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Abstract In this chapter we focus on formulating and implementing on abstract
domains such as arbitrary graphs popular methods and techniques developed for
image analysis, in particular multiscale morphology and active contours. To this
goal we extend existing work on graph morphology to multiscale dilation and ero-
sion and implement them recursively using level sets of functions defined on the
graph’s nodes. We propose approximations to the calculation of the gradient and the
divergence of vector functions defined on graphs and use these approximations to
apply the technique of geodesic active contours for object detection on graphs via
segmentation. Finally, using these novel ideas, we propose a method for multiscale
shape skeletonization on arbitrary graphs.

1 Introduction

Graph-theoretic approaches have become commonplace in computer vision. Exam-
ples include the graph-cut approaches to segmentation [8, 7, 24, 16] and the statis-
tical inference on discrete-space visual data with graphical models [42]. In most of
these cases, the image graphs are regular grids that result from uniform sampling of
continuous space. In addition, in nowadays science and technology there exist both
low-level and high-level visual data as well as many other types of data defined on
arbitrary graphs with irregular spacing among their vertices. Examples from the vi-
sion area include region-based or part-based object representations, cluster analysis
in pattern recognition, and graph-based deformable models for representing and rec-
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ognizing shapes such as faces and gestures [15]. Two such examples from the last
area are shown in Fig. 1. Examples from non-vision areas include network prob-
lems modeled with graphs, such as social nets, geographical information systems,
and communications networks.

(a) Hand on a graph. (b) Face on a graph.

Fig. 1 Representing image or more general visual information on graphs.

In this chapter we explore theoretically and algorithmically three topics related to
shape morphology on arbitrary graphs: multiscale morphology on graphs, geodesic
active contours on graphs, and multiscale skeletonization on graphs.

An important part in our work is how to define multiscale morphological opera-
tors on arbitrary graphs. We begin to approach this problem algebraically by extend-
ing the lattice definitions of morphological operators on arbitrary graphs which have
been introduced in [41, 20] with some recent work in [17]. Then we focus on our ma-
jor approach which is based on discretizing the PDEs generating continuous-scale
morphological operators [1, 11] and the PDEs moving geodesic active contours [13]
on arbitrary graphs. In this latter direction, a first approach to approximate morpho-
logical operators on graphs through mimicking the corresponding PDEs has been
studied in Ta et al. [39]. Our approach is slightly different in our translation of the
continuous gradient operator on arbitrary graph structures and in our usage of multi-
scale neighborhoods. (In the general field of approximating PDE-type problems on
weighted graphs, a systematic analysis has been performed in [14, 4] by introducing
discrete gradients and Laplacian and by studying Dirichlet and Neumann boundary
value problems on graphs.) In the rest of our work, we propose approximations
for computing the differential terms required in applying the technique of geodesic
active contours to object detection on graphs. Finally, the modeling of multiscale
morphology on graphs allows us to develop a method for multiscale skeletonization
of shapes on arbitrary graphs.
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2 Multiscale Morphology on Graphs

In this section we first review some basic concepts from lattice-based morphology.
Then, we focus our review on 1) multiscale morphological image operators on a
Euclidean domain, either defined algebraically or generated by nonlinear PDEs, and
2) on defining morphological operators on arbitrary graphs. Finally, we connect
these two areas and define multiscale morphological operators on graphs.

2.1 Background on Lattice and Multiscale Morphology

A general formalization [37, 19] of morphological operators views them as oper-
ators on complete lattices. A complete lattice is a set L equipped with a partial
ordering ≤ such that (L ,≤) has the algebraic structure of a partially ordered set
where the supremum and infimum of any of its subsets exist in L . For any sub-
set K ⊆ L , its supremum

∨
K and infimum

∧
K are defined as the lowest (with

respect to ≤) upper bound and greatest lower bound of K , respectively. The two
main examples of complete lattices used respectively in morphological shape and
image analysis are: (i) the power set P(E) = {X : X ⊆ E} of all binary images or
shapes represented by subsets X of some domain E where the

∨
/
∧

lattice opera-
tions are the set union/intersection, and (ii) the space of all graylevel image signals
f : E → T where T is a continuous or quantized sublattice of R = R∪ {−∞,∞}
and the

∨
/
∧

lattice operations are the supremum/infimum of sets of real numbers.
An operator ψ on L is called increasing if f ≤ g implies ψ( f )≤ ψ(g). Increasing
operators are of great importance; among them four fundamental examples are:

δ is dilation⇐⇒ δ (
∨

i∈I
fi) =

∨

i∈I
δ ( fi) (1)

ε is erosion⇐⇒ ε(
∧

i∈I
fi) =

∧

i∈I
ε( fi) (2)

α is opening⇐⇒ α is increasing, idempotent, and anti-extensive (3)
β is closing⇐⇒ β is increasing, idempotent, and extensive (4)

where I is an arbitrary index set, idempotence of an operator ψ means that ψ2 =
ψ , and anti-extensivity and extensivity of operators α and β means that α( f ) ≤
f ≤ β ( f ) for all f . Operator products mean composition: φψ( f ) = φ(ψ( f )). The
notation ψr means r-fold composition.
Dilations and erosions come in pairs (δ ,ε) called adjunctions if

δ ( f )≤ g⇐⇒ f ≤ ε(g) (5)

Such pairs are useful for constructing openings α = δε and closings β = εδ . The
above definitions allow broad classes of signal operators to be studied under the
unifying lattice framework.
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In Euclidean morphology, the domain E becomes the d-dimensional Euclidean
space Ed where E= R or E = Z. In this case, the most well-known morphological
operators are the translation-invariant Minkowski dilations ⊕, erosions *, openings
◦, and closings •, which are simple special cases of their lattice counterparts. If
X+b = {x+ b : x ∈ X} denotes the translation of a set/shape X ⊆ Ed by b ∈ Ed ,
the simple Minkowski set operators are X ⊕B =

⋃
b∈B X+b, X *B =

⋂
b∈B X−b, and

X◦B = (X *B)⊕B. The set B usually has a simple shape and small size, in which
case it is called a structuring element. By denoting with rB = {rb : b ∈ B} the r-
scaled homothetic of B, where r ≥ 0, we can define multiscale translation-invariant
morphological set operators on Rd :

δ rB(X) ! X ⊕ rB, ε rB(X) ! X * rB, α rB(X) ! X◦rB (6)

Similarly, if ( f⊕B)(x)=
∨

b∈B f (x−b), ( f*B)(x)=
∧

b∈B f (x+b), and ( f◦B)(x)=
( f *B)⊕B are the unit-scale Minkowski translation-invariant flat (i.e. unweighted)
function operators, their multiscale counterparts are

δ rB( f ) ! f ⊕ rB, ε rB( f ) ! f * rB, α rB( f ) ! f◦rB (7)

If B is convex, then [30]

rB = B⊕B⊕ · · ·⊕B︸ ︷︷ ︸
r times

, r = 0,1,2, ... (8)

This endows the above multiscale dilations and erosions with a semigroup property,
which allows them to be generated recursively:

δ (r+1)B = δ Bδ r
B, ε (r+1)B = εBε r

B, r = 0,1,2, ... (9)

and create the simplest case of a morphological scale-space [28, 11].
For digital shapes and images, the above translation-invariant morphological op-

erators can be extended to multiple scales by using two alternative approaches. The
first is an algebraic approach where if B ⊆ Zd is a unit-scale discrete structuring
graph, we define its scaled version rB for integer scales as in (8) and use (9) for pro-
ducing multiscale morphological operators that agree with their continuous versions
in (6) and (7) if B is convex. The second approach [1, 11] models the dilation and
erosion scale-space functions u(x, t) = f ⊕ tB and v(x, t) = f * tB as generated by
the nonlinear partial differential equations (PDEs)

∂tu = ‖∇u‖B, ∂t v =−‖∇v‖B (10)

where for a convex B ⊆ R2, ‖(x1,x2)‖B = sup(a1,a2)∈B a1x1 + a2x2. These PDEs
can be implemented using the numerical algorithms of [32], as explored in [35].
In case of a shape X , the above PDEs can still be used to generate its multiscale
morphological evolutions by treating u as the level function whose zero level set
contains the evolving shape. Such PDE-based shape evolutions have been studied in
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detail by Kimia et al. [23]. Modern numerical algorithms for morphological PDEs
can be found in [9, 10].

2.2 Background on Graph Morphology

We consider an undirected graph G = (V,E) without loops and multiple edges,
where V = V (G) and E = E(G) are the sets of its vertices (also called nodes) and
edges, respectively. We denote edges by pairs (v,w) of vertices; these are symmet-
ric, i.e. (v,w) = (w,v), since the graph is undirected. If V ′ ⊆ V and E ′ ⊆ E, the
pair G′ = (V ′,E ′) is called a subgraph of G. A graph vertex mapping θ : V →V ′ is
called a graph homomorphism from G to G′ if θ is one-to-one and preserves edges,
i.e. (v,w) ