Skip to main content

Gaze Control-Based Navigation Architecture for Humanoid Robots in a Dynamic Environment

  • Chapter
Book cover Intelligent Autonomous Systems 12

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 193))

  • 4118 Accesses

Abstract

Due to the limited information from the environment using a local vision sensor, gaze control research is very important for humanoid robots. In addition, multiple objectives for navigation have interactive relationships among them. From this point of view, this paper proposes a gaze control-based navigation architecture using fuzzy integral and fuzzy measure for humanoid robots. Four criteria are employed along with their partial evaluation functions in order to determine the final gaze direction. By employing fuzzy integral approach for the global evaluation for candidate gaze directions, effective gaze control considering the interactive phenomena among criteria is accomplished and verified through a simulation using a developed simulator for HanSaRam-IX (HSR-IX).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akachi, K., Kaneko, K., Kanehira, N., Ota, S., Miyamori, G., Hirata, M., Kajita, S., Kanehiro, F.: Development of humanoid robot HRP-3P. In: Proc. IEEE-RAS Int. Conf. Humanoid Robots, Tsukuba, Japan, pp. 50–55 (December 2005)

    Google Scholar 

  2. Yoo, J.-K., Lee, B.-J., Kim, J.-H.: Recent progress and development of the humanoid robot HanSaRam. Robotics and Autonomous Systems 57(10), 973–981 (2009)

    Article  Google Scholar 

  3. Gutmann, J.-S., Fukuchi, M., Fujita, M.: 3D perception and environment map generation for humanoid robot navigation. Int. J. Robot. Res. 27(10), 1117–1134 (2008)

    Article  Google Scholar 

  4. Asfour, T., Azad, P., Vahrenkamp, N., Regenstein, K., Bierbaum, A., Welke, K., Schöder, J., Dillmann, R.: Toward humanoid manipulation in human-centred environments. Robot. Auton. Syst. 56(1), 54–65 (2008)

    Article  Google Scholar 

  5. Andreopoulos, A., Hasler, S., Wersing, H., Janssen, H., Tsotsos, J. K., Körner, E.: Active 3D object localization using a humanoid robot. IEEE Trans. Robot. 27(1) (February 2011)

    Google Scholar 

  6. Henderson, J.M.: Human gaze control during real-world scene perception. TRENDS in Cognitive Sciences 7(11), 498–504 (2003)

    Article  Google Scholar 

  7. Seara, J.F., Schmidt, G.: Intelligent gaze control for vision-guided humanoid walking: methodological aspects. Robot. Auton. Syst. 48(4), 231–248 (2004)

    Article  Google Scholar 

  8. Lidoris, G., Kuhnlenz, K., Wollherr, D., Buss, M.: Information-based gaze direction planning algorithm for SLAM. In: 2006 6th IEEE-RAS Int. Conf. Humanoid Robots, Genova, Italy, pp. 302–307 (December 2006)

    Google Scholar 

  9. Takahagi, E.: A fuzzy measure identification method by diamond pairwise comparisons and φ s transformation. Fuzzy Optim. and Making 7(3), 219–232 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Grabisch, M.: A graphical interpretation of the Choquet integral. IEEE Trans. on Fuzzy Syst. 8(5), 627–631 (2000)

    Article  Google Scholar 

  11. Posner, M.I., et al.: Inhibition of return: neural basis and function. Cogn. Neuropsychol. 2, 211–228 (1985)

    Article  Google Scholar 

  12. Leek, E.C., Reppa, I., Tipper, S.P.: Inhibition of return for objects and locations in static displays. Percept. Psychophys. 65(3), 388–395 (2003)

    Article  Google Scholar 

  13. Thrun, S.: Learning occupany grid maps with forward sensor models. Auton. Robots 15(2), 111–127 (2003)

    Article  Google Scholar 

  14. Bailey, T.: Mobile robot localization and mapping in extensive outdoor environments. Doct. Thesis, Univ. Sydney, Australia (2003)

    Google Scholar 

  15. Sugeno, M.: Theory of fuzzy integrals and its applications. Doct. Thesis, Tokyo Institute of Technology (1974)

    Google Scholar 

  16. Kim, Y.-J., Kim, J.-H., Kim, D.-S.: Evolutionary programming-based univector field navigation method for fast mobile robots. IEEE Trans. Syst., Man, Cybern. B 31(3), 450–458 (2001)

    Article  Google Scholar 

  17. Lee, B.-J., Stonier, D., Kim, Y.-D., Yoo, J.-K., Kim, J.-H.: Modifiable walking pattern of a humanoid robot by using allowable ZMP variation. IEEE Trans. Robotics 24(4), 917–925 (2008)

    Article  Google Scholar 

  18. Yoo, J.-K., Kim, J.-H.: Navigation framework for humanoid robots integrating gaze control and modified-univector field method to avoid dynamic obstacles. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Taipei, Taiwan, pp. 1683–1689 (October 2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Ki Yoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yoo, JK., Kim, JH. (2013). Gaze Control-Based Navigation Architecture for Humanoid Robots in a Dynamic Environment. In: Lee, S., Cho, H., Yoon, KJ., Lee, J. (eds) Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, vol 193. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33926-4_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33926-4_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33925-7

  • Online ISBN: 978-3-642-33926-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics