Skip to main content

Collective Construction with Robot Swarms

  • Chapter
  • First Online:
Morphogenetic Engineering

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Social insects build large, complex structures, which emerge through the collective actions of many simple agents acting with no centralized control or preplanning. These natural systems inspire the research topic of collective construction, in which the goal is to engineer artificial systems that build in a similar way, with swarms of simple robots producing desired structures. In this chapter I review work on the design and realization of such systems. Robots in these systems act independently, in unknown numbers and with no fixed timing, using only local information and no explicit communication; the system takes a high-level design as input, and is guaranteed to produce a structure matching that design, without requiring the details of the construction process to be specified. Stigmergy (indirect communication through manipulation of a shared environment) and convention (tacit agreement due to the use of a common set of rules shared by all robots) are useful principles for implicit coordination that make these collective behaviors possible. I outline current progress in this area and future directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The seed block can even be identical to all other blocks, so that no such distinct landmark is required, if robots have a compass (details in [43]).

  2. 2.

    One could imagine going even further down this path and making the blocks responsible also for their own movement—that is, erasing the distinction between robots and blocks, and building the structure out of robots directly. This idea will be discussed in Sect. 5.4.

  3. 3.

    Or, since you may very well be reading this chapter on your laptop, possibly outdoors: “...not just the computer displaying this electronic document, but the building to which you will eventually return to plug it in”.

References

  1. Arbuckle, D., Requicha, A.: Active self-assembly. In: Proceedings of 2004 IEEE International Conference on Robotics and Automation, pp. 896–901, New Orleans, Louisiana (2004)

    Google Scholar 

  2. Arieff, A., Burkhart, B.: Prefab. Gibbs Smith, Layton (2002)

    Google Scholar 

  3. Bar-Yam, Y.: Dynamics of Complex Systems. Addison-Wesley, Reading (1997)

    Google Scholar 

  4. Bonabeau, E., Théraulaz, G., Deneuborg, J.L., Franks, N., Rafelsberger, O., Joly, J.L., Blanco, S.: A model for the emergence of pillars, walls and royal chambers in termite nests. Philos. Trans. Roy. Soc. Lond. B 353, 1561–1576 (1998)

    Article  Google Scholar 

  5. Bowyer, A.: Automated construction using co-operating biomimetic robots. Technical report. University of Bath, Department of Mechanical Engineering, Bath, UK, (2000)

    Google Scholar 

  6. Buswell, R.A., Soar, R.C., Pendlebury, M.C., Gibb, A.G.F., Edum-Fotwe, F.T., Thorpe, A.: Investigation of the potential for applying freeform processes to construction. In: Proceedings of the 3rd International Conference on Innovation in Architecture, Engineering and Construction, pp. 141–150, Rotterdam, The Netherlands (2005)

    Google Scholar 

  7. Doursat, R.: Organically grown architectures: creating decentralized, autonomous systems by embryomorphic engineering. In: Würtz, R.P. (ed.) Organic Computing, pp. 167–200. Springer, Berlin (2008)

    Google Scholar 

  8. Everist, J., Mogharei, K., Suri, H., Ranasinghe, N., Khoshnevis, B., Will, P., Shen, W.M.: A system for in-space assembly. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2356–2361, Sendai, Japan (2004)

    Google Scholar 

  9. Galloway, K., Jois, R., Yim, M.: Factory floor: A robotically reconfigurable construction platform. In: Proceedings of 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska (2010)

    Google Scholar 

  10. Gerkey, B., Matarić, M.: Pusher-watcher: an approach to fault-tolerant tightly-coupled robot coordination. In: Proceedings of 2002 IEEE International Conference on Robotics and Automation, pp. 464–469, Washington, D.C., USA (2002)

    Google Scholar 

  11. Grassé, P.P.: La reconstruction du nid et les coordinations inter-individuelles chez Bellicositermes natalensis et Cubitermes sp. La théorie de la stigmergie: Essai d’interpretation du comportement des termites constructeurs. Insectes Sociaux 6, 41–81 (1959)

    Article  Google Scholar 

  12. Griffith, S., Goldwater, D., Jacobson, J.: Self-replication from random parts. Nature 437, 636 (2005)

    Article  Google Scholar 

  13. Groß, R., Dorigo, M.: Self-assembly at the macroscopic scale. Proc. IEEE 96(9), 1490–1508 (2008)

    Article  Google Scholar 

  14. Grushin, A., Reggia, J.A.: Automated design of distributed control rules for the self-assembly of prespecified artificial structures. Robot. Auton. Syst. 56(4), 334–359 (2008)

    Article  Google Scholar 

  15. Grushin, A., Reggia, J.A.: Parsimonious rule generation for a nature-inspired approach to self-assembly. ACM Trans. Auton. Adapt. Syst. 5(3), 12:1–12:24 (2010)

    Google Scholar 

  16. Guo, Y., Poulton, G., Valencia, P., James, G.: Designing self-assembly for 2-dimensional building blocks. In: ESOA’03 Workshop, Melbourne, Australia (2003)

    Google Scholar 

  17. Hjelle, D.A., Lipson, H.: A robotically reconfigurable truss. In: Proceedings of ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots (2009)

    Google Scholar 

  18. Jones, C., Matarić, M.: From local to global behavior in intelligent self-assembly. In: Proceedings of 2003 IEEE International Conference on Robotics and Automation, pp. 721–726, Taipei, Taiwan (2003)

    Google Scholar 

  19. Jones, C., Matarić, M.: Automatic synthesis of communication-based coordinated multi-robot systems. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 381–387, Sendai, Japan (2004)

    Google Scholar 

  20. Karsai, I., Pénzes, Z.: Comb building in social wasps: self-organization and stigmergic script. J. Theor. Biol. 161, 505–525 (1993)

    Article  Google Scholar 

  21. Kelly, J., Zhang, H.: Combinatorial optimization of sensing for rule-based planar distributed assembly. In: Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3728–3734, Beijing, China (2006)

    Google Scholar 

  22. Khoshnevis, B., Bekey, G.: Automated construction using contour crafting—applications on earth and beyond. J. Rapid Prototyp. 9(2), 1–8 (2003)

    Google Scholar 

  23. Klavins, E., Ghrist, R., Lipsky, D.: A grammatical approach to self-organizing robotic systems. IEEE Trans. Autom. Control 51(6), 949–962 (2006)

    Article  MathSciNet  Google Scholar 

  24. Lindsey, Q., Mellinger, D., Kumar, V.: Construction of cubic structures with quadrotor teams. In: Proceedings of Robotics: Science and Systems, Los Angeles, CA, USA (2011)

    Google Scholar 

  25. Mason, Z.: Programming with stigmergy: using swarms for construction. In: Proceedings of Artificial Life VIII, pp. 371–374, Sydney, Australia (2002)

    Google Scholar 

  26. Melhuish, C., Welsby, J., Edwards, C.: Using templates for defensive wall building with autonomous mobile ant-like robots. In: Proceedings of Towards Intelligent Autonomous Mobile Robots 99, Manchester, UK (1999)

    Google Scholar 

  27. Murata, S., Kakomura, K., Kurokawa, H.: Toward a scalable modular robotic system: navigation, docking, and integration of M-TRAN. IEEE Robot. Autom. Mag. 14(4), 56–63 (2007)

    Article  Google Scholar 

  28. Napp, N., Klavins, E.: Robust by composition: programs for multi robot systems. In: Proceedings of 2010 IEEE International Conference on Robotics and Automation, Anchorage, Alaska (2010)

    Google Scholar 

  29. Parker, C., Zhang, H., Kube, R.: Blind bulldozing: multiple robot nest construction. In: Proceedings of 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, USA (2003)

    Google Scholar 

  30. Petersen, K., Nagpal, R., Werfel, J.: TERMES: an autonomous robotic system for three-dimensional collective construction. In: Proceedings of the Robotics Science and Systems VII (RSS2011), Los Angeles, USA (2011)

    Google Scholar 

  31. Schuil, C.: Collision detection in lego robots. Senior thesis, Engineering Sciences, Harvard University, Cambridge, Massachusetts, (2007)

    Google Scholar 

  32. Schuil, C., Valente, M., Werfel, J., Nagpal, R.: Collective construction using LEGO robots. In: Robot Exhibition, Twenty-First National Conference on Artificial Intelligence (AAAI 2006), Boston, Massachusetts (2006)

    Google Scholar 

  33. Sellner, B., Heger, F.W., Hiatt, L.M., Simmons, R., Singh, S.: Coordinated multi-agent teams and sliding autonomy for large-scale assembly. Proc. IEEE 94, 1425–1444 (2006)

    Article  Google Scholar 

  34. Støy, K., Brandt, D., Christensen, D.J.: Self-Reconfigurable Robots: An Introduction. MIT Press, Cambridge (2010)

    Google Scholar 

  35. Stroupe, A., Okon, A., Robinson, M., Huntsberger, T., Aghazarian, H., Baumgartner, E.: Sustainable cooperative robotic technologies for human and robotic outpost infrastructure construction and maintenance. Auton. Robots 20, 113–123 (2006)

    Article  Google Scholar 

  36. Terada, Y., Murata, S.: Automatic assembly system for a large-scale modular structure: hardware design of module and assembler robot. In: Proceedings of 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2349–2355, Sendai, Japan (2004)

    Google Scholar 

  37. Terada, Y., Murata, S.: Automatic modular assembly system and its distributed control. Int. J. Robot. Res. 27(3–4), 445–462 (2008)

    Article  Google Scholar 

  38. Théraulaz, G., Bonabeau, E.: Coordination in distributed building. Science 269, 686–688 (1995)

    Article  Google Scholar 

  39. Théraulaz, G., Bonabeau, E.: Modelling the collective building of complex architectures in social insects with lattice swarms. J. Theor. Biol. 177, 381–400 (1995)

    Article  Google Scholar 

  40. von Mammen, S., Jacob, C., Kókai, G.: Evolving swarms that build 3D structures. In: Proceedings of 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1434–1441, Edinburgh, UK (2005)

    Google Scholar 

  41. Wawerla, J., Sukhatme, G., Matarić, M.: Collective construction with multiple robots. In: Proceedings of 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, Switzerland (2002)

    Google Scholar 

  42. Werfel, J.: Building blocks for multi-agent construction. In: Proceedings of Distributed Autonomous Robotic Systems 2004, Toulouse, France (2004)

    Google Scholar 

  43. Werfel, J.: Anthills built to order: automating construction with artificial swarms. Ph.D. Dissertation, Massachusetts Institute of Technology, MIT Computer Science and Artificial Intelligence Laboratory (2006)

    Google Scholar 

  44. Werfel, J.: Robot search in 3D swarm construction. In: Proceedings of First IEEE International Conference on Self-Adaptive and Self-Organizing Systems, pp. 363–366, Cambridge, Massachusetts, USA (2007)

    Google Scholar 

  45. Werfel, J.: Biologically inspired primitives for engineered morphogenesis. In: Proceedings of the 7th International Conference on Swarm Intelligence (ANTS 2010), Brussels, Belgium (2010)

    Google Scholar 

  46. Werfel, J., Bar-Yam, Y., Ingber, D.: Bioinspired environmental coordination in spatial computing systems. In: Workshop on Spatial Computing, at Second IEEE International Conference on Self-Adaptive and Self-Organizing Systems (SASO 2008), Venice, Italy (2008)

    Google Scholar 

  47. Werfel, J., Bar-Yam, Y., Nagpal, R.: Building patterned structures with robot swarms. In: Proceedings of Nineteenth International Joint Conference on Artificial Intelligence, Edinburgh, Scotland (2005)

    Google Scholar 

  48. Werfel, J., Bar-Yam, Y., Rus, D., Nagpal, R.: Distributed construction by mobile robots with enhanced building blocks. In: Proceedings of 2006 IEEE International Conference on Robotics and Automation, Orlando, USA (2006)

    Google Scholar 

  49. Werfel, J., Ingber, D., Nagpal, R.: Collective construction of environmentally-adaptive structures. In: Proceedings of 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Diego, USA (2007)

    Google Scholar 

  50. Werfel, J., Nagpal, R.: Extended stigmergy in collective construction. IEEE Intell. Syst. 21(2), 20–28 (2006)

    Article  Google Scholar 

  51. Werfel, J., Nagpal, R.: Towards a common comparison framework for global-to-local programming of self-assembling robotic systems. In: Workshop on Self-Reconfigurable Robot Systems and Applications, at IEEE Conference on Intelligent Robots and Systems (2007)

    Google Scholar 

  52. Werfel, J., Nagpal, R.: Three-dimensional construction with mobile robots and modular blocks. Int. J. Robot. Res. 27(3–4), 463–479 (2008)

    Article  Google Scholar 

  53. Werfel, J., Petersen, K., Nagpal, R.: Distributed multi-robot algorithms for the TERMES 3D collective construction system. In: Workshop on Reconfigurable Modular Robotics, at 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (2011)

    Google Scholar 

  54. White, P., Zykov, V., Bongard, J., Lipson, H.: Three dimensional stochastic reconfiguration of modular robots. In: Proceedings of Robotics: Science and Systems I, Cambridge, MA (2005)

    Google Scholar 

  55. Yim, M., Shen, W.M., Salemi, B., Rus, D., Moll, M., Lipson, H., Klavins, E., Chirikjian, G.S.: Modular self-reconfigurable robot systems: challenges and opportunities for the future. IEEE Robot. Autom. Mag. 14(1), 43–52 (2007)

    Article  Google Scholar 

  56. Yun, S., Hjelle, D.A., Lipson, H., Rus, D.: Planning the reconfiguration of grounded truss structures with truss climbing robots that carry truss elements. In: Proceedings of 2009 IEEE/RSJ IEEE International Conference on Robotics and Automation, Kobe, Japan (2009)

    Google Scholar 

  57. Yun, S., Schwager, M., Rus, D.: Coordinating construction of truss structures using distributed equal-mass partitioning. In: Proceedings of the 14th International Symposium on Robotics Research, Luzern, Switzerland (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Werfel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Werfel, J. (2012). Collective Construction with Robot Swarms. In: Doursat, R., Sayama, H., Michel, O. (eds) Morphogenetic Engineering. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33902-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33902-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33901-1

  • Online ISBN: 978-3-642-33902-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics