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Abstract. We implement a recent theoretical proposal to represent in-
verted lists in memory, in a way that docid-sorted and weight-sorted lists
are simultaneously represented in a single wavelet tree data structure.
We compare our implementation with classical representations, where the
ordering favors either bag-of-word queries or Boolean and weighted con-
junctive queries, and demonstrate that the new data structure is faster
than the state of the art for conjunctive queries, while it offers an attrac-
tive space/time tradeoff when both kinds of queries are of interest.

1 Introduction

The inverted index is an old and simple, yet efficient, data structure that allows
us to search within a set of documents for queries q formed by sets of words. It
plays a central role in the Information Retrieval (IR) field [4, 6, 23, 27, 29] and
in Web search engines. Given a text collection containing a set of D documents,
where each document has a unique document identifier (docid), an inverted index
is an array of lists or postings. Each entry of the array corresponds to a unique
word or term that appears in the collection. The list corresponding to each term
points to the different docids where the term appears. Variants of this data
structure are used to support various ways to retrieve the documents relevant to
a query, mainly Ranked retrieval, Boolean retrieval, and Full-text retrieval [5,29]

The goal of ranked retrieval is to retrieve the documents considered most
“relevant” to the query, under some criterion. In the popular vector-space model,
documents are represented as vectors

−→
di = 〈w(t1, di), w(t2, di), . . . , w(tV , di)〉,

where {t1, t2, . . . , tV } is the vocabulary of the distinct terms in the collection, and
the value w(tj , di) in each dimension corresponds to the relevance of the term
tj in document di. The classical interpretation of a query is the so-called bag-of-
words model, where documents are scored according to the sum of the weights
of the individual query words inside them, w(q, d) =

∑
t∈q w(q, d). Answering

such queries implies processing the lists of each query word and retrieving the
documents with highest score. For these kind of queries operations the lists are
preferably sorted in descending weight order [4, 23,29].

There are many relevance formulas, being variants of the tf-idf model the
most widely used. In the basic formula, the weight of a document d for a term t
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is given by w(t, d) = tf t,d × idft. Here tf t,d is the term frequency of t in d, that

is, the number of times t occurs in d. The second term is idft = log D
dft

, where
dft is the document frequency, that is, number of documents where the term t
appears. The variables idft or dft can be stored in the vocabulary as they depend
only on t, whereas the tf t,d values are stored together with each document d in
the corresponding inverted list for term t.

Boolean retrieval, instead, retrieves all the documents where the query terms
appear. If the query is a single term (|q| = 1), the retrieval process just fetches
the list of the term. Multi-word queries are interpreted using (a variant of) the
Boolean model. For example, for disjunctive queries (OR) all the corresponding
lists have to be fetched and merged. In conjunctive queries (AND), the lists must
be intersected. With the advent of large Web search engines where precision is a
more serious concern than recall, intersection queries have become more popular,
as witnessed by the amount of recent research on this problem [7, 8, 14, 24]. For
Boolean queries, the lists are preferably sorted in ascending docid order.

A popular combination of the above queries are Ranked AND queries, where
we must retrieve the highest ranked documents among those containing all the
terms. For these queries, both of the above orderings may be competitive, and
there are also special inverted list formats to support them [15].

Finally, full-text retrieval aims at finding the exact text positions where the
query appears, and is useful for example to display snippets around occurrences
and solve phrase queries. The inverted indexes to solve them are called posi-
tional and are larger than the previous ones, as the lists have an entry for every
occurrence of every term. Full-text retrieval is out of the scope of this paper.

While traditionally the lists of the terms were stored on disk, a recent trend
triggered by the availability of large main memories is to store the whole inverted
index in the main memory of one or several machines [12,25,26]. In the secondary
memory context, reducing index space was a mean to save disk space and reduce
transfer time. In the more modern context, saving space is still very important
in order to reduce the number of machines needed to hold the index, their use of
energy, and the amount of communication. In the case of a single machine, saving
space allows us to handle larger collections in main memory. This is especially
important in limited-memory devices such as hand-helds, and also in general
because the disk is orders of magnitude slower than main memory.

Compressing the inverted index, while supporting different types of retrieval,
has been an active research topic for decades [22, 25, 27, 29]. Most compression
techniques exploit the fact that the inverted lists are sorted somehow, by storing
differences between consecutive values rather than absolute ones. The direct
access needed by the query algorithms, especially intersections, is supported by
various sampling mechanisms [12,24].

Most IR systems support both types of retrieval, ranked and Boolean, and
combinations. Since each type is favored by a different sorting of the inverted
lists, and doubling the space is undesirable, one must choose one ordering in
detriment of the queries of the other type. Some schemes enrich an inverted
index stored in one order with data to speed up queries of the other type [15].



Recently, Navarro and Puglisi [21] proposed a new compact in-memory rep-
resentation of the inverted index using wavelet trees [19]. This representation
allows one to handle both types of retrieval, ranked and Boolean, via a dual
sorting of the inverted lists. That is, the representation can simulate that lists
are sorted by docid (useful for Boolean and ranked AND queries) and by term
weight (useful for bag-of-words), as desired, without increasing the space. This
is an important theoretical promise for inverted indexes with rich functionality
and reduced space, yet its practical value remained unclear.

Our contributions are as follows: (1) We implement the dual-sorted inverted
index and describe the practical considerations that have been made. (2) We
compare its performance with the state of the art. (3) We demonstrate that the
technique has an important practical appeal: within 10%-15% of extra space (on
top of the plain collection size), which is the state-of-the-art for solving one type
of query, it handles both types of queries. (4) We show that our implementation
is faster than a standard docid-sorted inverted index for intersection queries.
For bag-of-word queries, it is slower than a frequency-sorted index. However, a
frequency-sorted index alone is not competitive for conjunctive queries. If both
types of queries have to be supported, the sum of a docid-sorted and a frequency-
sorted index doubles the space of the dual-sorted index.

2 Related Work

2.1 Query Processing Strategies

Boolean queries aim at retrieving all the documents where some (OR) or all
(AND) of the query words appear. Ranked or top-k queries, instead, retrieve
only the k most “relevant” documents. When combined with OR-queries, the
result is called a bag-of-words query, where all the documents containing some
query word qualify. When combined with AND-queries, the result is called a
weighted conjunctive or ranked AND query, where we look for the highest ranked
among the documents containing all the query words. An IR system may have
to provide support for all, or most, of these queries simultaneously.

Depending on how we traverse the lists to solve queries, the algorithms can
be categorized as Term-at-a-time (TAAT) or Document-at-a-time (DAAT) [23].

Term-At-A-Time (TAAT) Query Processing. This technique is mostly
preferred for bag-of-word queries [15]. The query is processed term by term. For
each term posting, we choose the candidate documents that could be among
the top-k most relevant ones for the given query. A set of active candidate
documents is maintained, while their weights are increased by the contribution
of each successive term. At the end, the top-k are chosen among the candidates.

Persin Algorithm [22]. This is one of the most famous TAAT query processing
algorithms. The idea is to solve bag-of-word queries without scanning all of the
lists. The algorithm requires the lists of each term to be sorted by decreasing
weight. While the algorithm is described for the tf-idf model, it can be easily
adapted to many variants, with lists sorted by so-called impact [2].



The first step of the algorithm creates an accumulator accd for each document
d in the dataset (in practice, one can dynamically add a new accumulator when a
candidate document is found). The second step will store into the corresponding
accumulators accd the weights of the documents of the shortest among the lists
of the query terms, that is, the one with the highest idft. The third step processes
the rest of the lists in increasing length order, where the weight of each document
is accumulated in its corresponding accd. In order to avoid processing the whole
lists, they enforce a minimum threshold such that if the w(t, d) values fall below
it, the list is abandoned. Since the longer lists have a lower idft multiplying
the term frequencies, it turns out that a lower proportion of the longer lists is
traversed. They also apply a stricter threshold that limits the insertion of new
documents as candidates. These thresholds provide a time/quality tradeoff.

Document-At-A-Time (DAAT) Query Processing. This scheme is con-
venient for the other queries, Boolean and ranked AND. All the |q| lists are
traversed in parallel, looking for the same document in all of them. Posting
lists are sorted by increasing docid. Each posting has a pointer to the current
document that is being evaluated. Once a document is processed, the pointers
move forward. For Boolean disjunctive queries (OR), one moves to the closest
document across all the lists, as all the documents have to be processed. The
problem is more interesting for conjunctive queries (AND and ranked AND),
where there are various techniques to try to skip as much as possible from the
lists [7, 8, 14, 24]. DAAT techniques are be very fast on conjunctive queries, and
are considered the state of the art. Ranked disjunctive queries, however, are not
efficiently implemented on this representation [15].

Block-Max Index [15]. This is a special-purpose structure for ranked AND
queries. It sorts the lists by increasing docid, but cuts the lists into blocks and
stores the maximum relevance score for each block. This enables them to skip
large parts of the lists whose maximum possible contribution is very low by com-
paring the the contribution of a block with a threshold θ. This solution led to
considerable performance gains over other approaches [10, 26]. Needless to say,
the same data structure solves efficiently Boolean queries using DAAT traversals.

2.2 Data Structures for Inverted Lists

A list 〈p1, p2, p3, . . . pi〉 is usually represented as a sequence of d-gaps 〈p1, p2 −
p1, p3−p2, . . . , pl−pl−i〉, and uses a variable-length encoding for these differences,
for example δ-codes, γ-codes or Rice/Golomb codes [27], the latter usually giving
the best compression. Recent proposals make use of byte-aligned [12,25] or word-
aligned [1,28] codes, which are faster at decoding while losing little compression.
Extracting a single list or merging lists is done optimally by traversing the lists
from the beginning, but intersections can be done much faster if random access
to the sequences is possible. A typical solution to provide random access is
to perform a sampling of the sequences, by storing the absolute values and
pointers. The result is a two-level structure: the first contains the sampled values



and the second stores the encoded sequence itself. For example, Culpepper and
Moffat [12] extract a sample every p′ = p log l values from the compressed list,
where p is a space/time tradeoff parameter (our logarithms are in base 2). Direct
access requires a binary search on the samples list plus the decompression of a
within-samples block. Sanders and Transier [24], instead, sample regularly the
domain values: all the values differing only in their p = log(B/l) lowest bits
(for a parameter B, typically 8), form a block. The advantages are that binary
searches on the top structure, and storing absolute values in it, are not necessary.
A disadvantage is that the blocks are of varying length and more values might
have to be scanned on average for a given number of samples.

Various list intersection algorithms exist [7, 8, 14, 24], some of them tailored
to specific representations. In general, the best approach to intersect various lists
is the so-called set-vs-set (svs) [8]: the two shortests lists are intersected, then
the result is intersected with the next shortest list, and so on. For a pair of lists,
one typically searches the longer list for the values of the shorter one.

When list are sorted by decreasing weight (for bag-of-word queries), the dif-
ferential compression of docids is not possible, in principle. Instead, term weights
can be stored differentially. When storing tf values, one can take advantage of
the fact that long runs of equal tf values (typically low ones) are frequent, and
sort the corresponding docids increasingly, to encode them differentially [5, 29].

2.3 Wavelet Trees versus Inverted Indexes

The wavelet tree [19] is a data structure that stores a sequence S in a particular
(compressed) form that enables various queries over the sequence. Wavelet trees
have been applied to various IR problems, leading to diverse solutions. Brisaboa
et al. [9] used a variant of wavelet trees to represent the sequence S of words
in a text collection. As a result, they represent the collection in compressed
form and in addition simulate a positional inverted index. Arroyuelo et al. [3]
extended the representation to support Boolean document retrieval operations
(single-word, AND and OR queries). The interest of these structures is that they
can operate within very little extra space on top of that of the compressed text
(say, 3%, as opposed to 15%–20% of inverted indexes). Within this niche they
are unbeaten, but in absolute terms their query times are orders of magnitude
slower than using explicit inverted indexes. On the other extreme, Culpepper
et al. [13] use a wavelet tree to represent the sequence of documents to which
each text position belongs, after lexicographically sorting the suffixes starting at
those positions. This wavelet tree uses much more space than classical inverted
indexes, say 200%-400% of the text size, but it can search for arbitrary substrings
and handle non-natural-language texts. If restricted to indexing only words, the
space would drop to about 30%–60% and still would be able to solve some
complex queries such as ranking phrases and do stemming on the fly and prefix
searches, but it would lose in time (and space) to inverted indexes on the typical
Boolean and ranked retrieval queries.

Thus, wavelet trees have been used as a replacement of the inverted index
data structure, leading to structures that excell in other niches. In this work



we use them to emulate inverted indexes, so as to compete with them within
the same space range, and for the same queries inverted indexes are designed to
solve. We present the basic concepts in the next section.

3 Engineering Dual-Sorted Inverted Lists

Our main data structure is a wavelet tree [19] storing a sequence L[1, n] contain-
ing symbols from an alphabet [1, D]. In its basic form, it uses n logD(1 + o(1))
bits for representing L, while supporting a set of useful operations. The structure
is a complete balanced binary tree with D leaves labeled with the different sym-
bols appearing on L, in increasing order. For any internal node v of the wavelet
tree, let Lv be a subsequence of L containing only the symbols on the leaves in
the subtree with root v. Every node v stores not Lv but rather a bitvector Bv

with |Lv| bits, where Bv[i] = 1 if symbol Lv[i] appears below the right child of
v, and Bv[i] = 0 if the symbol appears below the left child. All bitvectors are
processed to handle binary rank and select queries in O(1) time [20]: rankb(B, i)
is the number of occurrences of bit b in B[1, i], and selectb(B, j) is the position
of the j-th b in B. The following primitives, supported by wavelet trees, are
relevant for this work [17,21].

Retrieve all values a range L[i, j]: We start from the root node v and map
the range Bv[i, j] to the left and to the right child. The new interval is
[i, j]← [rankb(Bv, i− 1) + 1, rankb(Bv, j)], where b = 0 when descending to
the left child, and b = 1 on the right child. Nodes where the interval becomes
empty are abandoned. Whenever we reach a leaf labeled d, we know there
are j − i + 1 occurrences of d in the original range. Note the symbols and
their occurrences are delivered in increasing order. The time complexity is
O(m log(D/m)), where m is the number of distinct symbols reported.

Retrieve the k-th value in a range L[i, j]: We start from the root node v
and the range Bv[i, j]. If k

′ ← rank0(Bv, j)−rank0(Bv, i−1) ≤ k, we descend
to the left child, mapping the range as above (with b=0). Else, we descend
to the right child, mapping with b=1 and setting k ← k−k′. When we arrive
at a leaf d, then the k-th value in the range is a d. The time is O(logD).

Navarro and Puglisi [21] propose the following representation of inverted lists.
Regard the list of absolute docids associated to term t as a sequence Lt over an
alphabet [1, D], where the docids are sorted by decreasing weight. Concatenate
all the lists Lt into a unique sequence L[1, n], which is represented with a wavelet
tree, and mark the starting positions of the lists in a bitvector s[1, n]. The weights
(actually, the tf t,d values) are stored in a sequence W [1, n] aligned to L. They
use a theoretically appealing (but practically doomed) representation of W .

We make the following practical considerations to implement this data struc-
ture. The wavelet tree is represented using a pointerless version [11] because D
is considerably large compared to n. As L is not expected to be compressible,
it is better to strive for time efficiency and represent the bitmaps of the wavelet
tree using a fast implementation [18] that uses 37.5% extra space on top of the



bitmap. Bitmap s is replaced by V pointers from the terms t to the starting
positions of the lists Lt in L. The weights within the range of each list Lt, which
are decreasing, are represented in differential form (using Rice codes). Abso-
lute values are sampled every K positions, where K is a space/time tradeoff
parameter. In fact, as there are many runs of equal weights, we store only the
nonzero differences, and store a bitmap W ′[1, n] indicating which differences are
nonzero. So we actually access position W [rank1(W

′, i)] instead of W [i], using a
representation that requires 5% on top of the bitmap W ′ to support rank [18].

The representation supports a wealth of traditional and not so traditional
operations [21]. Next we describe how we use it to solve the queries of interest
in this paper, which are the basic ones in IR.

Bag-of-words (ranked OR): We implement Persin et al.’s algorithm [22]. We
use the primitive just described to extract a range L[i, j] in order to obtain
the whole shortest list, and to extract a prefix of the next lists. The extension
of the prefix to be extracted (according to the threshold given on w(t, d) given
by the algorithm) is computed by exponential search on W . Note that the
primitive obtains the documents of the lists sorted by docid, which makes it
convenient to merge into our set of accumulators accd if they are also sorted
by docid. Note that W stores tf values; these are multiplied by idft before
accumulating them.

Weighted conjunctive queries (Ranked AND): We find the |q| intervals
[st, et] of the query words using the pointers from the vocabulary to the
inverted lists Lt, sort them by increasing lengths, and use the primitive
for tracking ranges. We track all the |q| ranges simultaneously, stopping as
soon as any of those becomes empty. The leaves arrived at correspond to
documents d that participate in the intersection. Their term frequencies are
available (as j− i+1, as described in the primitive), so we can immediately
compute the document score. We retain the k highest scoring documents.

Boolean queries: The data structure supports boolean conjunctive and dis-
junctive queries by easily adapting the previous algorithms.

4 Experiments

Setup and implementations. We implemented a document-sorted inverted
index (IX Doc Sort) and a frequency-sorted inverted index (IX Freq Sort) using
Rice encoding for compressing d-gaps (i.e., docid gaps for IX Doc Sort and tf
gaps for IX Freq Sort). Both inverted indexes allow random access by storing
sampled absolute values at fixed intervals l (the other data, i.e., frequencies of IX
Doc Sort and docids for IX Doc Sort, are stored in plain form). On IX Doc Sort,
intersections are done using svs for AND queries, whereas OR queries are done by
merging lists. Ranked AND queries are implemented with a fast postprocessing
after the AND query. On IX Freq Sort, Persin’s algorithm is used for bag-of-word
queries. We set Persin’s algorithms parameters for processing an existing term
to 1.2 and to process a new term to 1.2. If we use one of these indexes to run the



queries supported by the other, the times are very high, comparable to those of
a Boolean OR query (i.e., a few queries per second are processed).

We also implemented Block-Max [15] on our docid-sorted structure, using
blocks of size l. This solves Boolean queries just as IX Doc Sort, but for ranked
AND queries it skips blocks whose max-score is too low. Bag-of-word queries are
solved by traversing the shortest list in decreasing score order (using max-score
to guide the search), and finding the documents in the other lists (using max-
score to avoid decompressing uninteresting blocks). As the precise criterion is
not specified in the original paper [15], we use Persin’s threshold.

As an external implementation to compare we chose Zettair, a publicly avail-
able and open-source search engine engineered for efficiency (www.seg.rmit.
edu.au/zettair). Zettair supports both disjunctive and conjunctive queries and
implements the tf-idf ranking formula (among others). It also implements two
index organizations: docid-sorted and impact-sorted. We will show the results
achieved with the best organization, although docid-sorting is generally better
and impact-sorting is only slightly better for bag-of-word queries. All implemen-
tations have been set to run exclusively on main memory.

Our machine is an Intel(r) Xeon(r) model E5620 running at 2.40GHz with 96
Gb of RAM and 12288 Kb of cache. The operating system is Linux with kernel
2.6.32-41 64 bits and we used GCC version 4.4.3 with -O3 optimization.

Experimental data. We used a random sample of the TREC GOV2 Collection
(http://trec.nist.gov) containing 165GB of text and 14,415,482 documents,
having V = 45,092,117 different words. We also obtained all English articles
from Wikipedia (http://www.wikipedia.com) retrieved on August 2011. The
English Wikipedia corpus has about 33.2GB of text, distributed in 11,846,040
documents, with V = 19,231,312 different terms. Both collections have been
parsed using Porter’s stemming algorithm. For both collections, we constructed
query logs based on the efficiency queries from TREC with distinct amount of
terms, ranging from q = 2 to 10. For every q value, we filtered 2,000 queries that
appeared in at least 1,000 documents.

Time performance. For timing results, we set the space/time tradeoff param-
eter to m = 16 in Dualsorted and to l = 16 in Block-Max, IX Freq Sort, and IX
Doc Sort. Figure 1 shows bag-of-word queries per second solved by the different
indexes, retrieving the top-20 and top-1000 documents. As expected, IX Freq
Sort is the fastest method for this query, but our implementation of Dualsorted
is not too far away, and in turn it performs better than our implementation of
Block-Max. Zettair is the slowest alternative, as it computes as many top-ranked
document as memory permits (thus it is more competitive for k = 1000).

Figure 2 shows the times for conjunctive queries, returning the top-20 results.
While Zettair’s performance worsens as more words are interesected, IX Doc Sort
stays similar or improves (since the shortest list is shorter). Block-max is always
close to, and slightly better than, IX Doc Sort. Interestingly, Dualsorted is the
fastest alternative. It first improves (with more words, some interval becomes
empty sooner) and then finally degrades (as we track more intervals through the
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Fig. 1. Queries per second for top-20 (top) and top-1000 (bottom) bag-of-word queries
(higher is better). On the left, on the TREC dataset; on the right, on Wikipedia.

tree). These queries are much less affected by a larger k: for top-1000 results,
the throughput is about one third; the relative performances do not change.

We omit for lack of space Boolean AND queries, which perform very similarly
to ranked AND (with large k), and OR queries, which are very slow for all the
structures (1–4 queries per second), and not very interesting for IR.

Space/time tradeoffs. To evaluate space usage we vary the compression
parameters in each method. For Dualsorted, we tried sampling values m =
16, 32, 64, 128. For IX indexes and Block-Max, we tried values l = 16, 32, 64, 128
for the list sampling parameter. We consider the time to solve 3-word ranked
queries (conjunctive and disjunctive), which are representative of the other times.
In our results, the 2x InvList represents the union of the IX Doc Sorted and IX
Freq Sorted inverted lists, where we display the best of the two for ranked con-
junctive and disjuncitve queries.

Figure 3 shows the space used, as a fraction of the dataset size, versus queries
per second, for the different indexes on bag-of-word and ranked AND queries,
returning the top-20 results. On bag-of-word queries, Dualsorted achieves better
results within its space consumption range, while Block-Max is the closest al-
ternative. The IX index can be faster but it needs significantly more space (e.g.,
roughly, it needs twice the space to be 50% faster). On ranked AND queries,
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Fig. 2. Queries per second for top-20 (top) and top-1000 (bottom) ranked AND queries
(higher is better). On the left, on the TREC dataset; on the right, on Wikipedia.

Dualsorted is not only the least space-consuming index, but also the fastest,
dominating all the space/time tradeoff.

5 Conclusions and Future Work

We have demonostrated that an engineered implementation of dual-sorted in-
verted indexes [21] is an appealing data structure for conjunctive queries. The
native list intersection it supports turns out to be faster than state-of-the-art im-
plementations based on docid-sorted inverted indexes, for (ranked or Boolean)
conjunctive queries. The dual-sorted index also supports bag-of-word queries.
Despite in this case it is slower than a frequency-sorted index, the performance
is still acceptable, and the index does not require further space. Thus, if we need
to solve both kinds of queries, the dual-sorted index requires about half the space
of the sum of a docid-sorted and a frequency-sorted index.

Adding both indexes is, of course, a simple alternative to settle a first base-
line. In the future we plan to compare with other space/time tradeoffs, such as
storing short lists (which are the most) in only one order, and/or store just a
prefix of the frequency-sorted lists for the long ones.

The dual-sorted index intersection algorithm is easily extended to other vari-
ants of conjunctive queries like WAND queries [10]. It also adapts easily to some
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Fig. 3. The fraction of the dataset space (x-axis) used by the different indexes (leftward
is better) compared to the queries per second solved (higher is better) for top-20 queries
of 3 terms. On the left, the TREC dataset; on the right, the Wikipedia dataset. On
top, bag-of-word queries; on the bottom, ranked AND queries.

variants of the tf-idf formula, yet others are more challenging. For example, a
popular measure is Okapi BM25 [16]. This measure modifies the usual tf in a way
that depends on the length of the document, so that the weight w(t, d) is a real
number. Even sorting the lists by decreasing w(t, d), the values are much harder
to compress than tf, which are integer values, most of them small. Reducing
precision [2] is a promising direction we are pursuing.
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