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Abstract. Temporal Web Image Retrieval can be defined as the process that re-
trieves sets of Web images with their temporal dimension from explicit or implicit
temporal text queries. Supposing that (a) the temporal dimension is included in
image indexing and (b) the query is explicitly expressed with a time tag (e.g.
“Fukushima 2011”), the retrieval task can be straightforward as image retrieval
has been studied for several years with success. However, text queries are usually
implicit in time (e.g. “Second World War”) and automatically capturing the time
dimension included in Web images is a challenge that has not been studied so
far to the best of our knowledge. In this paper, we will discuss different research
issues about Temporal Web Image Retrieval and the current progresses of our
research in temporal ephemeral clustering and temporal image filtering.

1 Introduction

In the image retrieval community, in contrast to the text retrieval one [1] [2], there has
been little discussion about the concept of time-sensitive queries and temporal retrieval.
In fact, many queries in image retrieval are atemporal as a user wishes to obtain images
without any particular time range in mind (e.g. “Rabbits”).

However, there is a range of queries which contain a temporal dimension. In this
case, the user may like to obtain images, which show objects as they were in the past
or they will be in the future. Within this context, there exist two different categories of
queries. On the one hand, there are explicit temporal queries, which contain absolute
dates or time periods (e.g. “Paris 1945”, “Eiffel Tower 1889-1900”, “World Cup 2014”).
On the other hand, there are implicit temporal queries, whose time component is hidden
in the semantics of the query (e.g. “Second World War”, “Mayas”).

So far, there are no efficient solutions that would chronologically order relevant
images in large unconstrained collections such as the Web, where images have no trust-
worthy metadata attached and where many queries are not explicitly formulated in the
time dimension. Thus, we propose to tackle this challenging task and show initial results
through an architecture based on two different steps: temporal ephemeral clustering by
query expansion and temporal image filtering by temporal image classification.

We divide the problem of returning images, which satisfy text queries with temporal
dimensions to the following subtasks: (a) detecting and recognizing the temporal com-
ponent of a user query, (b) estimating the timestamp of images and (c) finding relevant
images. In particular, step (c) has been well studied and there exist many successful
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methods, which are used by state-of-the-art Web image search engines [3]. However,
to the best of our knowledge, there have been no solutions for steps (a) and (b) in the
context of Web image retrieval. Note that step (a) is trivial in the case of explicit tem-
poral components (e.g. “Berlin 1944”) but difficult for queries with implicit temporal
components (e.g. “Winter Olympics Sapporo”, “California Gold Rush”).

For step (a), we present a temporal ephemeral clustering strategy to temporally orga-
nize Web image search results for implicit temporal text queries. Ephemeral clustering,
also known as post-retrieval clustering, aims to cluster Web search results on the fly as
they are returned by a Web search engine (i.e. text or images). In the specific context
of Temporal Web Image Retrieval (T-WIR), Web image results are retrieved by tem-
poral query expansion and rearranged into temporal clusters as presented in Figure 1.
This new paradigm can be useful for different activities (e.g. education, entertainment,
environment) and different populations (e.g. kids, elderly). Indeed, users interested in
the evolution of entities can obtain timeline-like overviews with representative images
for significant years. For example, it is possible to see the changes in the appearance of
persons (e.g., Madonna, Michael Jackson), places (e.g., Moscow, New York) or monu-
ments (e.g. Twin Towers, Eiffel Tower).

Fig. 1. Examples of Implicit Temporal Queries (a) Moscow (Cities); (b) Madonna (People); (c)
Twin Towers (Monuments). Clusters are Automatically Time-Tagged.

Step (b) principally aims to filter out images obtained from step (a), which may
not be representative of the required time period. Indeed, temporally incoherent images
may be retrieved by state-of-the-art Web image search engines as indexing is usually
made upon surronding text and as such prone to error. In fact, image filtering can be
seen as a sub-task of a broader area, whose main aim is to correctly timestamp images
and as such produce high quality image temporal indexation. Indeed, timely irrelevant
images may be retrieved. To solve this problem, we propose a temporal image classifi-
cation approach to automatically detect image timestamps based on visual features. It is
important to note that in the case of digitized analog images, as opposed to born-digital
images, there are two timestamps: the timestamp when the analog photo was taken in
the real world and the timestamp when this photo was later digitized. In this paper, we
focus on the former and our objective is to determine the actual time point at which the
world view represented on the image was captured.

The main contributions of this position paper are (1) the definition of research chal-
lenges embodied by T-WIR, a new research topic and (2) the current progresses of
our research in T-WIR through a proof of concept architecture tackling both temporal
ephemeral clustering and temporal image filtering.

2 Temporal Ephemeral Clustering

The first idea is to retrieve and organize Web image search results based on a timeline.
In the textual domain, promising results have been obtained for a historical point of
view [4] or a futuristic vision [5]. However, temporal visual information retrieval has
received very little attention. As far as we know, unless there exist image databases
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populated with temporal metadata (e.g. Flickr) and a text query is explicitly expressed
with its temporal expression (e.g. “New York from 2000 to 2012”), no solution has ever
been proposed in a more realistic environment.

As a consequence, in order to recognize the temporal component of an implicit
text query and organize Web image results on a timeline, we propose an ephemeral
clustering strategy. In particular, we may find temporal cluster names based on temporal
features mined from different Web resources such as1:

– Query suggestion engines (e.g. Google, Yahoo!, Wikipedia) following the regular
expression “query [1-2]+”, (e.g. “Olympic Games 2”),

– Web snippet implicit temporal tagging as proposed in [6],
– Web snippet knowledge-based temporal annotation using TAGME [7] for entity

recognition and YAGO2 for year date retrieval [8].

Then, the query is expanded with its discovered temporal dimensions using one
or a possible combination of the aforementionned strategies. For example, the query
“Olympic Games” would be expanded like “Olympic Games 2012”, “Olympic Games
2008”, and so forth as year dates have been discovered. Finally, the expanded query
is sent to an image search engine in order to retrieve temporally relevant images, as
shown in algorithm 1. This bootstrapping approach allows to determine important dates
related to images as well as increase the total pool of temporally relevant images as
demonstrated in [9]. Indeed, at each expansion step, new relevant images may be re-
trieved. Positive results of this step are illustrated in Figure 1.

Although this methodology is straightforward, it has proved to lead to interesting
results. However, discovering the time dimension of an implicit temporal query from
text is a hard task and may be prone to error. As explained in [6], while extracting dates
from query logs may lead to high recall, precision is surprisingly lower compared to
their methodology based on Web snippet implicit temporal tagging. Moreover, the time
dimension depends on the meaning of the query. For example, the query “Jaguar” may
embody a temporal intent for the concept of “car”, while the concept of “animal” may
be atemporal. As a consequence, future work still needs to be developed for this specific
task, in particular the third strategy aforementionned.

Algorithm 1 Temporal Ephemeral Clustering.
Input: TextQuery
Output: T imeTaggedImgClusters
1. QuerySetDates = ExtractTemporalIntents(Query)
2. For each element QueryDatei in QuerySetDates
3. T imeTaggedImgClusteri = ImgSearch(QueryDatei)
4. T imeTaggedImgClusterNamei = QueryDatei
5. return T imeTaggedImgClusters

1 So far, the first and second solution have been implemented in our architecture.
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3 Temporal Image Filtering

Supposing that the ephemeral clustering step is successful, the set of retrieved Web im-
ages may be temporally incoherent i.e. the images may not belong to their associated
time cluster. For instance, a color photo may be retrieved for periods where color pho-
tography did not exist or was not yet widespread. As a consequence, in order to filter out
incorrectly classified Web images, we propose an automatic methodology for temporal
image filtering.

Given an arbitrary image, we wish to estimate the approximate date when it was
taken. On the one hand, for born-digital images, the situation is relatively easy as there
is only one timestamp, which in some cases can be retrieved from image metadata (e.g.
EXIF). Note however, that for certain files, the timestamp is impossible to retrieve or
can wrongly be assigned (e.g. camera erroneous time settings). On the other hand, for
digitized copies of old analog images, discovering temporal timestamp is not trivial.
Note also that if we would focus only on the born-digital images then, obviously, the
length of the timeline that such approach covers would be very short (i.e. the last two
decades during which digital photographing became popular).

In the prior work, different clues have been proposed to manually timestamp images
mainly based on the physical properties of the media (e.g. paper type, size, coated, color
scheme) [10]. In another approach, some references present hints based on visual char-
acteristics of objects, places or people in the pictures. On the other hand, as far as we
know, only one automatic method exists to temporally timestamp images, Kodak 2010
patent [11]. In particular, it focuses on dating photos based on distinguishing marks that
may appear on the back of the photo (e.g. brand or written dates) or on the over-print
of the image (e.g. logo). As a consequence, the scope of this methodology is limited
and provides no real solution to our needs. Therefore, we propose to define a learn-
ing model with specific visual features capable of classifying the temporal dimensions
of images. Note that in this research, we are not concerned about detecting the age of
objects portrayed on photos, but on dating images based on their visual features.

To address initial experiments, we built a small dataset, where five city names were
used as queries to extract images with their temporal metadata by querying Flickr2

constrained by five temporal periods i.e. classes defined from historical progress of
photography. The periods used were [1826, 1925), [1925, 1948), [1948, 1968), [1968,
1982), [1982, 2011] and correspond to intervals defined in chronological order by: first
photo, camera democratization for black/white, camera democratization for color, first
reflex camera, first digital camera and actual date. The number of images retrieved by
each query-period was limited to 50. The final number of images in the dataset is 1170
and each period is considered a class.

After multiple experiments were performed based on different image features, three
texture and color descriptors were selected: ScalableColor [12], FCTH [13] and CEDD
[14]. The first descriptor is a color histogram extracted in the HSV color space and the
others two descriptors are histogram representation of color distribution under different
texture patterns. In total, four hundred low-level features were used to describe each im-
age. Finally, we performed a 10-fold cross-validation using a Multiclass SVM classifier

2 http://www.flickr.com (Last access on July 2012).
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with a Linear Kernel and default parameters. The results show an average F -Measure
of 0.509 (σ = 0.042) and average ROC Area of 0.757 (σ = 0.046). Note that the
F -Measure of a random classifier is 0.2. Results are presented in Table 1.

[1826, 1925) [1925, 1948) [1948, 1968) [1968, 1982) [1982, 2011]
# Images 237 205 228 246 254
Precision 0.500 0.528 0.456 0.545 0.525

Recall 0.624 0.512 0.408 0.520 0.488
F -Measure 0.555 0.520 0.431 0.532 0.506
ROC Area 0.796 0.798 0.688 0.768 0.735

Table 1. Precision, Recall, F -Measure and ROC Area values for Five Temporal Periods.

4 Conclusions and Perspectives

In this paper, we presented the foundations of a new research area called Temporal Web
Image Retrieval. We developed a methodology as proof of concept based on (a) tempo-
ral ephemeral clustering and (b) temporal image filtering. The first results support our
hypotheses and new challenges have emerged. Indeed, the perspectives of T-WIR are
numerous. For the first step, many ideas can be proposed to recognize the temporality
of implicit text queries based on Web snippets analysis [6], Web documents [15], query
logs distributions [2] or Web archive studies [4]. For the second step, the introduction of
query classification methodologies for Web image retrieval [16], content-based visual
features [17] or the combination of textual and visual features in a multi-view paradigm
[18] can be different issues to take into account to improve image timestamping.
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