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Abstract—Auction based algorithms offer effective methods for
de-centralized task assignment in multi-agent teams. Typically
there is an implicit assumption that agents can be trusted to
effectively perform assigned tasks. However, reliable performance
of team members may not always be a valid assumption. An
approach to learning team member performance is presented,
which enables more efficient task assignment. A policy gradient
reinforcement learning algorithm is used to learn a cost factor
that can be applied individually to auction bids. Experimental
results demonstrate that agents that model team member perfor-
mance using this approach can more efficiently distribute tasks
in multi-agent auctions.

I. INTRODUCTION

The area of multi-agent systems has been an active area of
research for many years, due in no small part to the ability
for a team of robots to operate more efficiently and be more
robust to failure than a single robot. However, there are still
many challenges related to the interaction between the robots
themselves. In traditional multi-agent systems approaches,
each team member explicitly operates as part of a team and
has the team’s goals either explicitly or implicitly encoded.
However, future robotic teams may have different internal
goals as well as performance capabilities, costs, and owners.
As such, robots may need to learn which team members
reliably estimate and perform tasks as part of a team.

This work describes approaches for learning task perfor-
mance of team members as applied to the multi-agent auction
domain. A reinforcement learning algorithm is used to learn
a cost factor for adjusting each agent’s bids, based on the
observed performance of that agent in completing tasks as
estimated.

Market-based auction methods are a class of decentralized
algorithms that solve the multi-robot task allocation problem
by splitting computation across multiple nodes and iteratively
performing task assignments [1]. The basic auction approaches
to the task allocation problem assume that team members can
be trusted and have the goal of the team in mind (to reduce
the overall cost) [2]. These algorithms serve as a mechanism
for distributed task allocation and generally do not explicitly
consider individual team members’ performance characteris-
tics. However, there are situations in which teams may be
formed dynamically, and the individual players within the team
may have varying levels of performance and task estimation
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accuracy. In order for tasks to be allocated efficiently, it is
important to be able to reliably trust that robots will perform
their assigned tasks with costs that closely approximate their
estimated costs. If a robot regularly exceeds their estimated
cost for performing a task, the auction algorithm should be
able to adjust the estimate to reflect the robot’s true expected
performance.

This paper will present an approach for learning which
team members perform tasks at costs that accurately reflect the
estimated costs. This approach can be used to more effectively
perform auction based task allocation by using a reinforcement
learning algorithm to adjust a cost factor that is applied to each
team member’s bid estimates.

The rest of this paper is organized as follows. In Section
II, we present the background and related work for learning
in multi-agent auctions. In Section III, we discuss the use
of the reinforcement learning algorithm within an auction
framework. In Section IV, we present results of simulated
experiments using this approach. Finally, in Section V, we
conclude and present future work.

II. RELATED WORK

The ability to determine when a robot is not performing or
functioning as expected can be used to re-assign tasks or call
attention to an operator. An analysis of approaches to robot
performance based metrics are presented by Parker in [3].

Pippin and Christensen considered allocating tasks to robots
with different sensors characteristics in [4]. Given the prob-
abilities of detection for each sensor, the expected utility is
calculated and applied to each agent’s cost bid. In that work,
the sensor performance characteristics were known in advance.

An example of learning opportunity costs in auctions was
performed in simulation of Martian rovers [5]. The appro-
priate opportunity costs allow for the specialized robots to
avoid becoming underutilized. Over multiple simulations, the
different types of robots adjusted their opportunity costs such
that neither was underutilized.

Agents learned what valuation to bid by direct observations
of similar other agents in [6]. The approach in that work is for
the agent to learn to adapt their valuation (and the resulting
bid) to market conditions in a simulated, electronic market,
using a reinforcement learning algorithm. The market domain



was inspired by real world electronic commerce applications
in which physical resources, such as trucks, and workers, com-
peted to win tasks. The related problem of learning whether
an agent should submit a bid is useful in domains in which
computing a bid can be expensive because communication and
computation costs can be considerable [7].

Jones, Dias and Stentz investigated techniques for learning
proper task cost estimates in oversubscribed domains, using
auction algorithms [8]. In that work, each robot attempted
to learn their own bid estimates, and had full knowledge of
their own state vectors, including their own schedule. In this
paper, we are interested in learning whether bids accurately
match their estimated values, but from the viewpoint of the
auctioneer. The auctioneer has less visibility into the state
features that can be used to estimate a bid and relies on the
estimated vs. actual cost to apply a cost adjustment to future
bids.

This paper uses a learning approach that is very similar
to that used in Kohl and Stone for learning fast gaits on
quadrupedal robots [9]. They applied a policy gradient rein-
forcement learning algorithm to learn control parameters for
leg motions. The policy gradient algorithm was also applied by
Mitsunaga, et al. to adapt robot behaviors to human partners
[10]. This paper will apply the policy gradient learner to the
task of learning a cost factor for other robots’ cost estimates
in market-based auction algorithms.

III. APPROACH

Robots may fail to perform tasks according to their initial
estimate for a number of reasons. For instance, in complex
domains, the cost function may be expensive to calculate
and the task estimate might be based on a heuristic function.
Perhaps, over time a robot’s performance might have degraded
due to hardware failure or wear. Finally, the robot’s internal
state may not reflect the true state of the robot, causing errors
in estimation.

For this paper, we will assume that a subset of the team
members regularly mis-estimate task costs by an unknown
factor, due to errors in the robot’s internal state model.
Therefore, the task is to learn the true cost factor for those
robots. A learning algorithm will be used to approximate the
cost factor and apply it to the task assignment function used
by a market based auction algorithm.

A. Auction Approach

In the basic multi-agent auction algorithm, the problem is to
assign tasks to agents. The tasks in this case are to visit a target
location and perform an observation. In the auction framework,
each robot is a bidder and the items to be auctioned are the
tasks. Each of the agents in the system also participates as
an auctioneer and periodically auctions new task requests (it
is assumed that the task requests are periodically provided to
the agent by an external process, such as a human operator
or other event). This approach can easily be used on teams
with different robot characteristics: each robot knows their
own location and cost function and submits cost based bids

to the auctioneer. While costs and rewards use the same basis
for calculation, no revenue is actually exchanged. Rather, an
agent awards itself a utility value when one of its own tasks
is completed.

In this work, the agents each maintain a current task list
and locally compute their bid to complete the proposed task.
The bid consists of the time-based cost to perform the task.
A potential source of error in task estimation is in the use
of an insertion heuristic for calculating the marginal cost to
perform a task, in addition to those tasks already assigned. In
this paper, each robot plans to visit the targets in the order in
which they were assigned (using the O1 assignment rule from
[11]). For each auction announcement received, each robot
calculates their bid as the amount of time required to complete
the task in addition to those on the current task list. When the
winning bidder is assigned a new task, the task is appended
to the robot’s assigned task list.

B. Learning the Cost Factor

The learning method used in this work is the policy gradient
reinforcement learning (PGRL) algorithm. This is a reinforce-
ment learning method that is used to estimate the policy
gradient when the true value function is not known. The PGRL
algorithm is presented in detail by Baxter and Bartlett in [12],
and it is shown that this approach converges towards a local
optimum.

1) The PGRL Algorithm: The pseudocode for the PGRL
algorithm, adapted from [9] and [10], is shown in Figure 1.
At the beginning of the algorithm, the policy vector, ©, is
initialized. In this paper, we are using the algorithm to learn
a single parameter, 6, which is the cost factor to apply to a
robot’s task estimation. Therefore, we initialize § = 1, reflect-
ing the belief that each robot perfectly estimates tasks that
they will perform. In the main loop, the algorithm generates
a set of random permutations for the policy by adding either
+¢€, 0 or —e to the policy.

Next, each of these permutations is evaluated by the system
and the resulting reward is received. Averages of the rewards
are maintained for the permutations of each type. After all
of the permutations have been evaluated, the gradient is
approximated by calculating the adjustment, a;, related to each
parameter in the policy. Each parameter’s step distance, ¢;, and
the global step distance, 7, are applied to a; and the values are
normalized. Finally, the policy is updated with the adjustment.

An example of learning a cost factor, 6, using the PGRL
algorithm is shown in Figure 4(a). In this example, the
unknown cost factor is 2, and € is initialized to 1. After about
100 evaluations, the learned policy begins to converge near
the true value.

2) Learning in Auctions: The PGRL is applied to multi-
robot auctions by applying the learned cost factor to each
robot’s bid, as shown in Figure 2. Each auctioneer maintains a
PGRL learner for each known team member. After auctioning
a task, the auctioneer will receive a set of bids from team
members, where each bid represents the time-based cost for
the bidder to complete that task. The auctioneer then queries



. © <« initial policy vector of size N

1

2: while NOT done do

3:  OT < t random permuations of ©

4 fort=1—Tdo

5 Run system using parameter set ©°

6: Evaluate reward

7:  end for

8: forn=1— N do

9: Avgyen < average reward for all © that have a
positive perturbation in dimension n.

10: Avgp, n, + average reward for all ©! that have zero
perturbation in dimension n.

11: Avg_., < average reward for all ©' that have a

negative perturbation in dimension n.

12: if (Avgo, > Avgien AND Avgo, > Avg_.p)
then

13: aj < 0

14: else

15: a; < (Avgien — Avg_cn)

16: end if

17:  end for

18 A+ ﬁ *1)

19: aj < aj * Ej,Vj
200 O+ 060+ A

21: end while

Fig. 1. The Policy gradient reinforcement learning algorithm pseudocode,
with N policy parameters. During each iteration, ¢ random policies are
sampled near the current policy for evaluation. The resulting reward from
each sample is used to estimate the gradient and move by a small amount in
the correct direction.

the learner to get the cost factor, 6, related to that agent. This
cost factor is multiplied by the original bid in line 3 to get
an updated estimate for the agent to perform the task. The
resulting bid in the set with the minimum cost is then awarded
the task.

When a task is completed by an agent, the auctioneer that
assigned the task is sent a message with the completed task
information. The auctioneer can then compare the updated
estimated cost for the task with the actual cost for completion,
as shown in Figure 3. The ratio of these costs is used to
determine the reward signal used by the reinforcement learner.
The PGRL reward function, shown in Figure 4(b), calculates
the scalar reward signal from this value. The reward is used
by the PGRL algorithm, as described above, to calculate
adjustments to the cost factor.

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

A set of experiments were performed in simulation to test
the cost factor learning approach in a multi-agent auction
environment. In these experiments, each robot has 50 tasks
that arrive at regular intervals and are sequentially auctioned
by that robot’s auctioneer. As part of the auction process, they

Input: The set of posted bids, B.
Input: The set of bidders, A.

1: for all a: A do

2: 0 < GetTheta(Learner,)

3 Bl 0xB,

4 FEstCostp, < Costp:

5: end for

6: winner < Min(B})

7. AnnounceWinner(winner, a)

Fig. 2. HandleBids() pseudocode. The policy gradient reinforcement learning
method learns the cost parameter, 6, for each team member. This cost factor
is applied to future bids for that agent.

1: ActualCost < (CompleteTime — StartTime)
2: CostFactoriasy < ActualCost/EstCostp,
3: Update RL(Learner,, CostFactoriqsk)

Fig. 3. TaskComplete() pseudocode. The estimated vs. actual task completion
time is used to evaluate the value of 6 in the reinforcement learning algorithm.

also bid on their own tasks. The robots in the simulation have a
limited communications range and can therefore only perform
auctions with a subset of the other team members at a given
time.

Rewards are given for task completion to the robot that
originated the task. Each robot submits bids that represent the
time-based cost for completing a task. Specifically, the bid
represents the number of time steps until the task could be
completed. Once a robot finishes all tasks in their list, they no
longer accumulate costs in the simulation. The initial locations
of the robots and the tasks are randomly chosen for each
iteration.

1) Task Estimation: In this paper, the source for estimation
error is assumed to be due to poor performing robot having
an incorrect model of its own performance capabilities. To
simulate robots that bid poorly, a percentage of robots on the
team are modeled as poor performers by randomly assigning
a cost factor at the start of the experiment, using a normal
distribution with 4 = 2 or 4 = 3 and 0 = 0.1. When a
poor performer bids on a task, the unknown cost factor is
drawn from this distribution and is applied to the robot’s task
performance to simulate error in estimation and execution.

2) Learning and Applying the Policy: During the learning
phase, 1000 auctions were performed with the PGRL algo-
rithm running with a varying number of poor performers on the
team in order to learn the cost factors. These experiments used
a centralized learner to share the results across each agent’s
auctioneer.

After the cost factors were learned, they were loaded and
a set of experiments were performed to perform auctions
using the learned cost factor as the PGRL initial policy. The
algorithm continued to learn online, but the step distance,
€; was reduced to minimize exploration. This policy learner
method is compared against a naive auction method which
does not consider performance; a known state method that
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Fig. 4. The PGRL approach to learning the cost factor: (a) The policy
gradient reinforcement learning method learns the cost parameter, 6. In this
example, the agent’s unknown true cost factor is 2. (b) The reward function
used by the PGRL algorithm converts an observed cost factor to a reward
value.

has access to the true cost factor for each team member;
and a no cooperation method in which each team member
performs all of their tasks without the benefits of cooperation.
For each experiment, the average global score represents the
score (average task reward / average cost) for the team. For
each set of experiments, results were averaged over 100 runs.

B. Results and Discussion

The results of these experiments are shown in Figure 5.
The average global score using each strategy is plotted against
teams with 2, 3 and 4 poor performers on a team of 6 robots.
The error bars represent 1 standard deviation.

The known state strategy represents the best score on
average that a team could achieve given the number of poor
performers on the team. This strategy has access to an oracle
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Fig. 5. Task Performance: The learning method is compared with a method
that knows the state of each agent in advance, a naive auction method that
doesn’t consider performance and with the case of no cooperation.

with knowledge of each team member’s hidden state and
can calculate the true cost factor to apply to each bid. The
scores for the policy learner strategy approach the scores
of the known state strategy. The policy learner also scores
better than the naive strategy which only uses a basic auction
and does not consider bid estimation accuracy of each team
member. Finally, the no cooperation strategy scores the worst,
demonstrating that it is better to have poor performers on the
team than to work on tasks in isolation.

The results indicate that the policy learner strategy can
result in up to a 10% improvement in team performance
than over the basic auction approach alone. Intuitively, we
expected that the gap between the policy learner and the naive
approaches would be larger. However, the auction method
distributes task effectively as the poor performers get behind.
That is, as the number of tasks begins to back up for the poor
performers, the costs to add a task to the end of their schedule
increases, and they win fewer auction assignments. This occurs
even though their costs are underestimated. We intend to
explore additional bidding and task insertion heuristics using
this technique in future work. Nevertheless, these experiments
demonstrate that the application of a learner to the cost
estimates can be more effective than methods that do not
consider estimation accuracy.

V. CONCLUSION

This paper presents a reinforcement learning method for
recognizing which agents are more likely to submit bids that
accurately reflect the true cost for performing tasks. The
above experiments showed that a learning mechanism can be
effective for detecting poorly-performing team members in
auctions, when compared to the naive approach. This may
prove useful in situations in which auction based teams are
dynamically formed and not all team members are likely to
estimate costs correctly. The algorithm learned the cost factor
to apply to each team member’s bid estimate in a multi-robot



auction. The results show that by learning the performance
characteristics of individual robots, tasks can be allocated more
efficiently.

Future work will consider additional learning mechanisms
relevant to task performance. This is related to the problem of
determining how to recognize when tasks that were assigned to
another agent were not only completed according to the initial
cost estimate, but completed within stated quality parameters.
In addition, we would like to determine how well this method
performs with the use of additional bidding and task insertion
heuristics. Finally, we hope to validate this approach with a
set of experiments using a team of indoor mobile robots.
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