Skip to main content

Recognizing Hardware Faults on Mobile Robots Using Situation Analysis Techniques

  • Chapter
Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 193))

Abstract

Current research in the field of robotics deals with planning and executing of increasingly complex tasks as well as applications in which autonomous mobile robot systems interact with highly dynamic environments. In order to operate successfully in a highly dynamic physical world a mobile robot needs awareness to adapt its behavior according to the environment. This awareness also has to cope with uncertainty due to imperfect hardware sensors and actuators or network delays of the robot itself. Thus another important ability of a mobile robot is to ”understand” its internal state to detect any kind of hardware faults in the system. In this work a highly customizable framework for situation awareness is presented. For the evaluation of this framework we take advantage of its generality and assume fault diagnosis as a more specific subclass of the general situation awareness process to extend the situation detection framework for fault detection and diagnosis in a multi robot system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Endsley, M.R.: Toward a theory of situation awareness in dynamic systems. Human Factors: The Journal of the Human Factors and Ergonomics Society 37, 32–64 (1995)

    Article  Google Scholar 

  2. Rombaut, M., Nigro, J.M.: Idres: A rule-based system for driving situation recognition with uncertainty management. Information Fusion 4 (December 2003)

    Google Scholar 

  3. Regele, R.: Using ontology-based traffic models for more efficient decision making of autonomous vehicles. In: Proceedings of the Fourth International Conference on Autonomic and Autonomous Systems, ICAS 2008, pp. 94–99. IEEE Computer Society, Washington, DC (2008)

    Chapter  Google Scholar 

  4. Breuel, G., Tamke, A., Dang, T.: Integrierte simulations- und entwicklungsumgebung fr die ausweichassistenz zum fugngerschutz. In: Proceedings of the 11. Braunschweiger Symposium AAET 2010 (2010)

    Google Scholar 

  5. Dousson, C., Gaborit, P., Ghallab, M.: Situation recognition: representation and algorithms. In: Proceedings of the 13th International Joint Conference on Artifical Intelligence - Volume 1, IJCAI 1993, pp. 166–172. Morgan Kaufmann Publishers Inc., San Francisco (1993)

    Google Scholar 

  6. Gertler, J.J.: Survey of model-based failure detection and isolation in complex plants. IEEE Control Systems Magazine 8 (2002)

    Google Scholar 

  7. Isermann, R., Ball, P.: Trends in the application of model based fault detection and diagnosis of technical processes. Control Engineering Practice 5, 709–719 (1997)

    Article  Google Scholar 

  8. Ferrara, A., Brambilla, D., Capisani, L.M., Pisu, P.: Fault detection for robot manipulators via second-order sliding modes. IEEE Transactions on Industrial Electronics 55, 3954–3963 (2008)

    Article  Google Scholar 

  9. Savas, S., Eski, I., Erkaya, S., Yildirim, S.: Fault detection on robot manipulators using artificial neural networks. Robotics and Computer Integrated Manufacturing (2010)

    Google Scholar 

  10. O’Grady, R., Christensen, A.L., Dorigo, M.: Synchronization and fault detection in autonomous robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 4139–4140 (2008)

    Google Scholar 

  11. Sheng, B., Benatallah, Q.Z.: Contextuml: a uml-based modeling language for model-driven development of context-aware web services. In: Proceedings of the International Conference on Mobile Business (ICMB 2005), pp. 206–212 (2005)

    Google Scholar 

  12. Henricksen, K., Indulska, J., Rakotonirainy, A.: Generating context management infrastructure from high-level context models. In: 4th International Conference on Mobile Data Management (MDM) - Industrial Track, pp. 1–6 (2003)

    Google Scholar 

  13. Hofer, T., Schwinger, W., Pichler, M., Leonhartsberger, G., Altmann, J., Retschitzegger, W.: Context-awareness on mobile devices - the hydrogen approach. In: Proceedings of the 36th Annual Hawaii International Conference on System Sciences (HICSS 2003) - Track 9 - Volume 9. IEEE Computer Society, Washington, DC (2003)

    Google Scholar 

  14. McCarthy, J., Buvac, S., Costello, T., Fikes, R., Genesereth, M., Giunchiglia, F.: Formalizing context (expanded notes). In: AAAI Fall Symposium on Context in Knowledge Representation and Natural Language, pp. 99–135 (1995)

    Google Scholar 

  15. de Kleer, J., Williams, B.C.: Diagnosing multiple faults. Artif. Intell. 32(1), 97–130 (1987)

    Article  MATH  Google Scholar 

  16. Skoundrianos, E.N., Tzafestas, S.G.: Finding fault - fault diagnosis on the wheels of a mobile robot using local model neural networks. IEEE Robotics & Automation Magazine 11, 83–90 (2004)

    Article  Google Scholar 

  17. Forrest, S., Hofmeyr, S.A., Somayaji, A.: Computer immunology. Commun. ACM 40(10), 88–96 (1997)

    Article  Google Scholar 

  18. Das, S., Gui, M., Pahwa, A.: Artificial immune systems for self-nonself discrimination: Application to anomaly detection. Advances of Computational Intelligence in Industrial Systems, 231–248 (2008)

    Google Scholar 

  19. Cohn, M.: On the opposing views of the self-nonself discrimination by the immune system. Immunol. Cell Biol. 87(2), 113–119 (2009)

    Article  Google Scholar 

  20. Canham, R., Jackson, A.H., Tyrrell, A.: Robot error detection using an artificial immune system. In: Proceedings of the 2003 NASA/DoD Conference on Evolvable Hardware, EH 2003, IEEE Computer Society, Washington, DC (2003)

    Google Scholar 

  21. Jakimovski, B., Maehle, E.: Artificial Immune System Based Robot Anomaly Detection Engine for Fault Tolerant Robots. In: Rong, C., Jaatun, M.G., Sandnes, F.E., Yang, L.T., Ma, J. (eds.) ATC 2008. LNCS, vol. 5060, pp. 177–190. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  22. Dekhil, M., Henderson, T.C.: Instrumented sensor system architecture. International Journal of Robotic Research 17, 402–417 (1997)

    Article  Google Scholar 

  23. Zweigle, O., Häussermann, K., Käppeler, U.-P., Levi, P.: Supervised learning algorithm for automatic adaption of situation templates using uncertain data. In: Proceedings of the 2nd International Conference on Interaction Sciences: Information Technology, Culture and Human, pp. 197–200. ACM, New York (2009)

    Google Scholar 

  24. Zweigle, O., Käppeler, U.-P., Lafrenz, R., Levi, P.: Situation recognition for reactive agent behavior. In: Artificial Intelligence and Soft Computing, pp. 1–8. IASTED, Palma de Mallorca (2006)

    Google Scholar 

  25. Zweigle, O., Häussermann, K., Käppeler, U.-P., Levi, P.: Extended TA Algorithm for Adapting a Situation Ontology. In: Kim, J.-H., Ge, S.S., Vadakkepat, P., Jesse, N., Al Manum, A., Puthusserypady K, S., Rückert, U., Sitte, J., Witkowski, U., Nakatsu, R., Braunl, T., Baltes, J., Anderson, J., Wong, C.-C., Verner, I., Ahlgren, D. (eds.) Progress in Robotics. CCIS, vol. 44, pp. 364–371. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Zweigle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zweigle, O., Keil, B., Wittlinger, M., Häussermann, K., Levi, P. (2013). Recognizing Hardware Faults on Mobile Robots Using Situation Analysis Techniques. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33926-4_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33926-4_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33925-7

  • Online ISBN: 978-3-642-33926-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics