Skip to main content

Pyramid Transform and Scale-Space Analysis in Image Analysis

  • Conference paper
Outdoor and Large-Scale Real-World Scene Analysis

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7474))

Abstract

The pyramid transform compresses images while preserving global features such as edges and segments. The pyramid transform is efficiently used in optical flow computation starting from planar images captured by pinhole camera systems, since the propagation of features from coarse sampling to fine sampling allows the computation of both large displacements in low-resolution images sampled by a coarse grid and small displacements in high-resolution images sampled by a fine grid.

The image pyramid transform involves the resizing of an image by downsampling after convolution with the Gaussian kernel. Since the convolution with the Gaussian kernel for smoothing is derived as the solution of a linear diffusion equation, the pyramid transform is performed by applying a downsampling operation to the solution of the linear diffusion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kimuro, Y., Nagata, T.: Image processing on an omni-directional view using a spherical hexagonal pyramid: Vanishing points extraction and hexagonal chain code. In: Proc. IROS 1995, pp. 356–361 (1995)

    Google Scholar 

  2. Kin, G., Sato, M.: Scale space filtering on spherical pattern. In: Proc. ICPR 1992, vol. 3, pp. 638–641 (1992)

    Google Scholar 

  3. Bülow, T.: Spherical diffusion for 3D surface smoothing. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1650–1654 (2004)

    Article  Google Scholar 

  4. Morales, S., Klette, R.: A Third Eye for Performance Evaluation in Stereo Sequence Analysis. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1078–1086. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Ohnishi, N., Imiya, A.: Featureless robot navigation using optical flow. Connection Science 17, 23–46 (2005)

    Article  Google Scholar 

  6. Jolion, J.M.: Stochastic pyramid revisited. Pattern Recognition Letters 24, 1035–1042 (2003)

    Article  MATH  Google Scholar 

  7. Jolion, J.M., Montanvert, A.: The adaptive pyramid: a framework for 2D image analysis. CVGIP: Image Understanding 55, 339–348 (1992)

    Article  MATH  Google Scholar 

  8. Jolion, J.M., Rosenfeld, A.: An O(log n) pyramid Hough transform. Pattern Recognition Letters 9, 343–349 (1989)

    Article  MATH  Google Scholar 

  9. Kropatsch, W.G.: A pyramid that grows by powers of 2. Pattern Recognition Letters 3, 315–322 (1985)

    Article  Google Scholar 

  10. Kropatsch, W.G.: Curve representations in multiple resolutions. Pattern Recognition Letters 6, 179–184 (1987)

    Article  Google Scholar 

  11. Kropatsch, W.G.: Building irregular pyramids by dual graph contraction. In: IEEE-Proc. Vision, Image and Signal Processing, vol. 142(6), pp. 366–374 (1995)

    Google Scholar 

  12. Hwan, S., Hwang, S.-H., Lee, U.K.: A hierarchical optical flow estimation algorithm based on the interlevel motion smoothness constraint. Pattern Recognition 26, 939–952 (1993)

    Article  Google Scholar 

  13. Witkin, A.P.: Scale space filtering. In: Proc. of 8th IJCAI, pp. 1019–1022 (1983)

    Google Scholar 

  14. Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhao, N.-Y., Iijima, T.: Theory on the method of determination of view-point and field of vision during observation and measurement of figure. IEICE Japan, Trans. D J68D, 508–514 (1985) (in Japanese)

    Google Scholar 

  16. Zhao, N.-Y., Iijima, T.: A theory of feature extraction by the tree of stable view-points. IEICE Japan, Trans. D J68D, 1125–1135 (1985) (in Japanese)

    Google Scholar 

  17. Burt, P.J., Adelson, E.H.: The Laplacian pyramid as a compact image code. IEEE Transactions on Communications 31, 532–540 (1983)

    Article  Google Scholar 

  18. Olkkonen, H., Pesola, P.: Gaussian pyramid wavelet transform for multiresolution analysis of images. Graphical Models and Image Processing 58, 394–398 (1996)

    Article  Google Scholar 

  19. Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision 10, 237–252 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)

    Google Scholar 

  21. Duits, R., Florack, L., Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. Journal of Mathematical Imaging and Vision 20, 267–298 (2004)

    Article  MathSciNet  Google Scholar 

  22. Johansen, P., Skelboe, S., Grue, K., Andersen, J.D.: Representing signals by their toppoints in scale space. In: Proc. International Conference on Image Analysis and Pattern Recognition, pp. 215–217 (1986)

    Google Scholar 

  23. Guilherme, N.D., Avinash, C.K.: Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 237–267 (2002)

    Article  Google Scholar 

  24. Franz, M.O., Mallot, H.A.: Biomimetic robot navigation. Robotics and Autonomous Systems 30, 133–153 (2000)

    Article  Google Scholar 

  25. Franz, M.O., Chahl, J.S., Krapp, H.G.: Insect-inspired estimation of egomotion. Neural Computation 16, 2245–2260 (2004)

    Article  MATH  Google Scholar 

  26. Green, W.E., Oh, P.Y., Barrows, G.: Flying insect inspired vision for autonomous aerial robot maneuvers in near-earth environments. In: Proc. ICRA 2004, vol. 3, pp. 2347–2352 (2004)

    Google Scholar 

  27. Sobey, P.J.: Active navigation with a monocular robot. Biological Cybernetics 71, 433–440 (1994)

    Article  Google Scholar 

  28. Vardy, A., Moller, R.: Biologically plausible visual homing methods based on optical flow techniques. Connection Science 17, 47–89 (2005)

    Article  MATH  Google Scholar 

  29. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. Imaging Understanding Workshop, pp. 121–130 (1981)

    Google Scholar 

  30. Chianga, M.-C., Boult, T.E.: Efficient super-resolution via image warping. Image and Vision Computing 18, 761–771 (2000)

    Article  Google Scholar 

  31. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  32. Terzopoulos, D.: Image analysis using multigrid reaxation method. IEEE PAMI 8, 129–139 (1986)

    Article  Google Scholar 

  33. de Zeeuw, P.M.: The multigrid image transform. In: Tai, X.-C., Lie, K.A., Chan, T., Osher, S. (eds.) Image Processing Based on Partial Differential Equations: Mathematics and Visualization, pp. 309–324. Springer (2007)

    Google Scholar 

  34. Briggs, W.L., Henson, V.E., McCormick, S.F.: A Multigrid Tutorial, 2nd edn. SIAM (2000)

    Google Scholar 

  35. Brandt, A.: Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation 31, 333–390 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  36. Trottenberg, U., Oosterlee, C.W., Schüller, A.: Multigrid. Academic Press (2001)

    Google Scholar 

  37. Larsson, J., Lien, F.S., Yee, E.: Conditional semi-coarsening multigrid algorithm for the Poisson equation on anisotropic grids. Journal of Computational Physics 208, 368–383 (2005)

    Article  MATH  Google Scholar 

  38. Williamson, D.L.: The evolution of dynamical cores for global atmospheric models. Journal of the Meteorological Society of Japan 85B, 241–269 (2007)

    Article  Google Scholar 

  39. Buckeridge, S., Scheichl, R.: Paralle geometric multigrid for global weather prediction. Numerical Linear Algebra with Applications 17, 325–342 (2010)

    MathSciNet  MATH  Google Scholar 

  40. Wagner, C., Christian Wagner’s: Algebraic Multigrid Tutorial: Introduction to algebraic multigrid, Course notes of an algebraic multigrid course at the University of Heidelberg in the Wintersemester (1998/1999), http://www.mgnet.org/mgnet-tuts.html

  41. Imiya, A., Kameda, Y., Ohnishi, N.: Decomposition and Construction of Neighbourhood Operations Using Linear Algebra. In: Coeurjolly, D., Sivignon, I., Tougne, L., Dupont, F. (eds.) DGCI 2008. LNCS, vol. 4992, pp. 69–80. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  42. Strang, G., Nguyen, T.: Wavelets and Filter Banks. Wellesley-Cambridge Press (1996)

    Google Scholar 

  43. Beauchemin, S.S., Barron, J.L.: The computation of optical flow. ACM Computer Surveys 26, 433–467 (1995)

    Article  Google Scholar 

  44. Amiaz, T., Lubetzky, E., Kiryati, N.: Coarse to over-fine optical flow estimation. Pattern Recognition 40, 2496–2503 (2007)

    Article  MATH  Google Scholar 

  45. Anandan, P.: A computational framework and an algorithm for the measurement of visual motion. International Journal of Computer Vision 2, 283–310 (1989)

    Article  Google Scholar 

  46. Varga, R.S.: Matrix Iteration Analysis, 2nd edn. Springer (2000)

    Google Scholar 

  47. Demmel, J.W.: Applied Numerical Linear Algebra. SIAM (1997)

    Google Scholar 

  48. Strang, G.: Computational Science and Engineering. Wellesley-Cambridge Press (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mochizuki, Y., Imiya, A. (2012). Pyramid Transform and Scale-Space Analysis in Image Analysis. In: Dellaert, F., Frahm, JM., Pollefeys, M., Leal-Taixé, L., Rosenhahn, B. (eds) Outdoor and Large-Scale Real-World Scene Analysis. Lecture Notes in Computer Science, vol 7474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34091-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34091-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34090-1

  • Online ISBN: 978-3-642-34091-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics