Skip to main content

Regular Inference as Vertex Coloring

  • Conference paper
Algorithmic Learning Theory (ALT 2012)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7568))

Included in the following conference series:

Abstract

This paper is concerned with the problem of supervised learning of deterministic finite state automata, in the technical sense of identification in the limit from complete data, by finding a minimal DFA consistent with the data (regular inference).

We solve this problem by translating it in its entirety to a vertex coloring problem. Essentially, such a problem consists of two types of constraints that restrict the hypothesis space: inequality and equality constraints.

Inequality constraints translate to the vertex coloring problem in a very natural way. Equality constraints however greatly complicate the translation to vertex coloring. In previous coloring-based translations, these were therefore encoded either dynamically by modifying the vertex coloring instance on-the-fly, or by encoding them as satisfiability problems. We provide the first translation that encodes both types of constraints together in a pure vertex coloring instance. This offers many opportunities for applying insights from combinatorial optimization and graph theory to regular inference. We immediately obtain new complexity bounds, as well as a family of new learning algorithms which can be used to obtain both exact hypotheses, as well as fast approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abela, J., Coste, F., Spina, S.: Mutually Compatible and Incompatible Merges for the Search of the Smallest Consistent DFA. In: Paliouras, G., Sakakibara, Y. (eds.) ICGI 2004. LNCS (LNAI), vol. 3264, pp. 28–39. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Akram, H.I., Batard, A., de la Higuera, C., Eckert, C.: PSMA: A parallel algorithm for learning regular languages. In: NIPS Workshop on Learning on Cores, Clusters and Clouds (2010)

    Google Scholar 

  3. Angluin, D.: On the complexity of minimum inference of regular sets. Information and Control 39(3), 337–350 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beigel, R., Eppstein, D.: 3-coloring in time O(1.3289n). Journal of Algorithms 54(2), 168–204 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press (February 2009)

    Google Scholar 

  6. Biermann, A.W., Feldman, J.A.: On the synthesis of finite-state machines from samples of their behavior. IEEE Trans. Comput. 21(6), 592–597 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  7. Björklund, A., Husfeldt, T., Koivisto, M.: Set partitioning via inclusion-exclusion. SIAM J. Comput. 39(2), 546–563 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bugalho, M., Oliveira, A.L.: Inference of regular languages using state merging algorithms with search. Pattern Recognition 38, 1457–1467 (2005)

    Article  MATH  Google Scholar 

  9. Byskov, J.M.: Enumerating maximal independent sets with applications to graph colouring. Operations Research Letters 32(6), 547–556 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Coste, F., Nicolas, J.: Regular inference as a graph coloring problem. In: Workshop on Grammatical Inf., Automata Ind., and Language Acq., ICML 1997 (1997)

    Google Scholar 

  11. de la Higuera, C.: Grammatical Inference: Learning Automata and Grammars. Cambridge University Press (2010)

    Google Scholar 

  12. García, P., Vázquez de Parga, M., López, D., Ruiz, J.: Learning Automata Teams. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 52–65. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co. (1979)

    Google Scholar 

  14. Gold, E.M.: Complexity of automaton identification from given data. Information and Control 37(3), 302–320 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  15. Grinchtein, O., Leucker, M., Piterman, N.: Inferring Network Invariants Automatically. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 483–497. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Heule, M.J.H., Verwer, S.: Exact DFA Identification Using SAT Solvers. In: Sempere, J.M., García, P. (eds.) ICGI 2010. LNCS (LNAI), vol. 6339, pp. 66–79. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite programming. J. ACM 45, 246–265 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kearns, M.J., Valiant, L.: Cryptographic limitations on learning Boolean formulae and finite automata. J. ACM 41, 67–95 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lang, K.J.: Faster algorithms for finding minimal consistent DFAs. Technical report, NEC Research Institute (1999)

    Google Scholar 

  20. Lang, K.J., Pearlmutter, B.A., Price, R.A.: Results of the Abbadingo One DFA Learning Competition and a New Evidence-Driven State Merging Algorithm. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 1–12. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  21. Malaguti, E., Toth, P.: A survey on vertex coloring problems. International Transactions in Operational Research 17(1), 1–34 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Oliveira, A.L., Marques-Silva, J.P.: Efficient search techniques for the inference of minimum sized finite state machines. In: String Processing and Information Retrieval, pp. 81–89 (1998)

    Google Scholar 

  23. Oncina, J., Garcia, P.: Inferring regular languages in polynomial update time. In: Pattern Recognition and Image Analysis. Series in Machine Perception and Artificial Intelligence, vol. 1, pp. 49–61. World Scientific (1992)

    Google Scholar 

  24. Pitt, L., Warmuth, M.K.: The minimum consistent DFA problem cannot be approximated within any polynomial. In: STOC, pp. 421–432 (1989)

    Google Scholar 

  25. Sudkamp, T.A.: Languages and Machines: an introduction to the theory of computer science, 3rd edn. Addison-Wesley (2006)

    Google Scholar 

  26. Walkinshaw, N., Lambeau, B., Damas, C., Bogdanov, K., Dupont, P.: STAMINA: a competition to encourage the development and assessment of software model inference techniques. Empirical Software Engineering, 1–34 (to appear)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Costa FlorĂȘncio, C., Verwer, S. (2012). Regular Inference as Vertex Coloring. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds) Algorithmic Learning Theory. ALT 2012. Lecture Notes in Computer Science(), vol 7568. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34106-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34106-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34105-2

  • Online ISBN: 978-3-642-34106-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics