances.

The node performance measure is useful because it directly compares the
ability of each feature set to achieve the node-learning goal with a small number
of features per node and number of nodes in the cascade.
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Fig. 1. Node performances for the four cascades
trained with the feature sets shown in Table 1.
The false negative error rate decreases as the
derivative order rises, especially for deeper nodes
in the cascade.

Table 1. Four different
feature sets using differ-
ent Gaussian derivative
orders at pyramid levels of
σ =

{√
2, 2, 2

√
2
}
and orienta-

tions θ = {0, π/4, π/2, 3π/4}

Feature Set (Fs) Derivative Orders Total

s = 1 First Order 1792
s = 2 Up to the Second Order 4032
s = 3 Up to the Third Order 5824
s = 4 Up to the fourth Order 8064

2 Learning Speed-Optimized Cascades

In the preceding section, we have observed the effects of adding Gaussian deriva-
tive features up to fourth order in the cascade framework. We have observed
that a strong improvement is obtained in the deeper nodes of the cascade. At
the same time, higher order derivatives have a slightly higher computational
cost. Thus lower computational cost, it appears reasonable to restrict higher or-
der derivatives to deeper levels of the cascade. In this section we explore this
hypothesis. Well structured derivatives with scale invariant impulse responses
can be computed as sums and differences of adjacent pyramid samples [1]. In
such a representation, first order features may be seen as responding to edge-like
information, second order features to blob like structures, while higher order
derivatives respond to more complex patterns of appearance. The cascade of
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classifiers framework can exploit such a representation by using less expensive
lower order derivative to reject the large majority of empty windows in the lower
levels of the cascade, and applying more expensive higher order derivatives in
the deeper nodes.

From this hypothesis, we should expect that Gaussian derivatives features of
lower order, less expensive derivative features will perform well in the first nodes
when not much information is necessary to discriminate a face from non-face
while the more expensive higher order features would be useful in deeper nodes
where the difference between a face and a background image becomes more
difficult to discriminate. The following experiments confirm this hypothesis. Our
proposed optimization-framework is summarized in Algorithm 1.

Algorithm 1. The speed-optimized cascade framework

Giving a set of positive examples P , a set of initial negative examples N , a set
of positive validation examples V, a set of bootstrapping negative examples D, a
training learn goal G, a training learn goal per layer GL and an ensemble of s
feature sets F = (F1, F2, F3....Fs), a value p which represents the desired
starting position in the ensemble of feature sets (p ≤ s);
output : The output is a cascade H = (H1,H2,H3, ..., Hn)
initialization: i← 0,H ← 0;
repeat

i← i+ 1;
Node Learning { Learn Hi using P , Fp and N , add Hi to H};
Run the current node Hi on V to compute di;
while (di < GL) ∧ (p < s) do

p← p+ 1;
Node Learning { Learn Hi using P , Fp and N , add Hi to H};
Run the current node Hi on V to compute di;

end
Remove correctly classified non-face patches from N ;
Run the current cascade H on D, add any false detection to N until N
reaches the same size as the initial set.;

until The learning goal G is satisfied ;

The Node-learning step is composed by two algorithms used in this paper to
train the cascades :

– Adaboost [10] to find the best set of T features h = (h1, h2, · · · , hT ) from a
high dimensional feature set, giving this set of features, a feature vector for
a training z sample can be build as h (z) = (h1(z), h2(z), · · · , hT (z))

– LAC (Linear Asymmetric Classifier) [11] to provide an optimal linear strong
classifier to accomplish node-learning, while providing the best trade-off be-
tween performance and computational cost, for further details please con-
sult [11].



572 J.A. Ruiz-Hernandez et al.

3 Experimental Results

3.1 Experimental Protocols

We performed several experiments to explore the performance of Gaussian deriva-
tives for the face detection problem. Experiments were constructed to test sen-
sitivity to image degradation, as well as performance with different data sets
(MIT+CMU and FDDB) and variation in computational load of different fea-
ture sets.

Sensitivity Analysis: we constructed a data set to test sensitivity, where im-
ages from the LFW dataset [12] are degraded by rotation, blurring, additive
Gaussian noise and contrast to evaluate the influence of such factors on detec-
tion rate. We applied all the cascades in our experiments to each image in the
degraded dataset. For the transformation parameters, we record the detection
rate over the set of images and the number of eventual false positives.

– Rotation Each image is rotated sequentially by an angle varying between
-25 and +25 degrees with an steep of 3 degrees.

– Blurring : A Gaussian smoothing filter with scales ranging from 0 to 10 is
applied to each image.

– Noise: Gaussian white noise with mean 0 and standard deviation between
0 and 0.2 is added to each image.

– Contrast: For each image, the pixel intensities Ip are modified as stated by
Ip = αIm + (1− α)Ip, where Im is the mean intensity of the image and α is
a parameter varying from -2 to 1.0.

Comparative Results in Test Datasets: The performance of the cascade
is commonly measured by a ROC (Receptive Operator Curve) calculated with
an evaluation dataset. In all our experiments we resize the sliding window by
a factor s = 1.20 which is a common value used in face detection benchmarks.
Finally, we compare all our results with a cascade of Haar-like features to show
the performance of our approach compared with the state-of-the-art methods
using the FDDB [13] and the popular MIT+CMU [14] datasets.

The FDDB dataset is composed by 2845 images with a total of 5171 faces,
which are organized in ten-fold testing sets. The implementation-software of
the algorithms for matching detections and annotations in this dataset are pub-
licly available1. From this software, a detection is scored taking into account
S(di, lj) = area(lj)∩area(di)/area(lj)∪area(di) where di and lj are the rectangle for
the detected face and the rectangle of the ground truth respectively.

Two different types of ROC curves could be computed using the above men-
tioned score. The first one is the discrete score curve, where only the detection
scores superior to 0.5 are used an the second is the continuous score curves where
all the possible detections scores are included.

1 http://vis-www.cs.umass.edu/fddb

http://vis-www.cs.umass.edu/fddb
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3.2 Sensitivity Results

The results of experiments with the sensitivity test data set are shown in
Figure 2.

The sensitivity to rotation can be observed in Figure 2a. In this case the cas-
cade constructed with Gaussian derivatives outperforms that of Haar features.
The detection rate for cascades of Gaussian derivatives is 100% for angles be-
tween -13 and +5 degrees and decreases significantly for larger rotations, while
detection with Haar features is very sensitive to image plane rotation, maintain-
ing a rate of 100% only for angles between -3 and +3 degrees. The number of
false positives for this experiment was zero in all the cases.

The results of the influence of blurring are reported in Figure 2b. Notice that
the detection rate remains 100% for blurring noise with a standard deviation
of 8.3 and decreases slowly for larger standard deviations. The cascade of Haar
features maintains a detection rate of 100% only out to standard deviations of 5
and then rapidly decreases. Thus we can conclude that Gaussian derivatives are
less sensitive to image blur. No false positive were observed in this experiment.
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Fig. 2. Results of comparing a non-optimized cascade
of Gaussian derivatives (squares) with a cascade of
Haar features (circles) in the sensitivity testing dataset.

Tolerance to contrast is
reported in Figure 2c. Cas-
cades of Gaussian deriva-
tives and Haar-features
cascade provide similar sen-
sitivity, with a slight im-
provement for Haar-features.
In this experiment, no nor-
malisation to illumination
was performed. However,
subsequent experiments us-
ing illumination normaliza-
tion showed no noticeable
improvements.

The influence of addi-
tive image noise is re-
ported in Figure 2d. In this
case, the cascade of Haar
features outperforms Gaus-
sian Derivatives, maintain-
ing a 100% of detection rate
(no false positive) for all the
standard deviation values used in the Gaussian noise, compared with the cas-
cade of Gaussian derivatives that maintains 100% of detection rate only for
values lower than 0.028 (one false positive for a value of 0.06) and decreases
slowly as the noise increases. This results can be explained by the sensitivity to
noise of third and fourth order Gaussian derivatives.

For most of data sets tested, Gaussian derivatives out-perform Haar-like
features in detection rate. For example, Figure 3 shows results of detection
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Fig. 3. ((a) and (b)) Performance comparison of a non-optimized cascades of Gaussian
derivatives features (squares) with a Haar-features cascade (circles) in the FDDB face
dataset. ((c) and (d)) Performance comparison of speed-optimized cascades of Gaussian
derivatives features in the FDDB face dataset (p = 1(squares), p = 2(circles), p =
3(dashed line with triangles) and non-optimized(dashed line with stars)).

performance for optimized cascades using the FDDB data set. Results are pre-
sented as continuous and discrete scores(see Figures 3c and 3d respectively).
In both cases the optimized cascades work with a similar performance as non-
optimized cascades. For this data set the evaluation was performed using the
discrete and continuous scores as is shown in Figures 3a and 3b respectively.
Cascade detectors constructed with Gaussian derivative features outperform the
cascade of Haar features in detection rate (area under the ROC) by almost a
8%.

3.3 Detection Rates with Different Data Sets

Results using the MIT+CMU face data are shown in Table 2. In this case, the
Haar-like features perform better than Gaussian derivatives. We believe that
this reflects the conditions under which this data set has been constructed. The
MIT+CMU face data set is composed of many images that were scanned from
newspapers, thereby introducing high levels of additive noise from both the ren-
dering process used in newspapers. In addition, aliasing is apparent in some
images due to a low-quality scanning process. Such noise is not characteristic of
that obtained with modern digital cameras. Aliasing is rarely seen with digital
cameras, because digital cameras almost always use intentional blurring in front
of the CCD to avoid aliasing, finally, some of the facial images in this dataset
are draws of faces without any textural information, such kind of images could
be considered as a false positive in any biometric or security system.
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Fig. 4. ROC’s of optimized-speed
cascades of Gaussian derivatives
features in the CMU+MIT face
dataset

Table 2. A comparison of detection rates on the
CMU+MIT data set for several standard detectors

False Positives

Method 6 10 31 46 50 65 78 95 167

Garcia and Delakis [15] - 0.905 0.915 - - 0.923 - - 0.931
Li and Zhang [16] - 0.836 0.902 - - - - - -
Luo [17] 0.866 0.874 0.903 - 0.911 - - - -
Viola and Jones [18] - 0.783 0.852 - 0.888 0.898 0.901 0.908 0.918
Wu et al [11] - - 0.906 0.915 0.917 0.920 0.923 0.926 0.933
Gaussian Derivatives - 0.833 0.859 0.869 0.870 0.874 0.878 0.883 0.906

3.4 Results on Test Data Sets (Optimized)

In Figure 4, we present the results of performance using the MIT+CMU face
data set, as we can see, the cascades trained using the speed optimized framework
continues to operate satisfactorily compared with the non-optimized cascades, in
terms of detection rate and false positive rate.

3.5 Results on Computational Load (Optimized)

Figure 5 shows the results of measurement of computational load for the speed-
optimized cascades using the FDDB dataset. In all cases, despite the similar
number of feature requests made to the pyramid (see Figure 5e), the optimized
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Fig. 5. (c) Computational Load comparison between a cascade of Haar features and a
non-optimized cascade of Gaussian derivatives. The estimated load in a cascade with
Gaussian is reduced, specially in the first nodes. (f) Computational Load comparisons
in the optimized-cascade framework for different values of p
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cascades increase the number of decisions taken (see Figure 5d), especially in
earlier nodes where the number of sub-windows to visit is higher and the number
of features is lower. This experiment also demonstrates that the computational
load for the optimized cascades is decreased by almost half compared with the
non-optimized cascades (see Figure 5f). Thus we can expect a gain of a factor of
two in detection speed compared with the non-optimized cascades. We also note
that a decrease in the number of nodes necessary to accomplish learning for the
optimized cascades trained using p = 2.

4 Conclusions

In this paper, we have reported results with experiments with the use of Gaussian
derivatives features to detect faces in images. We have shown that Gaussian
derivatives outperform in more realistic data sets as the FDDB face data set
where the images are similar to these produced by the digital cameras used in
mobile telephones and devices. In addition, we have demonstrated the robustness
of detection using Gaussian derivatives features to image variations as rotation,
blurring, noise and contrast using the sensitivity test data set. We have compared
all of our results with these obtained with a cascade of Haar features.
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