
ar
X

iv
:1

20
7.

54
25

v1
 [

cs
.I

R
]

 2
3

Ju
l 2

01
2

Ranked Document Retrieval

in (Almost) No Space

Nieves R. Brisaboa1, Ana Cerdeira-Pena1, Gonzalo Navarro2 and Óscar Pedreira1

1 Database Lab., Univ. of A Coruña, Spain.
{brisaboa,acerdeira,opedreira}@udc.es

2 Dept. of Computer Science, Univ. of Chile. gnavarro@dcc.uchile.cl

Abstract. Ranked document retrieval is a fundamental task in search
engines. Such queries are solved with inverted indexes that require addi-
tional 45%-80% of the compressed text space, and take tens to hundreds
of microseconds per query. In this paper we show how ranked document
retrieval queries can be solved within tens of milliseconds using essen-
tially no extra space over an in-memory compressed representation of
the document collection. More precisely, we enhance wavelet trees on
bytecodes (WTBCs), a data structure that rearranges the bytes of the
compressed collection, so that they support ranked conjunctive and dis-
junctive queries, using just 6%–18% of the compressed text space.

1 Introduction

Ranked document retrieval on a large collection of natural-language text doc-
uments is the key task of a search engine. Given a query composed of a set of
terms, the engine returns a list of the documents most relevant to the query.
Typical relevance measures include tf-idf and Okapi BM25.

Efficient ranked document retrieval relies on the use of inverted indexes
[1,2,3], which maintain for each term of the vocabulary a posting list with the
identifiers of the documents in which that term occurs. Given a query, the system
computes the union (bag-of-words query) or intersection (weighted conjunctive
query) of the posting lists of the terms composing the query, keeping only the
documents with highest relevance with respect to the query.

The inverted index does not support by itself all the operations needed in a
complete search engine. For example, a search engine not only returns the ranked
list of documents, but it usually shows a snippet for each result, or even offers a
cached version of the document. This requires storing the text of the documents
in addition to the index. Compressing the text data and the inverted index is
useful not only to save space. On disk-based systems, it reduces the amount of
I/O needed to answer queries. A recent trend (e.g., [3,4,5,6]) is to maintain all
the data in main memory, of a single machine or a cluster (in the case of large
search engines). In this case, compression helps keeping larger collections in main
memory, or using fewer computers and less energy in the case of clusters.

http://arxiv.org/abs/1207.5425v1

The texts of the documents are usually stored in a compressed form that
allows fast decompression of random portions of the text. Such compressors
achieve 25%–30% of the size of the original text. Inverted indexes are also com-
pressed, and amount to an additional 15%–20% of the size of the original text,
or 45%–80% of the size of the compressed text [1,2,7,8]. Typical query times of
in-memory systems are in the orders of tens to hundreds of microseconds.

A recent alternative to storing the text plus the inverted index is the Wavelet
Tree on Bytecodes (WTBC) [9,10]. This data structure reorganizes the bytes
of the codewords output by any word-based byte-oriented semistatic statistical
compressor. Within the space of the compressed text (i.e., around 30%–34%
of the text size) the WTBC not only can extract arbitrary text snippets or
documents, but it also solves full-text queries, that is, it finds the exact positions
where a word or phrase occurs in the collection. Full-text queries are usually
solved with a positional inverted index, which stores exact word positions, yet
this is outperformed by the WTBC when little space over the compressed text is
available. The representation was later extended to document retrieval queries,
that is, listing all the distinct documents where a query appears [11]. However,
ranked document retrieval queries, which find only a few most relevant documents
for the query and are arguably the most important ones from the point of view
of the end-user, have not been addressed under this scheme.

In this paper we close this gap. We show how WTBCs can be extended to
efficiently support ranked document retrieval queries as well. As a result, all
the main IR queries can be carried out on top of a data structure that requires
just 6%-18% on top of the compressed text space (2.0%–5.5% of the original text
space). The times of the WTBC to solve ranked document retrieval queries are in
the order of milliseconds, which is significantly higher than inverted index times.
However, those times are still reasonable in many scenarios and the solution
offers important space advantages compared to the 45%–80% of extra space
posed by inverted indexes.

For example, consider the case of a fully-functional search engine. A classical
approach could compress the text to 25% of its original size (using word-based
bit-Huffman to give direct access to the text), plus 15%-20% for a document
retrieval index. If precise word occurrences are to be spotted in order to display
a snippet around them, then a positional inverted index is necessary, which
requires 25% further space. All this functionality is offered by the enhanced
WTBC, which requires around 32%–39.5% of the original text space (30%–34%
for a byte-oriented compressor plus 2.0%–5.5% of redundancy). Dropping from
65%–70% to 32%–39.5%, that is, halving the space, may be key to avoid using
secondary storage, to using fewer machines, or even to achieve a feasible solution
when the memory is limited (as in mobile devices).

2 WTBC: Wavelet Trees on Bytecodes

The Wavelet Tree on Bytecodes (WTBC) [9,10] is a method for representing
natural language texts in a compressed form, so that random access to any
portion of the text, and search for the occurrences of any term, are efficiently

Fig. 1. Example of a WTBC.

supported. The WTBC is built on a text compressed using any word-based byte-
oriented semistatic statistical compressor, by rearranging the codewords into a
wavelet-tree-like [12] structure.

2.1 Document Compression

Classical statistical compression methods model the text as a sequence of char-
acters and assign shorter codewords to more frequent characters, where each
codeword is a sequence of bits. Huffman coding [13] is the best-known example,
although many more have been proposed.

On natural language texts, it has been shown that using words, not char-
acters, as the source symbols, significantly improves compression ratios. On the
other hand, decompression time can be boosted by using byte-oriented encoders,
where codes are sequences of bytes instead of bits. This yields compression ratios
around 30%–34%. See any recent work for references, e.g., [14].

Dense codes (or (s, c)-DC) [14] are particularly convenient for our work. The
vocabulary words are sorted by decreasing frequency and encoded as a sequence
of bytes. The codewords are formed by zero or more continuers (byte values in
the range [s..s+ c)) terminated by one stopper (a byte value in the range [0..s)),
where s+c = 256. Then the smost frequent words are assigned 1-byte codewords,
the next sc are assigned two-byte codewords, the next sc2 are assigned three-byte
codewords, and so on. The pair (s, c) is chosen so as to optimize compression.

2.2 Reorganizing Compressed Text

The basic idea in the WTBC is to rearrange the text by placing the different
bytes of each codeword in different nodes of a tree. The root of the tree is an
array containing the first byte of the codeword of each word in the text, in the
same order they appear in the original text. The second byte of each codeword
(having more than one byte) is placed on the second level of the tree. The root
has one child per continuer value Bb. Each node Bb in the second level contains

the second bytes of the codewords of the words whose first byte is b, again
following the same order of the source text. And so on for the next levels.

Figure 1 shows an example of a WTBC built for the text ’MAKE EVERYTHING

AS SIMPLE AS POSSIBLE BUT NOT SIMPLER’. In the example, bytes b1 and b2
are stoppers, and b3 to b5 are continuers (not all the combinations are used).

The main operations in a WTBC are decoding the word at a given position
of the text, locating the occurrences of a word, and counting the number of
occurrences of a word. These algorithms are based on the use of rank and select
operations over the bytemap of each node to determine the path to follow on
the tree. Given a bytemap B = {b1, . . . , bn}:

– rankb(B, i) = number of occurrences of byte b in B up to position i.

– selectb(B, i) = position of the ith occurrence of the byte b in bytemap B.

Partial counters are maintained for each bytemap in order to efficiently com-
pute rank and select. These solve the queries within a few microseconds while
posing just a 3% space overhead over the original text size [10].

In order to decode the word at a given position in the text we go down in the
tree by using rank operations at each step. In the example of Figure 1, to decode
the word at position 9, we start by reading root[9] = b4. Since b4 is a continuer,
we move to the next level of the tree, to node B4. This node holds the second
byte of all the codewords starting with b4, following the order of the text. Thus,
the next byte of the word we are decoding will be at position rankb4 (root, 9) = 3
of node B4, that is B4[3] = b5. Again, b5 is a continuer, and rankb5 (B4, 3) = 1
tells us that the third byte of that word will be in the node B4B5 at position
1. Finally, we obtain B4B5[1] = b1, which is a stopper. As a result, we have the
codeword b4b5b1, which corresponds to the word ’SIMPLER’.

For locating the occurrences of a word we traverse the tree from a leaf to the
root. For example, assume we want to find the first occurrence of the word ’BUT’.
In Figure 1, its codeword is b3b4b2, so the search starts at node B3B4, where we
locate the first occurrence of b2 by computing selectb2(B3B4, 1) = 1. Hence the
first position at node B3B4 corresponds to the first occurrence of ’BUT’. Now
we find the position of the first b4 in node B3, which is selectb4(B3, 1) = 2. Thus
our codeword is the second one starting by b3 in the root node. Finally, we find
the position of the second b3 in the root of the tree, selectb3(root, 2) = 7. Thus
the first occurrence of ’BUT’ is at the 7th position of the text.

In order to count the number of occurrences of a word, we find the node in
the WTBC where the last byte of its codeword appears. In that node we can
efficiently count the number of occurrences of the word by counting how many
times the last byte of the codeword appears using rank on the bytemap. We
can also count the occurrences within a range of the text, by tracking down the
range endpoints toward the leaf of the word, and computing the difference of
rank values on the mapped range.

Fig. 2. WTBC over a collection of concatenated documents.

3 Efficient Ranked Document Retrieval

In this section we present our proposal for solving ranked document retrieval
queries using the WTBC over (s, c)-DC. We concatenate all documents of the
corpus in a single text string. We assume that each document ends with a special
symbol ’$’, which then becomes a document separator (just as in [11]). Then,
the string is compressed with (s, c)-DC and a WTBC is built on the result of the
compression (see Figure 2). For efficiency reasons, we reserve the first codeword
of the (s, c)-DC encoding scheme for the ’$’ symbol, so the document separator
can be easily found in the root of the tree, since its codeword has only one byte.

We consider top-k conjunctive (AND) and bag-of-words (OR) queries, in
which only the k most relevant documents for the query must be returned.
We present two different alternatives. A first one, using no extra space over the
WTBC, computes the union or the intersection prioritized by relevance, so the
documents are found in decreasing relevance order and we stop as soon as we
find k of them. A second one, using small additional bitmaps, first computes the
union or the intersection and then collects the k most relevant documents.

In this paper we use the tf-idf relevance measure. For a query word w and a
document d, this is tf w,d · idf w, where tf w,d is the number of occurrences of w in
d, and idf w = logN/df w, where N is the number of documents in the collection
and df w is the number of documents where w appears. Values df w are stored,
one per word, in our index within insignificant extra space, as the vocabulary
size becomes irrelevant as the collection grows [15]. For a query of several words,
the tf-idf relevance of a document is the sum of that of the query words.

3.1 Solution with No Extra Space (WTBC-DR)

The procedure uses a priority queue storing segments, that is, concatenations
of consecutive documents. The priority will be given by the tf-idf value of the
concatenations (seen as a single document). We start by inserting in the queue
the segment that corresponds to the concatenation of all the documents, with
its associated priority obtained by computing its tf-idf value. A segment is repre-
sented by the corresponding endpoints in the root bytemap T [1, n] of the WTBC.
Since the idf of each word is precomputed, to compute tf-idf relevance value we
only need to calculate the tf of each word in the segment, that is, we count its
number of occurrences in the segment, as explained at the end of Section 2.2.

Algorithm 1: ranked bag-of-words retrieval with WTBC-DR

Input: wt (WTBC), q (query), k (top-k limit)
Output: list of top-k ranked documents
s.start pos← 1; s.end pos← n; s.score← tfidf (s, q); s.ndocs← N ;
pq← 〈〉; insert(pq, s) // s.score is the priority for queue pq ;
while less than k documents output and ¬empty(pq) do

s ← pull(pq);
if s.ndocs = 1 then

output s
else

〈s1, s2〉 ← split(s) // computes si.start pos, si.end pos and si.ndocs;
s1.score← tfidf (s1, q); s2.score← s.score− s1.score;
insert(pq, s1); insert(pq, s2);

end

end

The procedure repeatedly extracts the head of the queue, that is, the segment
with the highest priority (the first time, we extract the segment T [1, n]). After
extracting a segment, the procedure checks if it corresponds to just a single
document, or to more than one.

If the extracted segment has more than one document, the procedure splits
it into two subsegments, by using the ’$’ symbol closest to the middle of the
segment, as the point to divide it. This ’$’ is easily found using rank and
select on T (i.e., for a segment T [a, b], we use, roughly, select$(T, rank$(T, (a+
b)/2))), which also tell us the number of documents in each subsegment. After
the division, the relevance of each of the two subsegments is computed, and
they are inserted in the queue using their relevance as priority. Note that it is
sufficient to compute the tf-idf of one subsegment (using count of each query
word in the subsegment to compute the tf values), and then the tf-idf value of
the other subsegment is found by subtraction from the main segment’s tf-idf .

If, instead, the extracted segment contains only one document, it is directly
output (with its tf-idf relevance value), as the next most relevant document.
This is correct because tf-idf is monotonic over the concatenation: the tf-idf of
the concatenation of two documents is not smaller than the tf-idf of any of them.
Thus the relevance of the individual document extracted is not lower than that
of any other remaining in the priority queue.

The iterative process continues until we have output k documents. In this
way, it is not necessary to process all the documents in the collection, but rather
the search is guided towards the areas that contain the most promising docu-
ments for the query until it finds the top-k answers. Note that the procedure
does not need to know k beforehand; it can be stopped at any time.

The pseudocode for bag-of-words queries is given in Algorithm 1. For weighted
conjunctive queries we add an additional check during the procedure: if a seg-
ment does not contain some of the words in the query (i.e., some tf is zero), the
segment is discarded without further processing.

Fig. 3. Search step for conjunctive queries using additional bitmaps.

3.2 With Additional Bitmaps (WTBC-DRB)

This solution uses an additional bitmap for each word in the vocabulary whose
idf exceeds a fixed threshold ǫ.1 The bitmap of each word encodes the number of
documents where it appears and its term frequency in each of those documents,
as follows: a 1 in the bitmap marks a new document where the word appears,
and it is followed by as many 0s as the number of occurrences of the word in that
document, minus one. For example, if the bitmap of a word is 10000100100000,
it expresses that the word appears in three documents, with five occurrences in
the first one, three in the second, and six in the third.

Conjunctive Queries This time we will obtain all the documents in the in-
tersection, and choose the top-k from those. Figure 3 shows an example of the
search using bitmaps. Let us consider this example to explain how the algorithm
for conjunctive queries works. It assumes a query composed of three words w1,
w2, and w3, that appear in 6, 4, and 9 different documents, respectively.

The algorithm will insert the documents in the intersection in a result priority
queue sorted by tf-idf relevance and with size limited to k. At the end, this queue
will contain the answers. It will also compute triplets (wID , nDocs, i) for each
query word: wID is the identifier of the word, nDocs is the number of documents
that have not been yet processed for that word, and i is the position in the bitmap
of the 1 marking the first document not yet processed for that word. At each
step, it will process the triple with lowest nDocs value, that is, the query word
with least documents to be processed.

In the example, the initial triplets are 〈(w2, 4, 1), (w1, 6, 1), (w3, 9, 1)〉. Word
w2 will be processed first since it has the lowest number of documents to be
processed, 4. In each step, if we chose triplet (wID , nDocs, i), we locate the ith

occurrence of wID (note that the bits in the bitmap of a word correspond to its
occurrences in the text). Then, we identify in which document it is contained
and also the document limits. In the example, we choose (w2, 4, 1). Since i = 1,
we locate the first occurrence of w2 in the root T by traversing the tree from the

1 If the idf of a word is lower than this threshold, we assume it is not relevant for the
global document scores. The idea is to filter out stopwords.

leaf of wID (see Section 2). Let p be the position found in T . Then the identifier
of the document containing that occurrence of w2 is d = 1 + rank$(T, p). To
find the beginning and the end (s and e, in Figure 3) of document d, we can use
s = select$(T, d− 1) and e = select$(T, d).

2

Once the document limits have been obtained, we count the occurrences of
the other query words restricted to the limits of this document (recall the end
of Section 3.1). If some of the words does not appear in the document, it is
discarded. If all the query words appear in the document, we compute its tf-idf
using the term frequencies just computed (i.e., the counts). The tf value for word
wID can be computed more efficiently without traversing the wavelet tree, but
using the corresponding bitmap (bmw2

, in the example). We only have to search
for the position of the next 1 in its bitmap (which can be done in constant time
[16]), and compute the tf as the difference between that position and i. In the
example, where i = 1, as mentioned before, the next 1 of bmw2

is at position 4,
thus the tf value for w2 is 4 − 1 + 1 = 4. Finally, the computed tf-idf value is
used to insert the document in the results queue.

Be the document inserted or discarded, the procedure continues by consid-
ering the documents to the right of the current one, that is, by regarding the
documents of each word’s bitmap to the right of the bit corresponding to the
document just processed. This is done by recomputing the triplets. For each
word of the query, the information provided by the count operations performed
over the WTBC to obtain its tf value in the document (or on the bitmap, in
the case of the word wID) is mapped to its corresponding bitmap to recom-
pute its triplet. For example, consider w1. Its number of occurrences before s
is count(w1, s) = 7, and before e, count(w1, e) = 10. Then, the i value in the
new triplet for word w1 is count(w1, e) + 1 = 11. The new nDocs value can
also be easily computed with a constant-time rank operation [16] on its bitmap
bmw1

: df w1
− rank1(bmw1

, count(w1, e)) = 6 − 4 = 2. This means that w1 still
appears in nDocs = 2 documents after the document we have just processed.
By proceeding in the same way with the rest of the words, we obtain the three
new triplets: 〈(w1, 2, 11), (w2, 3, 4), (w3, 3, 12)〉.

The search proceeds iteratively until there are no documents to be processed
for some of the words, that is, until we reach a triplet where nDocs = 0.

Bag-of-words Queries These queries do not benefit from the use of bitmaps
as much as conjunctive queries, since every document where any of the query
terms appears must be considered. In that case, we proceed as follows for each
word, wj , of the query. We sequentially locate in the WTBC the first occurrence
of wj in each new document where it appears, by traversing the 1s of its bitmap
(jumping to the next 1 in constant time [16]). For each new 1, say found at
bitmap position p, we locate the p-th occurrence of wj in the WTBC. Then the
identifier of that document is found using rank$ on T , and the term frequency of
wj in such document is simply the distance to the next 1 in the bitmap. All the

2 In practice we use faster structures for those particular cases of select, where one
wants the preceding and following occurrences of ’$’.

Table 1. Description of the corpus used and compression properties

Corpus size (MB) #docs #words voc. size

ALL 987.43 345,778 219,255,137 718,691

Technique CR CT DT

WTBC-DR 35.0 40.1 8.6

WTBC-DRB 38.0 65.6 8.5

documents where wj appears, with its frequencies, are stored in a set. Once we
have aggregated all the documents where all the query words appear, we sort it
by document identifier, add up the contributions to tf-idf , and choose the top-k.

4 Experimental Evaluation

We evaluated the performance of the proposed algorithms over a data set created
by aggregating text collections from trec-2: AP Newswire 1988, and Ziff Data
1989-1990, as well as trec-4, namely Congressional Record 1993, and Financial
Times 1991 to 1994. All of them form a document corpus of approximately 1GB
(ALL). Table 1 (left) gives the main statistics of the collection used: size in
MBytes, number of documents, total number of words (using the spaceless word
model [17]), and number of different words (vocabulary size).

We ran the experiments in a system with an AMD Phenom II X4 955 Proces-
sor (3.2 GHz) and 8GB RAM. It ran Ubuntu 9.10 GNU/Linux (kernel version
2.6.31.23). The compiler used was gcc version 4.4.1 and -O9 compiler optimiza-
tions were applied. Time results measure cpu user time in seconds.

4.1 Document Representation

Table 1 (right) shows the results obtained when the collection is represented
with WTBC over (s, c)-DC, and give the compression ratio (CR) (in % of the
size of the original text collection), as well as the time to create the structures
(CT) and to recover the whole text back from them (DT), in seconds, for the
two variants we have proposed. Notice that the difference between WTBC-DR
and WTBC-DRB is given by the storage of the words’ bitmaps in the second
one. The raw compressed data uses around 32.5% of the space used by the plain
text, and the WTBC requires an additional waste of 2.5% of extra space for the
bytemap rank and select operations, for a total of 35%. Structure WTBC-DRB
adds an additional 3% of space (we have used ǫ = 10−6 for the bitmaps, which
leaves out just 65 words, mostly stopwords), for a total of 38%.

4.2 Ranked Document Retrieval

Tables 2 and 3 show the average times (in milliseconds) to find the top-k (using
k = 10 and k = 20) ranked documents for a set of queries, using WTBC-DR
and WTBC-DRB techniques. We considered different sets of queries. First, we
generated synthetic sets of queries, depending on the document frequency of the
words (fdoc): i) 10 ≤ fdoc ≤ 100, ii) 101 ≤ fdoc ≤ 1,000, iii) 1,001 ≤ fdoc ≤

Table 2. Results for top-10 and top-20 1-word queries and conjunctive queries

#words per query

fdoc Technique 1 2 3 4 6
top-10 top-20 top-10 top-20 top-10 top-20 top-10 top-20 top-10 top-20

i)
WTBC-DRB 0.38 0.37 0.35 0.35 0.27 0.27 0.25 0.25 0.23 0.22

WTBC-DR 2.27 3.45 0.86 0.87 0.55 0.55 0.43 0.42 0.28 0.28

ii)
WTBC-DRB 4.20 4.20 5.13 5.14 4.45 4.45 4.09 4.09 3.61 3.60

WTBC-DR 6.18 7.80 9.57 9.61 6.54 6.55 4.70 4.71 3.44 3.44

iii)
WTBC-DRB 23.34 23.38 33.70 33.70 27.87 27.91 24.09 23.95 21.43 21.44

WTBC-DR 15.06 18.62 63.05 72.37 64.06 66.67 53.51 53.63 44.19 46.31

iv)
WTBC-DRB 191.34 191.78 279.66 279.65 263.79 263.64 240.16 240.49 207.65 207.91

WTBC-DR 53.40 66.15 151.16 185.76 284.92 341.42 382.92 415.76 404.26 410.35

real
WTBC-DRB 19.14 19.17 29.67 29.66 39.95 39.94 34.38 34.36 33.60 33.60

WTBC-DR 6.68 9.08 34.92 41.55 67.36 77.52 78.34 87.11 101.22 108.95

10,000 , and iv) 10,001 ≤ fdoc ≤ 100,000, and also on the number of words
that compose a query, namely, 1, 2, 3, 4 and 6. Each set is composed of 200
queries of words randomly chosen from the vocabulary of the corpus, among
those belonging to a specific range of document frequency. Second, we also used
queries from a real query log3 (real), and created 5 sets of 200 queries randomly
chosen composed of 1, 2, 3, 4, and 6 words, respectively. The same sets of queries
were used for dealing with both conjunctive (Table 2) and bag-of-words scenarios
(Table 3).

Conjunctive Queries WTBC-DRB is, in general, faster than WTBC-DR. This
shows that first computing the intersection and then ranking it is a good strategy
compared to trying to prioritize the intersection by the relevance of segments,
especially if the former strategy can be sped up with bitmaps. The situation is
reversed when the queries have low selectivity (see the values of 1-word queries,
for iii), iv), and real; and the results of 2-word queries, for case iv)). In those
situations, the amount of documents in the intersection is presumably quite
large (in the case of 1-word queries, this value is precisely given by fdoc), thus
WTBC-DRB must process each of them, whereas WTBC-DR can still benefit
from processing first the most promising documents, and stopping when the first
k are retrieved.

For both techniques, the processing times decrease as the number of words
in the query increases, within a given fdoc band. This is expected when the
words are chosen independently at random, since more words give more pruning
opportunities for both algorithms. However, in the scenario iv), where words
appear in too many documents, and in real, where the query words are not
independent, the WTBC-DR pruning is not efficient enough and its times grow
with the number of words. For real queries, WTBC-DRB is non-monotonic,
worsening up to 3 words and then dropping slowly.

3 Obtained from trec (http://trec.nist.gov/data/million.query.html)

http://trec.nist.gov/data/million.query.html

Table 3. Results for top-10 and top-20 bag-of-words queries

#words per query

fdoc Technique 2 3 4 6
top-10 top-20 top-10 top-20 top-10 top-20 top-10 top-20

i)
WTBC-DRB 23.94 23.85 24.40 24.25 24.72 25.03 25.73 25.70

WTBC-DR 3.86 4.91 4.28 5.91 5.17 7.35 6.86 9.53

ii)
WTBC-DRB 31.84 31.93 36.43 36.25 41.13 41.20 49.52 49.56

WTBC-DR 10.12 13.74 14.22 19.74 18.56 24.53 27.78 35.91

iii)
WTBC-DRB 72.06 72.15 97.81 97.92 120.67 121.04 167.55 167.42

WTBC-DR 29.63 38.54 43.20 57.81 61.65 78.06 94.96 118.71

iv)
WTBC-DRB 384.11 384.06 585.99 585.81 770.20 770.95 1,142.62 1,143.97

WTBC-DR 98.84 125.52 156.79 202.71 223.31 281.07 359.84 462.16

real
WTBC-DRB 129.46 129.43 263.85 263.82 372.54 372.20 686.76 687.04

WTBC-DR 27.96 36.17 58.91 75.74 82.80 106.42 150.94 192.02

Bag-of-words Queries In this scenario, the more query words, the higher
is the average processing time in both alternatives, since each word increases
the number of valid documents. Unlike the previous scenario, WTBC-DR beats
WTBC-DRB, as in this context one can hardly profit from the bitmaps. In
WTBC-DRB, a sequential processing of the documents where each word appears
is necessary, whereas WTBC-DR processes only the most promising segments.

In the case of real queries, the processing time also increases in terms of the
number of words for both techniques, independently of the document frequency
of the words composing the query. The results show that WTBC-DR performs
better than WTBC-DRB, just as on synthetic queries.

5 Conclusions

We have shown how the Wavelet Tree on Bytecodes (WTBC), a compressed
data structure that supports full-text searching and document retrieval within
essentially the space of the compressed text, can be enhanced to support also
ranked document retrieval, which is by far the most important operation in
IR systems, within tens of milliseconds. The enhanced WTBC becomes a very
appealing solution in scenarios where minimizing the use of main memory is of
interest, as it supports all the typical repertoire of IR operations at basically no
storage cost. In particular it may help maintaining an indexed collection entirely
in RAM when a classical solution would have to resort to disk, or reduce the
number of computers needed for a cluster that implements a large in-memory
distributed index, or allow implementing an indexed collection on a mobile device
with limited memory, just to mention some obvious application scenarios.

We have presented two proposals. A first one does not use any extra space on
top of the WTBC, and solves bag-of-words (disjunctive) queries and weighted
conjunctive queries within milliseconds. The second uses a very small amount
of extra space, and noticeably speeds up selective conjunctive queries. Another
advantage of our second strategy is that it easily generalizes to other weighting
schemes beyond tf-idf , for example Okapi BM25, because it simply computes the

relevance of all the candidates and then chooses the best ones. The first scheme
applies a more sophisticated prioritized traversal, which is not so easy to adapt
to the BM25 weighting formula, as it includes factors like the document size.

We plan to carry out experiments on larger collections for the full paper. It
is quite clear, however, that even if the times grew linearly with the collection
size (which is expected on the second technique but is probably pessimistic on
the first), we would still have decent response times on 100GB collections, which
are on the limit of what can be handled in main memory on today’s machines.
Another aspect worth of further study is the possibility of reducing the search
times with inexact top-k document retrieval. While heuristics that may miss
some relevant answers are widely used in inverted-index-based algorithms to
improve performance, we have not allowed ourselves to profit from those.

References

1. Zobel, J., Moffat, A.: Inverted files for text search engines. ACM Comp. Surv.
38(2) (2006)

2. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. 2nd edn.
Addison-Wesley (2011)

3. B. Croft, D.M., T.Strohman: Search Engines: Information Retrieval in Practice.
Pearson Education (2009)

4. Strohman, T., Croft, B.: Efficient document retrieval in main memory. In: Proc.
30th SIGIR. (2007) 175–182

5. Transier, F., Sanders, P.: Engineering basic algorithms of an in-memory text search
engine. ACM Trans. Inf. Sys. 29(1) (2010) 2:1–2:37

6. Culpepper, S., Moffat, A.: Efficient set intersection for inverted indexing. ACM
Trans. Inf. Sys. 29(1) (2010)

7. Witten, I., Moffat, A., Bell, T.: Managing Gigabytes. 2nd edn. Morgan Kaufmann
Publishers (1999)

8. Baeza-Yates, R., Moffat, A., Navarro, G.: Searching large text collections. In:
Handbook of Massive Data Sets, Kluwer Academic Publishers (2002) 195–244

9. Brisaboa, N., Fariña, A., Ladra, S., Navarro, G.: Reorganizing compressed text.
In: Proc. 31st SIGIR. (2008) 139–146

10. Brisaboa, N., Fariña, A., Ladra, S., Navarro, G.: Implicit indexing of natural
language text by reorganizing bytecodes. Inf. Retr. (2012) Advance access DOI:
10.1007/s10791-012-9184-1.

11. Arroyuelo, D., González, S., Oyarzún, M.: Compressed self-indices supporting
conjunctive queries on document collections. In: Proc. 17th SPIRE. (2010) 43–54

12. Grossi, R., Gupta, A., Vitter, J.: High-order entropy-compressed text indexes. In:
Proc. 14th SODA. (2003) 841–850

13. Huffman, D.: A method for the construction of minimum-redundancy codes. Proc.
IRE 40(9) (1952) 1098 –1101

14. Brisaboa, N., Fariña, A., Navarro, G., Paramá, J.: Lightweight natural language
text compression. Inf. Retr. 10(1) (2007) 1–33

15. Heaps, H.: Information Retrieval - Computational and Theoretical Aspects. Aca-
demic Press (1978)

16. Munro, I.: Tables. In: Proc. 16th FSTTCS. (1996) 37–42
17. de Moura, E., Navarro, G., Ziviani, N., Baeza-Yates, R.: Fast searching on com-

pressed text allowing errors. In: Proc. 21st SIGIR. (1998) 298–306

	Ranked Document Retrieval in (Almost) No Space

