
S. Lee et al. (Eds.): Intelligent Autonomous Systems 12, AISC 193, pp. 487–499.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Rapid Prototyping Framework for Visual Control
of Autonomous Micro Aerial Vehicles

Ignacio Mellado-Bataller1, Pascual Campoy1, Miguel A. Olivares-Mendez1,
and Luis Mejias2

1 Centre for Automation and Robotics (CAR), Universidad Politécnica de Madrid
C/ Jose Gutierrez Abascal, 2. 28006 Madrid, Spain

www.vision4uav.com
2 Australian Research Centre for Aerospace Automation (ARCAA),

Queensland University of Technology
GPO Box 2434, Brisbane Queensland 4001

luis.mejias@qut.edu.au

Abstract. Rapid prototyping environments can speed up the research of visual
control algorithms. We have designed and implemented a software framework
for fast prototyping of visual control algorithms for Micro Aerial Vehicles
(MAV). We have applied a combination of a proxy-based network
communication architecture and a custom Application Programming Interface.
This allows multiple experimental configurations, like drone swarms or
distributed processing of a drone's video stream. Currently, the framework
supports a low-cost MAV: the Parrot AR.Drone. Real tests have been
performed on this platform and the results show comparatively low figures of
the extra communication delay introduced by the framework, while adding new
functionalities and flexibility to the selected drone. This implementation is
open-source and can be downloaded from www.vision4uav.com/?q=VC4MAV-
FW

Keywords: MAV, UAV, communications, software framework.

1 Introduction

"Fail early, fail often" is a wise mantra. The earlier you find the mistakes in your new
idea, concept or system design, the sooner you can fix them and get your path to
success. This is especially applicable in the field of visual control, where dynamic
systems are controlled using images from one or more cameras as feedback. Visual
control algorithms that work fine on the simulator may fail catastrophically in the real
world. In this paper, we propose a flexible rapid prototyping software framework for
visual control of Micro Aerial Vehicles (MAV).

In the last few years, personal Micro Aerial Vehicles and their components are
hitting the consumer market like [1], [2] and [3]. For the work in this paper, we are
using the Parrot AR.Drone as prototyping platform [1]. This drones is sold as a toy at
amateur-affordable prices and can be remotely operated from a smart phone. It has

488 I. Mellado-Bataller et al.

out-of-the-box onboard cameras and Inertial Measurement Units (IMU). Whereas the
overall quality is low compared to a professional MAV, it can be 20-40 times
cheaper. In addition, it can be bought at several toy stores and taken straight to the lab
without worrying about delivery delays. Furthermore, because of its low cost, taking
risks is acceptable: if you crash and break one, you can just buy a new unit. For these
reasons, it is worth to be taken into account as prototyping platform, especially when
developing algorithms for MAV swarms with many units, where the total cost might
be prohibitive with more professional MAVs.

The Parrot AR.Drone has a Software Development Kit (SDK) that enables third-
party developers to write applications for the drone. A third-party program that is run
on an external workstation is able to send commands and receive information from
the sensors, the camera and the IMU through a WiFi link. The drone has internal high
frequency control loops that drive the rotors to maintain the demanded attitude and
altitude. However, the SDK is too limited for our research requirements, as it only
supports a single point-to-point link between the program and the drone, thus, a
program can only communicate with a single drone. Besides that, we would like to
work with networked communication schemes like those shown in Fig. 1.

The required new functionalities are provided by the proposed software framework,
while increasing the isolation between the application and the hardware platform, and
opening the possibility to easily port applications to other MAVs with either onboard
or off-board computing.

In section 2, other related works are explored. In section 3, we introduce some
general guidelines of the framework architecture, while a specific implementation for
the Parrot AR.Drone and a C++ application is discussed in section 4. In section 5,
some test results of this implementation are presented and, in section 6, they are
discussed. Section 7 concludes the paper.

2 Related Work

The AR.Drone SDK already offers an API for developing third-party applications
[10]. Examples of research works with the AR.Drone are [7], [8] and [9]. However,
by the time this paper is written, it does not support communications with multiple
drones across a network. With regards to the communications between the application
and the drone, reference [4] points to an existing open project by ETH PIXHAWK. It
offers a communication architecture for MAVs that is based on a library for message
transmission over a network [5], but it does not have native support for the Parrot
AR.Drone. On the other hand, there is a driver for AR.Drone by Brown University [6]
for the Robot Operating System (ROS) that was used in [9]. Nevertheless, it does not
implement either access control to the drone or parameter configuration. Moreover,
we would like our framework to remain lightweight, without burdening the new
developer with the installation of heavy and complex packages like ROS. The
framework implementation presented in this paper tries to fill the gap left by the cons
of the other alternatives. It is being used to carry out experiments of a see-and-avoid
fuzzy controller, after tuning the system with the robot simulator Gazebo. More
information can be found at [11].

