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Preface

Computer science is no more about computers
than astronomy is about telescopes.
Edsger Dijkstra

The topic of this book is the following optimisation problem: given a set of dis-
crete variables and a set of functions, each depending on a subset of the variables,
minimise the sum of the functions over all variables. This fundamental research
problem has been studied within several different contexts of computer science
and artificial intelligence under different names: Min-Sum Problems, inference in
Markov Random Fields (MRFs) and Conditional Random Fields (CRFs), Gibbs en-
ergy minimisation, valued constraint satisfaction problems (VCSPs), and (for two-
state variables) pseudo-Boolean optimisation. We present general techniques for
analysing the structure of such functions and the computational complexity of the
minimisation problem.

This book could not have been written without the support of Oxford’s University
College, which funded me through a Stipendiary Junior Research Fellowship in
Mathematical and Physical Sciences for 3 years.

Many results in this book are joint work with Dave Cohen and Pete Jeavons, from
whom I have learnt the ropes of academic work. Pete has also served as my mentor
and Ph.D. supervisor at Oxford. I am grateful to both for their advice, support, and
friendship. Some results from Chap. 2 are joint work with Páidí Creed. Some results
described in Chap. 3 are joint work with Bruno Zanuttini. The results described in
Chap. 7 were obtained in collaboration with Vladimir Kolmogorov, whom I met at
the Tractability Workshop in Microsoft Research Cambridge in 2010, when I was
a research intern there. The results presented in Chap. 8 are joint work with Johan
Thapper, whom I met at the Algebraic CSP Workshop at the Fields Institute for Re-
search in Mathematical Sciences. The Fields Institute kindly funded my attendance
at the workshop. The UK Engineering and Physical Sciences Research Council (EP-
SRC), the Royal Society (RS), and the French National Research Agency (ANR)
financed my trips to the University of Toulouse III. Chapter 9 briefly summarises
some of the results that have come out of these very productive research visits to
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Toulouse and have given me the opportunity to work with and learn from Martin
Cooper. I am grateful to all the above-mentioned collaborators for the time spent
together, fun we had, and everything I have learnt from them.

I am grateful to my sister, Radka, and my parents-in-law for their support. Last
but not least, I would like to express my gratitude to my wonderful wife, Biying, for
her love, encouragement, and inspiration.

Stanislav ŽivnýOxford, UK
July 2012
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Introduction

We can only see a short distance ahead,
but we can see plenty there that needs to be done.
Alan Turing

The main topic of this book is the following optimisation problem: given a set
of discrete variables and a set of functions, each depending on a subset of the vari-
ables, minimise the sum of the functions over all variables. This fundamental re-
search problem has been studied within several different contexts of artificial intel-
ligence, computer science, and combinatorial optimisation under different names:
Min-Sum Problems [268], MAP inference in Markov Random Fields (MRFs) and
Conditional Random Fields (CRFs) [203, 267], Gibbs energy minimisation [128],
valued constraint satisfaction problems [97], and (for two-state variables) pseudo-
Boolean optimisation [34, 84].

We start off with several examples of interesting and well-studied problems that
can be modelled in this way.

Example 1 (Satisfiability) The standard propositional SATISFIABILITY problem for
ternary clauses, 3-SAT [125], consists in determining whether it is possible to satisfy
a Boolean formula given as a conjunction of ternary clauses, where each clause
is a set of three literals and each literal is either a variable or the negation of a
variable. A generalisation of 3-SAT, the 3-MAX-SAT problem [125] consists in
finding an assignment of 0s and 1s (representing FALSE and TRUE, respectively)
to all variables in the given formula such that the number of satisfied clauses is
maximised, or equivalently (with respect to exact solvability), finding an assignment
of 0s and 1s to all variables such that the number of unsatisfied clauses is minimised.

Any 3-SAT instance can be easily seen as a minimisation problem with the ob-
jective function given by a sum of ternary {0,∞}-valued functions, one function for
each clause. For instance, clause (x ∨ ¬v ∨ z) yields a ternary function f defined
by f (0,1,0) = ∞ and f (x, y, z) = 0 otherwise.

Similarly, any 3-MAX-SAT instance can be easily seen as a minimisation prob-
lem with the objective function given by a sum of ternary {0,1}-valued functions,
one function for each clause. For instance, clause (x ∨ ¬v ∨ z) yields a ternary
function f defined by f (0,1,0) = 1 and f (x, y, z) = 0 otherwise.

xiii
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Example 2 (Graph colouring) The k-COLOURABILITY problem [125] consists in
determining whether it is possible to assign k colours to the vertices of a given
graph so that adjacent vertices are assigned different colours. This can be viewed
as a minimisation problem with the objective function given by a sum of binary
functions; each edge in the graph yields a binary function f defined by f (x, y) = 0
if x �= y and f (x, y) = ∞ otherwise.

Example 3 (Digraph acyclicity) Given a directed graph G, the question of whether
G is acyclic can be modelled as follows: variables correspond to the vertices of G,
the domain of every variable is the set of natural numbers N,1 and every arc (x, y)

of G yields a binary function f that represents the standard “smaller than” ordering
on natural numbers; that is, f (x, y) = 0 if x < y and f (x, y) = ∞ otherwise.

Example 4 (Diophantine equations) Hilbert’s tenth problem asks for an algorithm
that decides whether a given system of polynomial equations with integer coeffi-
cients (a diophantine equation system) has an integer solution. This problem can be
modelled with variables x1, . . . , xn, each with the domain Z, and constraints of the
form axi +bxj +c = xk , or xi ∗xj = xk , for a, b, c, d ∈ Z and i, j, k ∈ {1,2, . . . , n};
this can be easily represented by {0,∞}-valued ternary functions. Matiyasevič has
shown that this problem is undecidable [216].

Example 5 (Min-Cost-Hom) Given a graph G, we denote by V (G) the set of ver-
tices of G and by E(G) the set of edges of G. Given two (directed or undirected)
graphs G and H , a mapping h : V (G) → V (H) is a homomorphism from G to H if
h preserves edges; that is, (u, v) ∈ E(G) implies (h(u),h(v)) ∈ E(H). The homo-
morphism problem for graphs asks for the existence of a homomorphism from G to
H [150]. Let cv(u) be a nonnegative rational cost for all u ∈ V (G) and v ∈ V (H).
The cost of a homomorphism f from G to H is defined by

∑
u∈V (G) cf (u)(u). The

MINIMUM-COST HOMOMORPHISM problem, MIN-COST-HOM [143, 145], asks
for a homomorphism of minimum cost between two given graphs. This problem
can be cast as a minimisation problem of a sum of binary {0,∞}-valued functions
and unary rational-valued functions.

Example 6 (Max-Cut) Given a graph G with the vertex set V , the MAXIMUM

CUT problem, MAX-CUT [125], consists in finding a subset S ⊆ V of the ver-
tices of G that maximises the number of edges between vertices in S and V \ S.
The polynomial-time equivalent (with respect to exact solvability) problem is MIN-
IMUM UNCUT, MIN-UNCUT; that is, the problem of finding a subset S ⊆ V that
minimises the number of edges in S and V \ S.

This problem can be seen as a minimisation problem with the objective func-
tion being a sum of binary functions defined on {0,1}. In particular, if we define

1In fact, only the set {1,2, . . . , n}, where n is the number of vertices of G, would suffice as the
domain of each variable.
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λ̄(x, y) = 0 if x �= y and λ̄(x, y) = 1 if x = y, then the objective function is a sum
of λ̄’s, each edge of G corresponding to one λ̄.

Example 7 ((s,t)-Min-Cut) Given a graph G with the vertex set V and two specified
vertices s, t ∈ V , the (s, t)-MIN-CUT problem consists in finding a subset S ⊆ V of
the vertices G with s ∈ V and t /∈ V that minimises the number of edges between
vertices in S and V \ S.

This problem can be seen as a minimisation problem with the objective func-
tion being a sum of unary and binary functions defined on {0,1}. In particular,
let λ(0,1) = 1 and λ(x, y) = 0 otherwise, and for any d ∈ D, let μd(d) = ∞ and
μd(x) = 0 otherwise. Now the objective function is a sum of λ’s, each edge of G

corresponding to one λ, and μ1(s) + μ0(t), which enforces the inclusion of s and
exclusion of t .

It is straightforward to generalise (s, t)-MIN-CUT to graphs with edge weights.
Both versions of the problem are solvable in polynomial time [131].

Example 8 (Submodularity) Let D = {1,2, . . . , d} for some fixed d . Let � be a set
of functions f : Dk → Q≥0 satisfying f (min(s, t)) + f (max(s, t)) ≤ f (s) + f (t)

for any s, t ∈ Dk , where k is the arity of f , and min and max are binary functions
returning the smaller and larger, respectively, of its two arguments with respect to
the usual order on integers. (Note that min and max are applied componentwise
on tuples s and t .) Any sum of functions from � over n variables, each with do-
main D, can be minimised in polynomial time in n due to its submodularity prop-
erty [159, 257].

We finish our list with some more applied examples.

Example 9 (Timetabling) In timetabling exams at a university [248], variables can
represent the times and locations of the different exams, and the functions can model
the capacity of each examination room (for example, we cannot assign more stu-
dents to take exams in a given room at any one time than the room’s capacity) and
prevent certain exams from being scheduled at the same time (for example, we can-
not schedule two exams at the same time if they share students in common). The
objective function can also take into account teachers’ and students’ preferences.

Example 10 (Texture-based segmentation) Given a set of distinct textures, such as a
dictionary of RGB patches, together with their object class labels, the goal is to seg-
ment a given image; that is, the pixels of the image should be labelled as belonging
to one of the object classes. This problem can be formulated using discrete variables,
one for each pixel, where the domain of each variable is the set of distinct object
classes. The binary functions are usually defined such that they encourage contigu-
ous segments whose boundaries lie on image edges [37]. Similar approaches can be
used for 3D reconstruction or object recognition [36].

Example 11 (Office assignment) Each of n staff members, represented by n vari-
ables, must be assigned an office. There are m offices, each of which can be assigned



xvi Introduction

at most uj people. Unary functions express personal preferences of each staff mem-
ber for each office. There are also nonoverlapping groups of people G1, . . . ,Gg

whom we would prefer to assign to different offices (such as married couples, for
example). What is the best solution?

While some of the problems from the examples above are tractable, such as Ex-
amples 7 and 8, some of them are (NP-)hard, or even undecidable, such as Exam-
ple 4. Our main interest is in the question of what makes these problems hard and
what the special cases are that are tractable.

Focus of This Book

The focus of this book is on exact solvability; that is, we are interested in solving
the problem in hand optimally (as opposed to approximately). Furthermore, a class
of problems is considered tractable if any instance from it can be solved in polyno-
mial time (as opposed to other notions of tractability such as moderate exponential-
time tractability or fixed-parameter tractability). Finally, we will consider problems
with discrete variables on finite domains only. For some (classes of) problems, the
domains will be fixed; for others, the domains will be part of the input (and thus
unbounded), but always finite.

Since all the above-mentioned frameworks are equivalent with respect to exact
solvability and given that this book is based on several papers that talk about valued
constraint satisfaction problems, we will use the terminology of valued constraint
satisfaction problems (VCSPs) [97, 253].

A special case of VCSPs are so-called constraint satisfaction problems (CSPs),
first identified in the seminal work of Montanari [218]. CSPs deal only with the
feasibility (rather than the optimisation) problem, as is Examples 2 and 3, but we
will pay some attention to them in this book as they have been studied in other
contexts as well, such as homomorphisms between relational structures [111, 150]
and conjunctive query evaluation [111, 136, 183, 251]. Apart from the tractability
notion studied in this book, defined by polynomial-time solvability, there is an al-
ternative and well-studied approach to solving CSPs in practice, which consists in
interleaving a backtracking search with a series of heuristics and polynomial-time
propagation, which significantly prune the exponential search space. We refer the
reader interested in this research area, known as constraint programming, to the
standard textbooks [3, 97, 248], the proceedings of the Annual International Con-
ference on Principles and Practice of Constraint Programming (CP), and the website
of the Association for Constraint Programming (ACP).2

2http://4c.ucc.ie/a4cp/.

http://4c.ucc.ie/a4cp/
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Structure of This Book

Apart from the introduction, this book consists of three parts. Part II is based on the
author’s doctoral thesis from the University of Oxford [274], which won the 2011
Association for Constraint Programming (ACP) Doctoral Award.

Part II investigates the expressive power of various classes of functions. Chap-
ter 2, based on [63, 68, 274], presents an algebraic theory for the expressive power
of languages. Chapter 3, based on [70] (preliminary version [69]) and [272], investi-
gates the expressive power of fixed-arity languages. Chapter 4, based on [280] (pre-
liminary version [277]), is concerned with submodular languages. Chapter 5, based
on [275] (preliminary version [276]), shows that not all submodular languages are
expressible by binary submodular languages.

Part III deals with the tractability of valued constraint satisfaction problems.
Chapter 6 surveys known tractable languages and is based on [168]. Chapter 7,
based on [188] (full version [187]), briefly presents the complexity of conserva-
tive languages. Chapter 8, based on [264], presents recent results on the power of
linear programming for valued constraint satisfaction problems. Chapter 9, based
on [80] and [82] (preliminary versions [78, 79, 81]), surveys known results on hy-
brid tractability. Finally, Chap. 10 concludes with some open problems.


	The Complexity of Valued Constraint Satisfaction Problems
	Preface
	Contents
	Introduction
	Focus of This Book
	Structure of This Book



