Skip to main content

Morphogenetic Robotics: A New Paradigm for Designing Self-Organizing, Self-Reconfigurable and Self-Adaptive Robots

  • Chapter
  • First Online:

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

By morphogenetic robotics, we mean a class of methodologies for designing self-organizing, self-reconfigurable and self-adaptive robots inspired by biological morphogenesis. We categorize these methodologies into three areas, namely, morphogenetic swarm robotic systems, morphogenetic modular robots and morphogenetic co-design of body and brain for robots. We also discuss the relationship between morphogenetic robotics and a few closely related areas in robotics, such as epigenetic robotics, which focuses on cognitive development in robotic systems, and evolutionary robotics, which is concerned with evolutionary design of robot controllers. A few examples are provided to illustrate the main ideas underlying the morphogenetic approaches to robotics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alon, U.: Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8, 450–461 (2007)

    Article  Google Scholar 

  2. Arthur, W.: The effect of development on the direction of selection: toward twenty-first century consensus. Evol. Dev. 10, 375–390 (2004)

    Google Scholar 

  3. Ashe, H., Briscoe, J.: The interpretation of morphogen gradients. Development 133, 385–394 (2007)

    Article  Google Scholar 

  4. Beloussov, L.: Integrating self-organization theory into an advanced course on morphogenesis at Moscow State University. Int. J. Dev. Biol. 47, 177–181 (2003)

    Google Scholar 

  5. Ben-Amor, H., Cadau, S., Elena, A., Dhouailly, D., Demongeot, J.: Regulatory networks analysis: robustness in morphogenesis. In: 2009 International Conference on Advanced Information Networking and Application Workshops, pp. 924–928, Bradford, UK (2009)

    Google Scholar 

  6. Bhattacharyya, A.: Morphogenesis as an amorphous computing. In: 3rd Conference on Computing Frontiers, pp. 53–64, ACM, New York (2006)

    Google Scholar 

  7. Bishop, C., Erezyilmaz, D., Flatt, T., Georgiou, C., Hadfield, M., Heyland, A., Hodin, J., Jacobs, M., Maslakova, S., Pires, A., Reitzel, A., Santagata, S., Tanaka, K., Youson, J.: What is metamophosis? Integr. Comp. Biol. 46, 655–661 (2006)

    Article  Google Scholar 

  8. Bongard, J., Paul, C.: Investigating morphological symmetry and locomotive efficiency using virtual embodied evolution. In: From Animal to Animats: The Sixth International Conference on Simulated Adaptive Behavior, pp. 420–429 (2000)

    Google Scholar 

  9. Bower, J., Bolouri, H.: Computational Modeling of Genetic and Biochemical Networks. MIT Press, Cambridge (2001)

    Google Scholar 

  10. Crumiere, A., Sablik, M.: Positive circuits and d-dimensional spatial differentiation: application to the formation of sense organs in Drosophila. BioSystems 94, 102–108 (2008)

    Article  Google Scholar 

  11. DeJong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9, 67–103 (2002)

    Article  Google Scholar 

  12. Doursat, R.: Programmable architectures that are complex and self-organized: from morphogenesis to engineering. In: Bullock, S., Noble, J., Watson, R., Bedau, M. (eds.) 11th International Conference on the Simulation and Synthesis of Living Systems (ALIFE XI), pp. 181–188. MIT Press, Winchester (2008)

    Google Scholar 

  13. Eggenberger, P.: Evolving morphologies of simulated 3d organisms based on differential gene expression. In: Artificial Life IV, pp. 205–213 (1997)

    Google Scholar 

  14. Endy, D., Brent, R.: Modeling cellular behavior. Nature 409, 391–395 (2001)

    Article  Google Scholar 

  15. Francois, F., Hakim, V.: Design of genetic networks with specified functions by evolution in silico. Proc. Natl. Acad. Sci. USA 101, 580–585 (2004)

    Google Scholar 

  16. Gilbert, S.: Developmental Biology. Sinauer Associates, Sunderland (2003)

    Google Scholar 

  17. Guo, H., Meng, Y., Jin, Y.: A cellular mechanism for multi-robot construction via evolutionary multi-objective optimization of a gene regulatory network. BioSystems 98, 193-203 (2009)

    Google Scholar 

  18. Hornby, G., Pollack, J.: Creating high-level components with a generative representation for body-brain evolution. Artif. Life 8, 223–246 (2002)

    Article  Google Scholar 

  19. Jin, Y., Guo, H., Meng, Y.: Robustness analysis and failure recovery of a bio-inspired self-organizing multi-robot system. In: Third IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 154–164. IEEE Press, Los Alamitos (2009)

    Google Scholar 

  20. Jin, Y., Meng, Y.: Emergence of robust regulatory motifs from in silico evolution of sustained oscillation. BioSystems 103(1), 38–44 (2011)

    Article  MathSciNet  Google Scholar 

  21. Jin, Y., Schramm, L., Sendhoff, B.: A gene regulatory model for the development of primitive nervous systems. In: INNS-NNN Symposia on Modeling the Brain and Nervous Systems. LNCS, vol. 5506, pp. 48–55. Springer, Berlin (2009)

    Google Scholar 

  22. Jin, Y., Sendhoff, B.: Evolving in silico bistable and oscillatory dynamics for gene regulatory network motifs. In: Congress on Evolutionary Computation, pp. 386–391 (2008)

    Google Scholar 

  23. Jones, B., Jin, Y., Sendhoff, B., Yao, X.: Evolving functional symmetry in a three dimensional model of an elongated organism. In: Artificial Life XI, pp. 305–312 (2008)

    Google Scholar 

  24. Kitano, H.: A simple model of neurogenesis and cell differentiation based on evolutionary large-scale chaos. Artif. Life 2(1), 79–99 (1995)

    Article  Google Scholar 

  25. Knabe, J.F., Nehaniv, C.L., Schilstra, M.J.: Genetic regulatory network models of biological clocks: evolutionary history matters. Artif. Life 14, 135–148 (2008)

    Article  Google Scholar 

  26. Kuniyoshi, Y., Lungarella, M.: Developmental cognitive robotics: an emerging new field. In: Workshop on Cognitive Developmental Robotics, pp. 3–5, Kyoto, Japan (2006)

    Google Scholar 

  27. Kwon, Y.K., Cho, K.H.: Coherent coupling of feedback loops: a design principle of cell signaling networks. Bioinformatics 24, 1926–1932 (2008)

    Article  Google Scholar 

  28. Lee, J., Sitte, J.: Morphogenetic evolvable hardware controllers for robot walking. In: 2nd International Symposium on Autonomous Minirobots for Research and Edutainment (2003)

    Google Scholar 

  29. Lipson, H.: Uncontrolled engineering: a review of evolutionary robotics (book review). Artif. Life 7, 419–424 (2001)

    Article  Google Scholar 

  30. Lungarella, M., Metta, G., Pfeifer, R., Sandini, G.: Developmental robotics: a survey. Connect. Sci. 15, 151–190 (2003)

    Article  Google Scholar 

  31. Mamei, M., Vasirani, M., Zambonelli, M.: Experiments in morphogenesis in swarms of simple mobile robot. Appl. Artif. Life 18, 903–919 (2004)

    Article  Google Scholar 

  32. Meiner, D.: Swarm robotics algorithm: a survey. Technical report, University of Maryland (2007)

    Google Scholar 

  33. Meng, Y., Guo, H., Jin, Y.: A morphogenetic approach to flexible and robust shape formation for swarm robotic systems. Auton. Robots (2009) (Submitted)

    Google Scholar 

  34. Miconi, T., Channon, A.: An improved system for artificial creatures evolution. In: Artificial Life X, pp. 255–261 (2006)

    Google Scholar 

  35. Mjolsness, E., Sharp, D.H., Reinitz, J.: A connectionist model of development. J. Theor. Biol. 52, 429–453 (1991)

    Article  Google Scholar 

  36. Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system—navigation, docking, and integration of M-TRAN. IEEE Robot. Autom. Mag. 14, 56–63 (2008)

    Article  Google Scholar 

  37. Murata, S., Kurokawa, H.: Self-reconfigurable robots. IEEE Robot. Autom. Mag. 14, 71–78 (2007)

    Google Scholar 

  38. Mytilinaios, E., Marcus, D., Desnoyer, M., Lipson, H.: designed and evolved blueprints for physical artificial life. In: Ninth International Conference on Artificial Life (ALIFE IX), pp. 15–20 (2004)

    Google Scholar 

  39. Oros, N., Steuber, V., Davey, N., Caamero, L., Adams, R.: Evolution of bilateral symmetry in agents controlled by spiking neural networks. In: 2009 IEEE Symposium on Artificial Life, pp. 116–123 (2009)

    Google Scholar 

  40. Paladugu, S., Chickarmane, V., Dekard, A., Frumkim, J., MaCormarck, M., Sauro, H.: In silico evolution of functional modules in biochemical networks. IEE Proc. Syst. Biol. 153, 223–235 (2006)

    Google Scholar 

  41. Pfeifer, R., Iida, F., Gomez, G.: Morphological computation for adaptive behavior and cognition. Inter. Congr. Ser. 1291, 22–29 (2006)

    Article  Google Scholar 

  42. Pfeifer, R., Knoll, A.: Intelligent and cognitive systems. ERCIM News 64, 11–12 (2006)

    Google Scholar 

  43. Piegl, L., Tiller, W.: The NURBS Book. Springer, Berlin (1997)

    Google Scholar 

  44. Pollack, J., Lipson, H., Funes, P., Ficici, S., Hornby, G.: Coevolutionary robotics. In: Evolvable Hardware, pp. 208–216 (1999)

    Google Scholar 

  45. Psujek, S., Beer, R.: Developmental bias in evolution: evolutionary accessibility of phenotypes in a model of evo-devo systems. Evol. Dev. 10(3), 375–390 (2008)

    Article  Google Scholar 

  46. Nolfi, S., Floreano, D.: Evolutionary Robotics. MIT Press, Cambridge (2004)

    Google Scholar 

  47. Sanes, D., Reh, T., Harris, W.: Development of Nervous Systems, 2nd edn. Academic Press (2006)

    Google Scholar 

  48. Schilstra, M., Nehaniv, C.: Bio-logic: gene expression and the laws of combinatorial logic. Artif. Life 14, 121–133 (2008)

    Article  Google Scholar 

  49. Schramm, L., Jin, Y., Sendhoff, B.: Emerged coupling of motor control and morphological development in evolution of multi-cellular animates. In: 10th European Conference on Artificial Life (2009)

    Google Scholar 

  50. Shen, W., Will, P., Galstyan, A.: Hormone-inspired self-organization and distributed control of robotic swarms. Auton. Robots 17, 93–105 (2004)

    Article  Google Scholar 

  51. Sima, C., Hua, J., Jung, S.: Inference of gene regulatory networks using time-series data: a survey. Curr. Genomics 10, 416–429 (2009)

    Article  Google Scholar 

  52. Simons, K., Karsenti, E., St Johnston, D., Wijer, C., Swaminathan, S. (eds.): Self-Organization and Morphogenesis in Biological Systems. Schloss Ringberg, Tegernsee, Germany (2006)

    Google Scholar 

  53. Sims, K.: Evolving 3D morphology and behavior by competition. Artif. Life 1, 353–372 (1994)

    Google Scholar 

  54. Spector, L., Klein, K., Feinstein, M.: Division blocks and the open-ended evolution of development, form, and behavior. In: Genetic and Evolutionary Computation Conference, pp. 316–323 (2007)

    Google Scholar 

  55. Stanley, K.O., Miikkulainen, R.: A taxonomy for artificial embryogeny. Artif. Life 9, 93–130 (2003)

    Google Scholar 

  56. Steiner, T., Trommler, J., Brenn, M., Jin, Y., Sendhoff, B.: Global shape with morphogen gradients and motile polarized cells. In: Congress on Evolutionary Computation, pp. 2225–2232 (2009)

    Google Scholar 

  57. Taylor, T., Massey, C.: Recent developments in the evolution of morphologies and controllers for physically simulated creatures. Artif. Life 7(1), 77–87 (2001)

    Article  Google Scholar 

  58. Tsai, T.Y.C., Choi, Y.S., Ma, W., Pomerening, J., Tang, C., Ferrell Jr, J.: Robust tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008)

    Article  Google Scholar 

  59. Weng, J., McClelland, J., Pentland, J., Sporns, O., Stockman, I., Sur, M., Thelen, E., : Autonomous mental development by robots and animals. Science 291, 599–600 (2001)

    Google Scholar 

  60. Wolpert, L.: Principles of Development. Oxford University Press, New York (2002)

    Google Scholar 

  61. Young, R.: Evolution of human hand: the role of throwing and clubbing. J. Anat. 202, 165–174 (2003)

    Article  Google Scholar 

  62. Yu, C.H., Haller, K., Ingber, D., Nagpal, R.: Morpho: A self-deformable modular robot inspired by cellular structure. In: Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3571–3578. IEEE Press, Los Alamitos (2008)

    Google Scholar 

  63. Zhang, Y., Meng, Y., Jin, Y.: CROSSCUBE—a morphogenetic modular robot. In: International Conference on Robotics and Automation (2010)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank Hongliang Guo, Yuyang Zhang, Till Steiner, Lisa Schramm and Benjamin Inden for the illustrative examples used in this chapter. YJ is grateful to Edgar Körner and Bernhard Sendhoff for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaochu Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jin, Y., Meng, Y. (2012). Morphogenetic Robotics: A New Paradigm for Designing Self-Organizing, Self-Reconfigurable and Self-Adaptive Robots. In: Doursat, R., Sayama, H., Michel, O. (eds) Morphogenetic Engineering. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33902-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33902-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33901-1

  • Online ISBN: 978-3-642-33902-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics