Skip to main content

Modeling Three-Dimensional Morse and Morse-Smale Complexes

  • Chapter
  • First Online:

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

Morse and Morse-Smale complexes have been recognized as a suitable tool for modeling the topology of a manifold M through a decomposition of M induced by a scalar field f defined over M. We consider here the problem of representing, constructing and simplifying Morse and Morse-Smale complexes in 3D. We first describe and compare two data structures for encoding 3D Morse and Morse-Smale complexes. We describe, analyze and compare algorithms for computing such complexes. Finally, we consider the simplification of Morse and Morse-Smale complexes by applying coarsening operators on them, and we discuss and compare the coarsening operators on Morse and Morse-Smale complexes described in the literature.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bajaj, C.L., Shikore, D.R.: Topology preserving data simplification with error bounds. Comput. Graph. 22(1), 3–12 (1998)

    Article  Google Scholar 

  2. Banchoff, T.: Critical points and curvature for embedded polyhedral surfaces. Am. Math. Mon. 77(5), 475–485 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beucher, S.: Watershed, hierarchical segmentation and waterfall algorithm. In: Proceedings of the Mathematical Morphology and Its Applications to Image Processing, Fontainebleau, France, pp. 69–76 (1994)

    Google Scholar 

  4. Biasotti, S., De Floriani, L., Falcidieno, B., Frosini, P., Giorgi, D., Landi, C., Papaleo, L., Spagnuolo, M.: Describing shapes by geometrical-topological properties of real functions. ACM Comput. Surv. 40, Article 12 (2008)

    Google Scholar 

  5. Bremer, P.-T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A multi-resolution data structure for two-dimensional Morse functions. In: Proceedings IEEE Visualization 2003, Seattle, pp. 139–146. IEEE Computer Society (2003)

    Google Scholar 

  6. Bremer, P.-T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A topological hierarchy for functions on triangulated surfaces. Trans. Vis. Comput. Graph. 10(4), 385–396 (2004)

    Article  Google Scholar 

  7. Bremer, P.-T., Pascucci, V., Hamann, B.: Maximizing adaptivity in hierarchical topological models. In: Belyaev, A.G., Pasko, A.A., Spagnuolo, M. (eds.) Proceedings of the International Conference on Shape Modeling and Applications 2005 (SMI ’05), Cambridge, MA, pp. 300–309. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

  8. Bremer, P.-T., Weber, G.H., Pascucci, V., Day, M.S., Bell, J.B.: Analyzing and tracking burning structures in lean premixed hydrogen flames. IEEE Trans. Vis. Comput. Graph. 16(2), 248–260 (2010)

    Article  Google Scholar 

  9. Cazals, F., Chazal, F., Lewiner, T.: Molecular shape analysis based upon the Morse-Smale complex and the connolly function. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, San Diego, pp. 351–360. ACM, New York (2003)

    Google Scholar 

  10. Čomić, L., De Floriani, L.: Dimension-independent simplification and refinement of Morse complexes. Graph. Models 73(5), 261–285 (2011)

    Article  Google Scholar 

  11. Čomić, L., De Floriani, L., Iuricich, F.: Building morphological representations for 2D and 3D scalar fields. In: Puppo, E., Brogni, A., De Floriani, L. (eds.) Eurographics Italian Chapter Conference, Genova, pp. 103–110. Eurographics (2010)

    Google Scholar 

  12. Čomić, L., Mesmoudi, M.M., De Floriani, L.: Smale-like decomposition and Forman theory for discrete scalar fields. In: DGCI, Nancy, pp. 477–488 (2011)

    Google Scholar 

  13. Danovaro, E., De Floriani, L., Mesmoudi, M.M.: Topological analysis and characterization of discrete scalar fields. In: Asano, T., Klette, R., Ronse, C. (eds.) Geometry, Morphology, and Computational Imaging. Lecture Notes in Computer Science, vol. 2616, pp. 386–402. Springer, Berlin Heidelberg (2003)

    Chapter  Google Scholar 

  14. Danovaro, E., De Floriani, L., Magillo, P., Mesmoudi, M.M., Puppo, E.: Morphology-driven simplification and multiresolution modeling of terrains. In: Hoel, E., Rigaux, P. (eds.) Proceedings ACM GIS 2003 – The 11th International Symposium on Advances in Geographic Information Systems, New Orleans, pp. 63–70. ACM (2003)

    Google Scholar 

  15. Danovaro, E., De Floriani, L., Vitali, M., Magillo, P.: Multi-scale dual Morse complexes for representing terrain morphology. In: GIS ’07: Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems, Seattle, Washington, WA, pp. 1–8. ACM, New York (2007)

    Google Scholar 

  16. Danovaro, E., De Floriani, L., Magillo, P., Vitali, M.: Multiresolution Morse triangulations. In: Elber, G., Fischer, A., Keyser, J., Kim, M.-S. (eds.) Symposium on Solid and Physical Modeling, Haifa, pp. 183–188. ACM (2010)

    Google Scholar 

  17. De Floriani, L., Hui, A.: Shape representations based on cell and simplicial complexes. In: Eurographics 2007, Prague, Czech Republic, State-of-the-Art Report, Sept 2007

    Google Scholar 

  18. Čomić, L., De Floriani, L., Iuricich, F.: Dimension-independent multi-resolution Morse complexes. Comput. Graph. 36(5), 541–547 (2012)

    Article  Google Scholar 

  19. Edelsbrunner, H., Harer, J.: The persistent Morse complex segmentation of a 3-manifold. In: Magnenat-Thalmann, N. (ed.) 3DPH, Zermatt. Lecture Notes in Computer Science, vol. 5903, pp. 36–50. Springer (2009)

    Google Scholar 

  20. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse complexes for piecewise linear 2-manifolds. In: Proceedings of the 17th ACM Symposium on Computational Geometry, Medford, pp. 70–79 (2001)

    Google Scholar 

  21. Edelsbrunner, H., Harer, J., Natarajan, V., Pascucci, V.: Morse-Smale complexes for piecewise linear 3-manifolds. In: Proceedings of the 19th ACM Symposium on Computational Geometry, San Diego, pp. 361–370 (2003)

    Google Scholar 

  22. Forman, R.: Morse theory for cell complexes. Adv. Math. 134, 90–145 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gyulassy, A., Pascucci, V.: Computing simply-connected cells in three-dimensional Morse-Smale complexes. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications. Mathematics and Visualization, pp. 31–46. Springer, Heidelberg (2012)

    Google Scholar 

  24. Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P.-T., Hamann, B.: Topology-based simplification for feature extraction from 3D scalar fields. In: Proceedings IEEE Visualization’05, Minneapolis, Minnesota, MN, pp. 275–280. ACM (2005)

    Google Scholar 

  25. Gyulassy, A., Natarajan, V., Pascucci, V., Bremer, P.-T., Hamann, B.: A topological approach to simplification of three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 12(4), 474–484 (2006)

    Article  Google Scholar 

  26. Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of Morse-Smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 13(6), 1440–1447 (2007)

    Article  Google Scholar 

  27. Gyulassy, A., Bremer, P.-T., Hamann, B., Pascucci, V.: A practical approach to Morse-Smale complex computation: scalability and generality. IEEE Trans. Vis. Comput. Graph. 14(6), 1619–1626 (2008)

    Article  Google Scholar 

  28. Gyulassy, A., Bremer, P.-T., Hamann, B., Pascucci, V.: Practical considerations in Morse-Smale complex computation. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.) Topological Methods in Data Analysis and Visualization: Theory, Algorithms, and Applications. Mathematics and Visualization, pp. 67–78. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  29. Jerše, G., Mramor Kosta, N.: Ascending and descending regions of a discrete Morse function. Comput. Geom. Theory Appl. 42(6–7), 639–651 (2009)

    MATH  Google Scholar 

  30. Kelley, J.L.: General Topology. Van Nostrand, Princeton (1955)

    MATH  Google Scholar 

  31. King, H., Knudson, K., Mramor, N.: Generating discrete Morse functions from point data. Exp. Math. 14(4), 435–444 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lewiner, T., Lopes, H., Tavares, G.: Applications of Forman’s discrete Morse theory to topology visualization and mesh compression. Trans. Vis. Comput. Graph. 10(5), 499–508 (2004)

    Article  Google Scholar 

  33. Matsumoto, Y.: An Introduction to Morse Theory. Translations of Mathematical Monographs, vol. 208. American Mathematical Society, Providence (2002)

    Google Scholar 

  34. Milnor, J.: Morse Theory. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  35. Natarajan, V., Wang, Y., Bremer, P.-T., Pascucci, V., Hamann, B.: Segmenting molecular surfaces. Comput. Aided Geom. Des. 23(6), 495–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ni, X., Garland, M., Hart, J.C.: Fair Morse functions for extracting the topological structure of a surface mesh. In: International Conference on Computer Graphics and Interactive Techniques ACM SIGGRAPH, Los Angeles, pp. 613–622 (2004)

    Google Scholar 

  37. Pascucci, V.: Topology diagrams of scalar fields in scientific visualization. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 121–129. Wiley, Chichester/Hoboken (2004)

    Google Scholar 

  38. Robins, V., Wood, P.J., Sheppard, A.P.: Theory and algorithms for constructing discrete Morse complexes from grayscale digital images. IEEE Trans. Pattern Anal. Mach. Intell. 33(8), 1646–1658 (2011)

    Article  Google Scholar 

  39. Takahashi, S., Ikeda, T., Kunii, T.L., Ueda, M.: Algorithms for extracting correct critical points and constructing topological graphs from discrete geographic elevation data. Comput. Graph. Forum 14, 181–192 (1995)

    Article  Google Scholar 

  40. Vincent, L., Soille, P.: Watershed in digital spaces: an efficient algorithm based on immersion simulation. IEEE Trans. Pattern Anal. Mach. Intell. 13(6), 583–598 (1991)

    Article  Google Scholar 

  41. Weinkauf, T., Gingold, Y.I., Sorkine, O.: Topology-based smoothing of 2D scalar fields with 1-continuity. Comput. Graph. Forum 29(3), 1221–1230 (2010)

    Article  Google Scholar 

  42. Weiss, K., De Floriani, L., Mesmoudi, M.M.: Multiresolution analysis of 3D images based on discrete distortion. In: 20th International Conference on Pattern Recognition (ICPR), Istanbul, pp. 4093–4096 (2010)

    Google Scholar 

  43. Wolf, G.W.: Topographic surfaces and surface networks. In: Rana, S. (ed.) Topological Data Structures for Surfaces, pp. 15–29. Wiley, Chichester/Hoboken (2004)

    Google Scholar 

Download references

Acknowledgements

This work has been partially supported by the Italian Ministry of Education and Research under the PRIN 2009 program, and by the National Science Foundation under grant number IIS-1116747.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidija Čomić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Čomić, L., De Floriani, L., Iuricich, F. (2013). Modeling Three-Dimensional Morse and Morse-Smale Complexes. In: Breuß, M., Bruckstein, A., Maragos, P. (eds) Innovations for Shape Analysis. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34141-0_1

Download citation

Publish with us

Policies and ethics