 Rapid Prototyping Framework for Visual Control of Autonomous MAV 489

Fig. 1. New communication schemes provided by our framework. In (a), a point-to-point
scheme, also allowed by the AR.Drone SDK; in (b), an application controls an MAV swarm; in
(c), multiple researchers may share the same MAV resources -one at a time-; in (d) ,video is
broadcasted over a cluster for parallel processing.

3 Framework Architecture

In this section, we define a general model for the implementation of our framework
architecture. These are guidelines and requirements that are extensible to any MAV,
(whose capabilities are similar to the AR.Drone's), any packet network and any
application programming language. In the next section, the model will be applied to
the AR.Drone and to specific network technologies and a C++ API.

To give network capabilities to the drone, a proxy-based architecture has been
defined. The architecture is depicted in Fig. 2. The proxy is responsible for
connecting a single drone with the network. With one proxy per drone, all drones can
share the network as communication mean. At the application side, we define an
Application Programming Interface (API). Thanks to this API, the application is able
to communicate with the proxies of the different drones that it aims to control.

It is worth to notice that the framework components do not have fixed running
locations. If the MAV processing platform has open access, the proxy can be run
onboard. Then, the control application can reside either onboard, communicating
locally, or off-board, through a wireless link.

490 I. Mellado-Bataller et al.

Fig. 2. System architecture. The framework interconnects the visual controller with each MAV
through a network. The total system follows a cascade control structure. Usually, there are
high-frequency controllers onboard the MAV, while the visual controller closes an outer loop
with lower frequency. The network link for the control loop is formed by three independent
channels. Configuration channel is used to read and change parameters and it is not part of the
control loop.

Otherwise, if the MAV onboard processing is closed, which is the case for the
AR.Drone, the proxy is run off-board, and the control application can be executed
either on the same platform or on any other that is connected through a network, as
seen in Fig. 1.

Regarding portability, while the proxy depends on the drone manufacturer, the
Application Programming Interface (API) library is platform-independent. In other
words, the proxy isolates the application from the drone specifics. In this way, there is

 Rapid Prototyping Framework for Visual Control of Autonomous MAV 491

no need to update the control applications every time the manufacturer releases a new
SDK version. Most times, updating the proxy will be enough. Another advantage of
this isolation, is the possibility of porting the API to programming environments or
languages not supported yet by the manufacturer's SDK. For instance, a Matlab API
could be programmed, despite not existing any specific software by the manufacturer.

3.1 Communications

The communication link between the proxy and the MAV depends on the
manufacturer specification and it may vary between different models. It is the
manufacturer who defines the communication protocol of the drone and it will not be
discussed in this paper. Our framework is responsible of the link between the proxy
and the application. This link is formed by four independent communication channels,
named: command, feedback, video and configuration. These channels are logical, not
necessarily physical, as they are established over the network. They just represent an
information flow between both network nodes. To implement the channels, no
specific communication protocols are defined as mandatory; there are only
recommendations.

The network between the proxy and the application may fail. A cable might break,
a router might stop or a WiFi link might lose the signal. Both ends of the link must be
robust to these situations and implement self-recovery mechanisms, which must be
transparent to the application. The application will be notified of a failure situation
but will not have to perform any actions to fix it. In case of stateless protocols –those
not requiring to establish a connection– there is no extra effort to be done, as packets
will continue to be transmitted after the network is recovered. Nevertheless, the
application must be notified if packets do not arrive at expected times. Oppositely,
connected protocols must automatically try to reconnect until the network is restored,
besides informing the application of the link state.

3.1.1 Command Channel
The command channel transports all the control actions from the application to the
proxy: a signature, a sequence number and drone-specific commands (required flying
mode, desired attitude, etc.). The signature identifies the packet as a command
channel packet and may be used as a start token.

Through this channel, data packets are transmitted periodically. Low delays are
favored by allowing packet dropping, because control loops depend on this channel
and delays generally harm loop stability [12]. Datagram protocols, like UDP over an
IP network, are suitable for implementing this mechanism because they do not have
automatic retransmission of faulty packets. At the proxy side, if a packet is lost or it
arrives after a previously sent one, it is discarded. Instead of asking for a
retransmission or reordering packets after a sequence error, the proxy expects that a
new packet with up-to-date command information will eventually arrive. The purpose
of the sequence number is to determine if a packet has arrived out of sequence.

An MAV can only be commanded by one control application at a time. Therefore,
no concurrent access is allowed on this channel. When the channel is in a free state,
any control application can lock it by sending an initialization packet for write access.
After that, no other packets from other applications are processed until the original

492 I. Mellado-Bataller et al.

application unlocks the channel or stays inactive for a time longer than a pre-
configured threshold.

3.1.2 Feedback Channel
In the feedback channel, navigation information flows from the proxy to the
application. The content of each feedback packet is: signature, timestamp and drone-
specific information (proxy-drone link health, battery level, measured attitude, etc.).
The signature identifies the packet as pertaining to this channel and may be used as
start token. Like in the command channel, packet dropping at the receiver –based on
the timestamp– is encouraged in order to minimize delays in control loops.

Through the feedback channel, the proxy can feed data to multiple applications
simultaneously. In situations where network broadcast or multicast is not possible,
applications can subscribe to a consumer list in the proxy by requesting a read-only
access through the command channel. The multicasting is then emulated by the proxy
by iteratively sending the information to its subscribers, at the expense of increasing
processing time and delay.

3.1.3 Video Channel
In a video channel, video from a drone camera is transmitted to the control
application. Like the feedback channel, multiple applications can request video
channels from a proxy. While a feedback channel sample will usually fit in a network
packet, a video channel sample, i.e. a frame, will need to be encoded, packetized and
transmitted with some transport protocol. Like for the other channel types, the lower
the transmission delay is, the higher the stability margin of a visual control loop will
be. Hence, implementations with compression-ready encodings, low-delay protocols
and frame-dropping mechanisms would be preferred.

The video channel transports periodic fragments with frame data that include a
header with a signature (it may be used as a fragment start token), information about
the video encoding and a timestamp, so the application knows how to decode the
video stream and when each frame was captured. The timestamp must be as close as
possible to the real capture time of a frame. If the MAV does not provide this
information, the proxy will give an estimation. When possible, the timestamps of both
video and feedback channels must use the same clock reference. Although this
reference is unknown by the application, sample times of different channels can be
compared and ordered if needed.

3.1.4 Configuration Channel
The configuration channel is used to read and write configuration parameters of the
MAV from the application. It is intended for parameters that are not time-critical,
such as allowed attitude ranges or video capture features, which are mainly changed
at startup. In order not to disturb any other channels requiring a higher bandwidth and
a lower delay, any fast changing parameters must be transferred through the command
and feedback channels.

When the application writes a parameter through the configuration channel, it must
have a confirmation that it has actually been changed in the MAV, as it might be
safety-critical. Likewise, when reading a parameter, the application must know that it
was actually read. Therefore, a connection-oriented transport protocol is required for
this channel. For example, TCP on an IP network would suit these requirements.

 Rapid Prototyping Framework for Visual Control of Autonomous MAV 493

3.2 Application Programming Interface

The API library enables the application to access the communication architecture
programmatically. The control application processes the feedback information from
the MAV and generates the commands to be sent in response, closing the loop. The
API defines methods that are directly called to change these commands.

The application can gather the feedback information –video and navigation– in two
ways. The first one consists in explicitly polling the data when needed. However,
because of the asynchronous nature of the feedback channel, the data is not requested
on demand to the drone, but periodically received. And, consequently, the request
method returns the last sample that was received from the proxy. The second method
for feedback retrieval is event-driven. The application registers a listener through the
API and the listener gets a notification whenever the data is received from the proxy,
so it can be processed immediately. Navigation data and video frame notifications are
received independently, as they are transmitted through unrelated channels, due to
their different bandwidth requirements.

4 Framework Implementation

The framework model has been implemented for a Parrot AR.Drone. The
implementation is targeted to IP networks, and the API works on Linux as a C++
programming language library. A specific proxy has been built for the AR.Drone with
the manufacturer's SDK examples [10], also for Linux. The proxy is a separate
executable that runs off-board the MAV because the onboard computer is closed to
third-party code. The manufacturer point-to-point communication with the drone is
established via WiFi.

4.1 Channels

The command channel is implemented using a UDP socket. Each data packet carries
the following information: sequence number, required flying mode, attitude desired
values and desired altitude speed. The sequence number is required by the framework
model, while the rest is payload information specific to the MAV.

The feedback channel uses a UDP socket, too. It transports the following
information: timestamp, proxy-drone link health, drone state, battery level, measured
attitude, measured altitude and measured velocities. The timestamp is defined as
mandatory by the model. The other data is drone-specific.

As UDP is not a reliable protocol, command and feedback channels are provided
with a retransmission mechanism. At the application side, as soon as commands are
changed by the application, the API library transmits them to the drone through the
proxy. When the application is not generating new commands, the API library keeps
transmitting the last commands periodically to ensure that they eventually arrive to
the other end. The proxy has the same mechanism: new sensor readings are sent
immediately, but if they are not available at a predefined minimum frequency, the last
readings are periodically sent through the feedback channel to ensure that they arrive
to the other end. In this way, there is constant activity in the channels and both ends
know that they are linked.

494 I. Mellado-Bataller et al.

The video channel is implemented with a TCP socket. According to the model
definition, this is not the most adequate protocol because it is not designed for real-
time, but for reliability. Nonetheless, the transparent streaming capabilities of the
protocol make the video channel implementation straight-forward. Each frame is
transmitted with its own encoding. Currently, the supported encodings are JPEG and
raw RGB with eight bits per plane.

To pass the received video frame to the application, the API library has a triple
buffering mechanism: the reception buffer, the frame-ready buffer and the processing
buffer. The first one is continuously retrieving the frames from the network,
preventing the TCP buffers from overflowing, which would time out the transmission
at the proxy side and would be interpreted as a connection failure. Right after a frame
is received, it is copied to the frame-ready buffer, to keep it accessible by other
program modules, while the reception buffer is free to receive the next frame from the
network. However, the frame-ready buffer is overridden as soon as a new frame is
received, therefore any operation on this buffer should last less than a frame period.
For longer processing times, the processing buffer is provided. When the frame-ready
buffer gets new contents, all the video channel listeners are notified. One of them is a
video processor module that copies the frame-ready buffer contents to its own
processing buffer only after the last processing operation has finished. Meanwhile, the
frames are dropped for that video processor. Multiple video processors can be freely
initiated by the application, allowing concurrent frame processing with independent
frame dropping for each processor.

The configuration channel is implemented with a TCP socket, as low delays are not
mandatory but reliability is. Each parameter operation is performed in a transaction
consisting in a request and a response. Each request contains a signature, the request
type, the parameter identifier and the parameter desired value. The desired value will
only be interpreted by the proxy if it is a write request. The response is formed by a
signature, a value indicating whether the last request was successful and the parameter
value. The parameter value will only be meaningful if the last request was for reading.

4.2 Robustness

At both communication ends, there is code responsible for keeping communication
channels synchronized. If faulty behavior occurs, the corresponding channel is
restarted, so both ends are automatically synchronized back. The channel behavior
can be understood as faulty when a malformed packet is received or when packets are
not received as frequently as expected. Every time this happens, the application is
notified so it can react accordingly. For example, it could display an alarm on a user
interface. However, the channel recovery mechanism is completely transparent and all
efforts for the channel restoration are performed by the framework.

At the application side, all the API errors are handled with C++ exceptions. This
mechanism favors that errors show up during the development phase so they can be
fixed early. In this API implementation, every thread has a last line of defense that
catches all non-caught exceptions, writes the exception in a log file for debugging and
prevents the thread from being terminated, so it can try to recover the normal state.

 Rapid Prototyping Framework for Visual Control of Autonomous MAV 495

4.3 Extra Features

The API library is able to interface with a Vicon positioning system. With this
system, position and attitude information of MAVs can be gathered inside a delimited
space. This information can be very useful, for instance, to close control loops or as
ground truth for visual pose estimation algorithms.

On the other hand, the API library provides data logging functionalities. The data
logger can gather events generated by the channels and the Vicon interface. Hence,
commands, navigation feedback, video feedback and Vicon data can be stored in a
disk for later analysis. The data logger runs asynchronously, so the delays of the disk
write operations do not bother other ongoing threads.

Finally, the API defines classes that help developing a controller by only
overriding two methods. The methods are automatically called whenever navigation
or visual feedback is received from the MAV. A controller may be implemented
inside these methods. The received information is used as input to the controller and
the controller's output is sent to the MAV directly calling the appropriate API
methods. The images from the cameras are passed back with the encoding used by
OpenCV. To help writing the controller code, the API also exposes matrix data types
that perform common algebraic operations.

5 Experimental Results

The total communication delay between the application and the drone will be the sum
of the delays introduced by the API library, the network, the proxy and the proxy-to-
drone link. The drone manufacturer is accountable for the last one. The second one is
given mainly by the physical network infrastructure. The first and third elements are
responsibility of the framework implementation and must be measured.

In order to measure the framework contribution to the delay, the proxy is run in the
same host where the application resides, so the API-proxy link is established through
local sockets. Timestamps are added to channel packets at the sender and the time
lapse is calculated at the receiver. As both processes run on the same computer, they
share the same clock reference and time calculations can be performed without
additional synchronization.

Regarding the proxy-to-application delay, the timestamps are obtained right after
receiving the data from the drone, so all proxy processing time is also taken into
account. The arrival time is acquired right after releasing the data to the application.
For the application-to-proxy delay, the timestamps are taken right after issuing the
commands to the API and the arrival time is calculated at the proxy, before sending
the commands to the drone through the point-to-point link. The framework version
0.8 beta has been used in this test. The test was run on an Acer Aspire 5750G with a
Intel Core i7-2630QM 2GHz processor and 8 Gbytes of DDR3 RAM. The Operating
System was Linux Ubuntu 11.04. During the test, the data logging was disabled. The
packet frequency for the command and feedback channels was set to 32 Hz.
The video frame rate was 15 frames per second in average (this is determined by the

496 I. Mellado-Bataller et al.

AR.Drone) and the video channel frames were encoded as raw RGB with eight bits
per plane. The test application consists on a simple visual teleoperation interface with
a waypoint-based path controller. The test duration is 5 minutes.

Figs. 3 and 4 show the distribution of delays introduced by the framework in the
command and video channels (the feedback channel distribution is similar to the
command channel one). Table 1 gives some numerical details about the delay
distributions. Fig. 5 shows the time evolution of the delays. In all figures, delays are
expressed as percentages of the channel period. The channel periods are 31.25 ms for
command and feedback, and 66.7 ms for video.

Table 1. Characterization of channel delays

Channel

Delays (ms) Num. samples

Mean a Min. Max. Total b
Delay < 1% of

channel period c

Command 0.091 (0.29%) 0.013 1.739 9,771 99.93%

Feedback 0.109 (0.35%) 0.025 1.670 9,828 99.73%

Video 1.038 (1.56%) 0.310 1.936 5,011 0.22%

a. Absolute delay in milliseconds and delay relative to channel period.
b. Total number of delay samples.
c. Delay samples lower than 1% of channel period (31.2 ms command and feedback; 66.7 ms
video).

Fig. 3. Distribution of the delays introduced in the command channel by the framework. The
relative delays are percentages of the command channel period, i.e. 31.25 ms. The highest
sample is 5.56%.

 Rapid Prototyping Framework for Visual Control of Autonomous MAV 497

Fig. 4. Distribution of the delays introduced in the video channel by the framework. The
relative delays are percentages of the average video channel period, i.e. 66.67 ms. The highest
sample is 2.9%, but the horizontal scale is set as in Fig. 3 for easy comparison.

6 Discussion

As seen in table 1, the average delays introduced by the framework are considerably
low, compared to frequencies of the channels. For a visual controller, the impact of
the framework in the reaction time would be the result of adding the visual and
command channel delays, i.e. the time it takes to see an event plus the time to react
accordingly. In average, it is a contribution of 1.129 ms to the total loop delay.
Assuming a visual control loop at 15 frames per seconds, this represents a 1.7% of the
loop period.

In Fig. 5, there are spurious samples that might be caused by the fact that the
implementation is not running on a real-time Operating System (OS). Instead, this OS
has a preemptive scheduler that can interrupt a task anytime to yield some time for
other tasks. Despite it might not cause problems during usual prototyping, it must be
taken into account for high-frequency delay-sensitive applications.

0 50 100 150 200 250 300
0

1

2

3

4

5

6

Time (s)

D
el

ay
 (

%
 o

f
ch

an
ne

l p
er

io
d)

Command

Feedback

Video

Fig. 5. Evolution of relative channel delays introduced by the framework. Most of the time,
command and feedback delays are below 1% of the channel period. Highest peaks reach 5%,
but are very unusual. The video channel delay is always under 3%.

498 I. Mellado-Bataller et al.

7 Conclusion

We have introduced a framework for fast prototyping of visual control applications
for Micro Aerial Vehicles (MAV). First, a framework model with general guidelines
has been presented, without regarding specific technology details, in order to leave it
open to other implementations. The framework architecture is able to transform cheap
MAVs without onboard processing and networking capabilities into network nodes
for off-board processing, opening the door to new prototyping configurations, like
drone swarms, distributed vision processing or MAV sharing by multiple researchers.
Moreover, the framework defines a common API that may be used to control MAVs
with similar capabilities from different manufacturers, thus improving manufacturer
independence with minimal code changes.

In order to show the framework applicability to cheap prototyping, an
implementation on an amateur MAV –a Parrot AR.Drone– has been discussed. In the
experimental results, the delays added by this implementation to the control loops are
significantly low, compared to the loop periods. However, the timings are not
deterministic because the implementation is not running on a real-time Operating
System. Thus, the applicability to safety-critical controllers is disregarded. Anyhow, it
does not affect most applications. On the contrary, the framework has proven to be a
useful tool for rapid testing. This implementation is an open-source project. It is
available at www.vision4uav.com/?q=VC4MAV-FW

Acknowledgements. The authors thank the Australian Research Centre for
Aerospace Automation - Queensland University of Technologies (ARCAA-QUT),
where a major part of the development and testing for this work was carried out. The
authors would like to thank Caja Madrid for the mobility research grant of one of the
authors. This work has been sponsored by the Spanish Science and Technology
Ministry under the grant CICYT DPI2010-20751-C02-01 and by the IRSES Program
Marie Curie FP7-PIRSES-GA-2009-230797 - ICPUAS (International Cooperation
Program for Unmanned Aerial Systems Research and Development).

References

1. Parrot AR.Drone, http://ardrone.parrot.com
2. MikroKopter, http://www.mikrokopter.us
3. ArduCopter Quad, http://www.udrones.com/product_p/acrtf1.htm
4. MAVCONN Aerial Middleware,

http://pixhawk.ethz.ch/wiki/software/middleware/start
5. MAVLINK protocol library,

http://www.qgroundcontrol.org/mavlink/start
6. ROS driver for the Parrot AR.Drone, http://code.google.com/p/brown-ros-

pkg/wiki/ardrone_brown
7. Visser, A., Dijkshoorn, N., van der Veen, M., Jurriaans, R.: Closing the gap between

simulation and reality in the sensor and motion models of an autonomous AR.Drone. In:
Proc. International Micro Air Vehicle Conference and Flight Competition (IMAV 2011),
pp. 40–47 (September 2011)

 Rapid Prototyping Framework for Visual Control of Autonomous MAV 499

8. Bills, C., Chen, J., Saxena, A.: Autonomous MAV flight in indoor environments using
single image perspective cues. In: Int. Conf. Robotics and Automation (ICRA), Shanghai,
China, pp. 5776–5783 (May 2011)

9. Koval, M.C., Mansley, C.R., Littman, M.L.: Autonomous quadrotor control with
reinforcement learning, http://mkoval.org/projects/quadrotor/files/
quadrotor-rl.pdf

10. ARDRONE open API platform, https://projects.ardrone.org
11. See and avoid with a fuzzy controller, http://vision4uav.eu/?q=research

line/SeeAndAvoidCE
12. Branicky, M.S., Phillips, S.M., Zhang, W.: Stability of networked control systems: explicit

analysis of delay. In: Proc. American Control Conf, pp. 2352–2357 (June 2000)
13. Preemption (computing), http://en.wikipedia.org/wiki/Preemption_%28

computing%29#User_mode_and_kernel_mo

	Rapid Prototyping Framework for Visual Control
of Autonomous Micro Aerial Vehicles
	Introduction
	Related Work
	Framework Architecture
	Communications
	Application Programming Interface

	Framework Implementation
	Channels
	Robustness
	Extra Features

	Experimental Results
	Discussion
	Conclusion
	References

