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Abstract. For the prediction with expert advice setting, we consider
methods to construct algorithms that have low adaptive regret. The
adaptive regret of an algorithm on a time interval [t1, t2] is the loss of
the algorithm there minus the loss of the best expert. Adaptive regret
measures how well the algorithm approximates the best expert locally,
and it is therefore somewhere between the classical regret (measured on
all outcomes) and the tracking regret, where the algorithm is compared
to a good sequence of experts.
We investigate two existing intuitive methods to derive algorithms with
low adaptive regret, one based on specialist experts and the other based
on restarts. Quite surprisingly, we show that both methods lead to the
same algorithm, namely Fixed Share, which is known for its tracking
regret. Our main result is a thorough analysis of the adaptive regret of
Fixed Share. We obtain the exact worst-case adaptive regret for Fixed
Share, from which the classical tracking bounds can be derived. We also
prove that Fixed Share is optimal, in the sense that no algorithm can
have a better adaptive regret bound.
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1 Introduction

This paper deals with the prediction with expert advice setting. Nature generates
outcomes step by step. At every step Learner tries to predict the outcome. Then
the actual outcome is revealed and the quality of Learner’s prediction is measured
by a loss function.

No assumptions are made about the nature of the data. Instead, at every step
Learner is presented with the predictions of a pool of experts and he may base his
predictions on these. The goal of Learner in the classical setting is to guarantee
small regret, that is, to suffer cumulative loss that is not much larger than that
of the best (in hindsight) expert from the pool. Several classical algorithms exist
for this task, including the Aggregating Algorithm [13] and the Exponentially
Weighted Forecaster [3]. In the standard log-loss game the regret incurred by
those algorithms when competing with N experts is at most lnN .

A common extension of the framework takes into account the fact that the
best expert could change with time. In this case we may be interested in com-
peting with the best sequence of experts from the pool. Known algorithms for
this task include Fixed Share [8] and Mixing Past Posteriors [1].



In this paper we focus on the related task of obtaining small adaptive regret,
a notion first considered in [11] and later studied in [7]. The adaptive regret of
an algorithm on a time interval [t1, t2] is the loss of the algorithm there, minus
the loss of the best expert for that interval:

R[t1,t2] := L[t1,t2] −min
j
Lj[t1,t2]

The goal is now to ensure small regret on all intervals simultaneously. Note that
adaptive regret was defined in [7] with a maximum over intervals, but we need
the fine-grained dependence on the endpoint times to be able to prove matching
upper and lower bounds.

Our results. The contribution of our paper is twofold.

1. We study two constructions to get adaptive regret algorithms from exist-
ing classical regret algorithms. The first one is a simple construction which
originates in [5] and [4] and involves so called sleeping (specialist) experts,
and the second one uses restarts, as proposed in [7]. Although conceptu-
ally dissimilar, we show that both constructions reduce to the Fixed Share
algorithm with variable switching rate.

2. We compute the exact adaptive worst-case regret of Fixed Share and show
that no algorithm can have better adaptive regret. We also derive the track-
ing regret bounds from the adaptive regret bounds, showing that the latter
are in fact more fundamental.

Here is a sneak preview of the adaptive bounds we obtain, presented in a slightly
relaxed form for simplicity. The refined statement can be found in Theorem 4
below. In the log-loss game for each of the following adaptive regret bounds there
is an algorithm achieving it, simultaneously for all the intervals [t1, t2]:

lnN + ln t2 , (1a)

lnN + ln t1 + ln ln t2 + 2 , (1b)

lnN + 2 ln t1 + 1 , (1c)

where ln ln 1 is interpreted as 0.

Outline. The structure of the paper is as follows. In Section 2 we give the
description of the protocol and review the standard algorithms. In Section 3 we
study two intuitive ways of obtaining adaptive regret algorithms from classical
algorithms. We show that curiously both these algorithms turn out to be Fixed
Share. In Section 4 we study in detail the adaptive regret of Fixed Share.

2 Setup

We phrase our results in the setting defined in Protocol 1 which, for lack of a
standard name, we call mix loss. We choose this fundamental setting because



Protocol 1 Mix loss prediction

for t = 1, 2, . . . do
Learner announces probability vector ut ∈ 4N

Reality announces loss vector `t ∈ [−∞,∞]N

Learner suffers loss `t := − ln
∑

n un
t e

−`nt

end for

it is universal, in the sense that many other common settings reduce to it. For
example probability forecasting, sequential investment and data compression are
straightforward instances [3]. In addition, mix loss is the baseline for the wider
class of mixable loss functions, which includes e. g. square loss [14]. Classical
regret bounds transfer from mix loss to mixable losses almost by definition, and
the same reasoning extends to adaptive regret bounds. In addition, mix loss
results carry over in the usual modular ways (via Hoeffding and related bounds)
to non-mixable games, which include the Hedge setting [6] and Online Convex
Optimisation [16].

Let us introduce two standard algorithms in this setup. The Aggregating
Algorithm [15] is parametrised by a prior distribution u1 on [N ] (where [N ]
denotes the set {1, . . . , N}). It predicts in trial t with

unt :=
un1 e
−
∑
s<t `

n
s∑

n u
n
1 e
−
∑
s<t `

n
s
, (2a)

which we may also maintain incrementally using the update rule

unt+1 =
unt e
−`nt∑

n u
n
t e
−`nt

. (2b)

For this algorithm with uniform prior un1 = 1/N , the classical regret bound
states that for each expert j

T∑
t=1

`t −
T∑
t=1

`jt ≤ lnN.

Note that AA is minimax for classical mix loss regret since ≥ lnN can be
inflicted on any algorithm. The second algorithm, Fixed Share [8], in addition
to a prior u1 requires a sequence of switching rates α2, α3, . . . Intuitively, αt is
the probability of a switch in the sequence of “best-at-the-step” experts before
trial t. The weights are now updated as

unt+1 :=
αt+1

N − 1
+

(
1− N

N − 1
αt+1

)
unt e
−`nt∑

n u
n
t e
−`nt

. (3)

(We see that the Aggregating Algorithm is the special case when all αt are 0.)
The tracking regret bound for Fixed Share with uniform prior u1 and constant



αt = α switching rate states that for any reference sequence j1, . . . , jT of experts
with m blocks (and hence m− 1 switches)

T∑
t=1

`t −
T∑
t=1

`jtt ≤ lnN + (m− 1) ln(N − 1)− (m− 1) lnα− (T −m) ln(1− α).

Having introduced the standard classical and tracking regret algorithms, we now
turn to adaptive regret.

3 Intuitive algorithms with low adaptive regret

Two methods have been proposed in the literature that can be used to obtain
adaptive regret bounds: specialist experts and restarts. We discuss both and show
that each of them yields Fixed Share with a particular choice of time-dependent
switching rate αt.

3.1 Specialist experts

One way of getting an adaptive algorithm is the following. We create a pool of
virtual experts. For each real expert n and time t, we include a virtual expert
that mimics Learner’s behaviour for the first t − 1 trials (which is another way
to say that this expert is a specialist [5] that abstains from prediction, or sleeps,
during the first t− 1 trials), and predicts as expert n from trial t onward. Then
the classical regret w.r.t. this virtual expert on [1, T ] is the same as the adaptive
regret w.r.t. the real expert n on [t, T ] because on the first t − 1 steps the loss
of the virtual expert equals Learner’s loss. The natural idea is to feed all those
virtual experts into the existing algorithm capable of obtaining good classical
regret, the AA. For fixed t2, the uniform prior on wake-up time t1 ≤ t2 and
expert n would lead to adaptive regret ln(Nt2). It turns out that the same holds
even without knowledge of t2.

There is a snag, namely that in the prediction step you need to know the
losses of the sleeping virtual specialists which are equal to the yet unknown loss
of the Learner. However, it is possible to find a fixed point prediction which
makes the AA loss exactly the same as if it took into account the sleeping
experts making the same prediction. To avoid dealing with equations involving
an infinite number of sleeping experts let us fix a time horizon T > t. Later we
will see that this time horizon plays no role.

Let us denote by wn,st the probability assigned by the AA in trial t to the
virtual specialist parametrised by real expert n and wake-up time s. Learner

then will predict with weights ut where unt =
∑t
s=1 w

n,s
t

/∑N
j=1

∑t
τ=1 w

j,τ
t .

The desired fixed point property is achieved for this prediction:

`t := − ln

(
N∑
n=1

unt e
−`nt

)
= − ln

(
N∑
n=1

t∑
s=1

wn,st e−`
n
t +

N∑
n=1

T∑
s=t+1

wn,st e−`t

)
.



That is, the loss `t of the prediction ut in the game with N real experts equals
the loss of the prediction wt in the game with TN virtual specialists, where
specialists that are still asleep are assumed to suffer Learner’s loss `t.

At first glance, it is very inefficient to maintain weights of TN specialists.
However, we do not need to, since we may merge the weights of all awake special-
ists associated to the same real expert, resulting in Algorithm 1. To verify this,
denote this merged (unnormalised) weight in trial t by vnt for each real expert
n. The merged (unnormalised) weight vnt+1 of this real expert n in the next trial
t+ 1 consists of the prior weight of the newly awaken virtual specialist plus vnt ,

the sum of the old weights, each multiplied by the same factor e(`
t−`nt ) (as they

were all awake). Thus we can update the sum directly, and this is reflected by
our update rule.

Note that for simplicity, we have taken the prior on experts and wake-up
times independent, i. e.

p(n,t) = p(t) .

Also note that there is no need for the priors p(n,t) to normalise.

Algorithm 1 Adaptive Aggregating Algorithm

Input: Prior nonnegative weights p(t), t = 1, 2, . . .
vn1 := p(1), n = 1, . . . , N
for t = 1, 2, . . . do

Play weights un
t :=

vnt∑N
k=1

vkt

Read the experts losses `nt , n = 1, . . . , N

Set vnt+1 := p(t + 1) + vnt
e−`

n
t∑N

k=1
ukt e
−`kt

, n = 1, . . . , N

end for

Now we will see that Algorithm 1 turns out to be Fixed Share with variable
switching rate. In the rest of this section we derive this. Let P (t) =

∑t
s=1 p(s).

Fact 1. The update step of Algorithm 1 preserves the following:∑
n

vnt =
∑
n

∑
s≤t

p(s) = NP (t) .

Proof. This follows immediately from expanding the one-step update rule:∑
n

vnt+1 =
∑
n

p(t+ 1) +
∑
n

vnt
e−`

n
t∑

k u
k
t e
−`kt

=
∑
n

p(t+ 1) +
∑
n

vnt
e−`

n
t∑

k
vkt∑
j v

j
t

e−`
k
t

= Np(t+ 1) +
∑
n

vnt
Induction

= NP (t+ 1) .

ut



We now show that Algorithm 1 can be seen as Fixed Share (and vice versa).

Lemma 2. Say that αt is the probability of a Fixed Share switch before trial
t, and p(t) is the prior weight of specialist waking up in trial t in Algorithm 1.
Then the following conversion preserves behaviour

p(t) =
N
N−1αt∏t

s=2(1− N
N−1αs)

, αt =
N − 1

N

p(t)∑t
s=1 p(s)

,

where we use the convention that α1 = N−1
N .

Proof. Let us rewrite the update step of Algorithm 1 for the normalised weights.

unt+1 =
vnt+1∑
k v

k
t+1

=
p(t+ 1)

NP (t+ 1)
+

1

NP (t+ 1)
vnt

e−`
n
t∑

k u
k
t e
−`kt

=
p(t+ 1)

NP (t+ 1)
+

1

NP (t+ 1)
NP (t)unt

e−`
n
t∑

k u
k
t e
−`kt

=
αt+1

N − 1
+
P (t+ 1)− p(t+ 1)

P (t+ 1)
unt

e−`
n
t∑

k u
k
t e
−`kt

=
αt+1

N − 1
+

(
1− N

N − 1
αt+1

)
unt

e−`
n
t∑

k u
k
t e
−`kt

.

We see that the weight update is the update of the Fixed Share algorithm with
variable switching rate αt. ut

The idea to use specialist experts for obtaining adaptive bounds was intro-
duced in [5]. There a virtual specialist is created for every interval [t1, t2] which
leads to redundancy and suboptimal bounds. Their adaptive regret bounds sport
a term which exceeds 2 ln t2 whereas our bounds (1) have at most a single ln t2.

3.2 Restarts

A second intuitive method to obtain adaptive regret bounds, called Follow the
Leading History (FLH), was introduced in [7]. One starts with a base algo-
rithm that ensures low classical regret. FLH then obtains low adaptive regret by
restarting a copy of this base algorithm each trial, and aggregating the predic-
tions of these copies. To get low adaptive regret w.r.t. N experts, it is natural
to take the AA as the base algorithm. We now show that FLH with this choice
equals Fixed Share with switching rate αt = N−1

Nt .

For each n, s and t ≥ s, let p
n|s
t denote the weight allocated to expert n

by the copy of the AA started at time s. By definition p
n|s
s = 1/N , and these

weights evolve according to (2b). We denote by pst the weight allocated by FLH
in trial t ≥ s to the copy of AA started at time s. In [7], these weights are defined
as follows. Initially p11 = 1 and subsequently

pst+1 =

(
1− 1

t+ 1

)
pste
−
(
− ln

∑
n p

n|s
t e−`

n
t

)
∑t
r=1 p

r
t e
−
(
− ln

∑
n p

n|r
t e−`

n
t

) , pt+1
t+1 =

1

t+ 1
.



Lemma 3. For mix loss, FLH with AA as the base algorithm issues the same
predictions as Fixed Share with learning rate αt = N−1

Nt .

Proof. We prove by induction on t that the FS and FLH weights coincide:

unt =

t∑
s=1

p
n|s
t pst .

The base case t = 1 is obvious. For the induction step we expand

t+1∑
s=1

p
n|s
t+1p

s
t+1 =

t∑
s=1

p
n|s
t+1p

s
t+1 + pt+1

t+1/N

=

(
1− 1

t+ 1

) t∑
s=1

 p
n|s
t e−`

n
t∑

n p
n|s
t e−`

n
t

pst

(∑
n p

n|s
t e−`

n
t

)
∑t
r=1 p

r
t

(∑
n p

n|r
t e−`

n
t

)
+

1

N(t+ 1)

=

(
1− 1

t+ 1

) ∑t
s=1 p

s
tp
n|s
t e−`

n
t∑t

r=1

∑
n p

r
tp
n|r
t e−`

n
t

+
1

N(t+ 1)

Induction
=

(
1− 1

t+ 1

)
unt e
−`nt∑

n u
n
t e
−`nt

+
1

N(t+ 1)
= unt+1,

and find the Fixed Share update equation (3) for switching rate αt = N−1
Nt . ut

4 The adaptive regret of Fixed Share

We have seen in the previous section that both intuitive approaches to obtain
algorithms with low adaptive regret result in Fixed Share. We take this conver-
gence to mean that Fixed Share is the most fundamental adaptive algorithm.
The tracking regret for Fixed Share is already well-studied. In this section we
thoroughly analyse the adaptive regret of Fixed Share. We obtain the worst-
case adaptive regret for mix loss. This result implies the known tracking regret
bounds.

We also show an information-theoretic lower bound for mix loss that must
hold for any algorithm, and which is tight for Fixed Share. This proves that
Fixed Share is a Pareto-optimal algorithm for the mix loss game, in the sense
that no other algorithm can guarantee essentially better adaptive regret.

4.1 The exact worst-case adaptive regret for mix loss

In this section we first compute the exact worst-case adaptive regret of Fixed
Share with arbitrary switching rate αt. Then we obtain certain regret bounds of
interest, including the tracking regret bound, for particular choices of αt.



Theorem 4. The worst-case adaptive regret of Fixed Share with N experts on
interval [t1, t2] equals

− ln

(
αt1
N − 1

t2∏
t=t1+1

(1− αt)

)
. (4)

Proof. The proof consists of two parts. First we claim that the worst-case data for
the interval [t1, t2] in the setting of Protocol 1 is rather simple: on the interval
there is one good expert (all others get infinite losses) and on the single trial
before the interval (if t1 > 1) this expert suffers infinite loss while others do not.
The proof of this can be found in Appendix A.

Now we will compute the regret on this data. The regret of Fixed Share on
the interval [t1, t2] is − ln of the product of the weights put on the good expert
(say, j) on this interval:

RFS
[t1,t2]

= − ln
∏

t1≤t≤t2

ujt .

It is straightforward to derive ujt1 from (3):

ujt1 =
αt1
N − 1

and ujt = 1− αt for t ∈ [t1 + 1, t2]

from which the statement follows. ut

Example 1: constant switching rate. This is the original Fixed Share [8].

Corollary 5. Fixed Share with constant switching rate αt = α for t > 1 (recall
that α1 = N−1

N ) has worst-case adaptive regret equal to

ln(N − 1)− lnα− (t2 − t1) ln
(
1− α

)
for t1 > 1, and

lnN − (t2 − 1) ln
(
1− α

)
for t1 = 1.

A slightly weaker upper bound was obtained in [2]. The clear advantage of our
analysis with equality is that we can obtain the standard Fixed Share tracking
regret bound by summing the above adaptive regret bounds on individual inter-
vals. Comparing with the best sequence of experts S on the interval [1, T ] with
m blocks, we obtain the bound

LFS
[1,T ] − L

S
[1,T ] ≤ lnN + (m− 1) ln(N − 1)− (m− 1) lnα− (T −m) ln(1− α) ,

which is exactly the Fixed Share standard bound. So we see that the reason
why Fixed Share can effectively compete with switching sequences is that it can,
in fact, effectively compete with an expert on any interval, that is, has small
adaptive regret.



Example 2: slowly decreasing switching rate. The idea of slowly decreasing
the switching rate was considered in [12] in the context of source coding, and
later analysed for expert switching in [10]; we saw in Section 3.2 that it also
underlies Follow the Leading History of [7]. It results in tracking regret bounds
that are almost as good as the bounds for constant α with optimally tuned α.
These tracking bounds are again implied by the following corresponding adaptive
regret bound.

Corollary 6. Fixed Share with switching rate αt = 1/t (except for α1 = N−1
N )

has worst-case adaptive regret

− ln

(
1

(N − 1)t1

t2∏
t=t1+1

t− 1

t

)
= ln(N − 1) + ln t2 for t1 > 1, and (5a)

− ln

(
1

N

t2∏
t=2

t− 1

t

)
= lnN + ln t2 for t1 = 1. (5b)

Example 3: quickly decreasing switching rate. The bounds we have ob-
tained so far depend on t2 either linearly or logarithmically. To get bounds that
depend on t2 sub-logarithmically, or even not at all, one may instead decrease the
switching rate faster than 1/t, as analysed in [12,9]. To obtain a controlled trade-
off, we consider setting the switching rate to αt = 1

t ln t , except for α1 = N−1
N .

This leads to adaptive regret at most

ln(N − 1) + ln t1 + ln ln t1 −
t2∑

t=t1+1

ln

(
1− 1

t ln t

)
≤ ln(N − 1) + ln t1 + ln ln t2 + 1.28 (6a)

when t1 > 1 and

lnN −
t2∑
t=2

ln

(
1− 1

t ln t

)
≤ lnN + ln ln t2 + 1.65 (6b)

when t1 = 1 (remember that ln ln 1 is understood to be 0). The constant 1.28 in
(6a) is needed because t1 and t2 can take small values; e.g., if we only consider
t1 ≥ 10, we can replace 1.28 by 0.05, and we can replace 1.28 by an arbitrarily
small δ > 0 if we only consider t1 ≥ c for a sufficiently large c.

The dependence on t2 in (6) is extremely mild. We can suppress it completely
by increasing the dependence on t1 just ever so slightly. If we set αt = t−1−ε,
where ε > 0, then the sum of the series

∑∞
t=1 αt is finite and the bound becomes

ln(N − 1) + (1 + ε) ln t1 + cε for t1 > 1, and (7a)

lnN + cε for t1 = 1, (7b)



where cε = −
∑∞
t=2 ln(1 − t−1−ε). It is clear that the bound (7a) is far from

optimal when t1 is large: cε can be replaced by a quantity that tends to 0 as
O(t−ε1 ) as t1 →∞. In particular, for ε = 1 we have the bound

lnN + 2 ln t1 + ln 2.

An interesting feature of this switching rate is that for the full interval [t1, t2] =
[1, T ] the bound differs from the standard AA bound only by an additive term
less than 1. In words, the overhead for small adaptive regret is negligible.

4.2 Lower bounds on adaptive regret

One may wonder how good this worst-case adaptive regret bound for Fixed
Share is, if we compare to some other algorithm. We now argue that it cannot
be improved. First we show an information-theoretic lower bound on the adaptive
regret of any algorithm. Then we show that Fixed Share meets this bound.

Theorem 7. Let φ(t1, t2, N) be the worst-case adaptive regret of any algorithm.
Then for all T and for all N

T∑
m=1

∑
1=t1<...<tm+1=T+1

N(N − 1)m−1e−
∑m
j=1 φ(tj ,tj+1−1,N) ≤ 1. (8)

Proof. Fix an algorithm, time horizon T and expert count N . For any sequence

e ∈ {1, . . . , N}T we define the loss pattern (`nt )
n∈[N ]
t∈[T ] by

`nt = − ln1{n=et}

(where 1{n=et} = 1 if n = et and 1{n=et} = 0 otherwise). Let L(e) be the loss

of the algorithm on this loss pattern. Define the weight w(e) = e−L(e). Clearly
w is a probability distribution on [N ]T . Now let t2 < . . . < tm enumerate the
internal block start indices

{
t ∈ {2, . . . , T}

∣∣ et−1 6= et
}

, and for the boundary
set t1 = 1 and tm+1 = T + 1. Since φ is the worst-case adaptive regret, and the
loss of the best expert on each block is 0, we must have

L(e) ≤
m∑
j=1

φ(tj , tj+1 − 1, N).

The theorem is obtained by negating and exponentiating this inequality, sum-
ming it over [N ]T , and grouping the contributions of sequences that agree on
their block start indices. ut

This bound is worthwhile because it is tight as we will see momentarily. It is
however somewhat esoteric to interpret. It may be readily relaxed to imply for
example that the bounds in (1) are tight, to a certain accuracy.

We will be interested in the performance guarantees that are separable, i.e.,
in upper bounds on φ(t1, t2, N) of the form A(t1) + B(t2) (the number N of
experts is fixed and omitted from our notation).



Corollary 8. Suppose φ(t1, t2, N) ≤ A(t1) + B(t2) for all t1 and t2. Then for
all T ,

lnN −A(1)−B(T ) +

T∑
t=2

ln
(

1 + (N − 1)e−A(t)−B(t−1)
)
≤ 0. (9)

Proof. Substitute the constraint on φ into (8). ut

The following corollary shows that the stronger form (5) of (1a) is essentially
tight: we cannot improve the right-hand side of (5a) by a constant, even for large
t1 and t2, unless (5b) is relaxed drastically (it is not sufficient to replace lnN by
D and ignore all t2 < T0 for arbitrarily large D and T0).

Corollary 9. Fix the number of experts N , a constant C < ln(N − 1), and
arbitrarily large positive integer constants D and T0. No algorithm has worst-
case adaptive regret

φ(t1, t2, N) ≤ C + ln t2 +∞1{t2<T0} +D1{t1=1} +∞1{1<t1≤T0}. (10)

Proof. Setting

A(t) =


D if t = 1

0 if t > T0

∞ otherwise

and B(t) =

{
ln t+ C if t ≥ T0
∞ otherwise

on the right-hand side of (9) we obtain

lnN−D− lnT−C+

T∑
t=T0+1

ln

(
1 + (N − 1)

e−C

t− 1

)
≥ − lnT+

N − 1

eC
lnT−O(1)

which tends to ∞ as T → ∞ (the inequality follows from the inequality ln(1 +
x) ≥ x− x2, where x ≥ −1/2). This contradicts (9). ut

Our next corollary is about the tightness of (1b) and its elaboration (6) (see
also the discussion following (6)).

Corollary 10. Fix the number of experts N , a constant C < ln(N − 1), and
positive integer D and T0. No algorithm has worst-case adaptive regret

φ(t1, t2, N) ≤ C+ ln t1 + ln ln t2 +∞1{t2<T0}+D1{t1=1}+∞1{1<t1≤T0}. (11)

Proof. Setting

A(t) =


D if t = 1

ln t if t > T0

∞ otherwise

and B(t) =

{
ln ln t+ C if t ≥ T0
∞ otherwise



on the right-hand side of (9) we now have

lnN −D − ln lnT − C +

T∑
t=T0+1

ln

(
1 + (N − 1)

e−C

t ln(t− 1)

)
≥ − ln lnT +

N − 1

eC
ln ln(T − 1)−O(1)→∞ (T →∞). ut

Finally, we explore the tightness of (1c) (and its elaboration given later in
the paper: see (7) and the discussion afterwards).

Corollary 11. Fix the number of experts N , a constant ε > 0, and a constant
a <

∑∞
t=2 ln(1 + t−1−ε). No algorithm has worst-case adaptive regret

φ(t1, t2, N) ≤

{
lnN + a if t1 = 1

ln(N − 1) + (1 + ε) ln t1 otherwise.
(12)

Proof. Setting

A(t) =

{
lnN + a if t = 1

ln(N − 1) + (1 + ε) ln t otherwise

and B(t) = 0 on the right-hand side of (9) now gives

lnN − lnN − a+

T∑
t=2

ln
(

1 + (N − 1)e− ln(N−1)−(1+ε) ln t
)
> 0

for a sufficiently large T . ut

4.3 Fixed Share has optimal adaptive worst-case regret

We now prove that Fixed Share is optimal, in the sense that no algorithm can
have a worst-case adaptive regret that is nowhere worse.

Corollary 12. Fix any switching rate (αt)t≥1, and let φ(t1, t2, N) be the worst-
case adaptive regret of FS. Then (8) holds with equality.

Proof. Plug the worst-case adaptive regret (4) into the sum (8). ut

5 Conclusion

We examined the problem of guaranteeing small adaptive regret for the setting
of prediction with expert advice. In the first part we considered two techniques
to obtain adaptive algorithms: using virtual specialist experts and restarting
classical algorithms. We showed that both can be viewed as Fixed Share with
a variable switching rate. In the second part we computed the exact worst-case



adaptive regret for Fixed Share, thus tightening the existing upper bounds. So
much, in fact, that by summing these worst-case regrets over a partition of the
interval [1, T ] we recover the standard Fixed Share tracking bound. This formally
establishes the complete congruence between adaptive and tracking performance,
which was intuitive but not apparent from previously obtained adaptive bounds.

We then showed that Fixed Share is Pareto-optimal, in the sense that no algo-
rithm can ensure better adaptive regret. We presented an information-theoretic
lower bound on the worst-case adaptive regret of any algorithm, and showed
that it holds with equality for Fixed Share.

Open problem Whereas upper bounds readily transfer to mixable losses, obtain-
ing adaptive regret lower bounds for mixable losses is much more tricky. It is fair
to call the lower bound argument in [15] for classical regret complicated, and
this would be a special case for adaptive regret lower bounds.
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A Worst-case adaptive regret data for Fixed Share

In this subsection we prove that the worst-case data for Fixed Share has the
following form. On the interval [t1, t2] we are interested in all but one expert
suffer infinite loss and on the step preceding t1 (if t1 6= 1) this one expert suffers
infinite loss himself. The construction is iterative and we start constructing the
data from the end of the interval.

Lemma 13. For any history prior to the step t2 the adaptive regret Rj[t1,t2] w.r.t.

expert j on the interval [t1, t2] is maximised with `kt2 =∞ for k 6= j.

Proof. Let us differentiate the adaptive regret w.r.t. `kt2 :

∂Rj[t1,t2]

∂`kt2
=

ukt2e
−`kt2∑

uit2e
−`it2

− 1{j=k}

ut

We can see that it is positive for all k 6= j and becomes zero for k = j when
we plug in `kt2 =∞ for those.

Lemma 14. Fix an comparator expert j. Let t ∈ [t1, t2]. Suppose that the losses
for steps s = t + 1, . . . , t2 satisfy `ks = ∞ for k 6= j. Then the adaptive regret
Rj[t1,t2] is maximised with `kt =∞ for k 6= j.

Proof. Let us start with showing that the if on the steps t + 1 and t + 2 the
data is organised as we want to, that is j-th expert is good and all others suffer
infinite loss, then Learner’s loss on step t+ 2 is not dependent on what happens
at time t and before. This follows immediately from (3), as

`t+2 = − ln (1− αt+2) .



Now let us differentiate the adaptive regret Rj[t1,t2] w.r.t. `kt assuming that the

future losses are set up as we want. Let us show that the derivatives w.r.t. `kt
where k 6= j are all positive. For those,

∂Rj[t1,t2]

∂`kt
=

∂`t
∂`kt

+
∂`t+1

∂`kt

Expanding the second one gives (as before, k 6= j):

∂`t+1

∂`kt
=

∂

∂`kt
− ln

(
αt+1

N − 1
+ (1− N

N − 1
αt+1)ujte

`t−`jt

)

= −
(1− N

N−1αt+1)ujte
`t−`jt ∂

∂`kt
`t

αt+1

N−1 + (1− N
N−1αt+1)ujte

`t−`jt

So we see that
∂Rj

[t1,t2]

∂`kt
= ∂`t

∂`kt

(
αt+1
N−1

αt+1
N−1 +(1− N

N−1αt+1)u
j
te
`t−`

j
t

)
> 0. So our worst-

case pattern of losses extends one trial backwards. ut

Finally, we need to state the almost obvious fact that in order to maximise
the adaptive regret we need to insert an infinite loss for the comparator expert
right before the start of the interval, thus killing all the previous weight on him.

Lemma 15. Fix a comparator expert j. Suppose that the losses for steps s =
t1, . . . , t2 satisfy `ks =∞ for k 6= j. Then the adaptive regret Rj[t1,t2] is maximised

with `jt−1 =∞.

Proof. As before, the adaptive regret on steps starting from t1 + 1 does not

depend on `kt1−1. So let us show that
∂Rj

[t1,t2]

∂`jt1−1

> 0. We can reuse the proofs of

previous lemmas for that:

∂Rj[t1,t2]

∂`jt1−1
=

∂`t1

∂`jt1−1

= −
(1− N

N−1αt1)ujt1−1e
`t1−1−`jt1−1

αt1
N−1 + (1− N

N−1αt1)ujt1−1e
`t1−1−`jt1−1

∂
(
`t1−1 − `

j
t1−1

)
∂`jt1−1

> 0,

since
∂(`t1−1−`jt1−1)

∂`jt1−1

is negative as follows from the proof of Lemma 13. ut
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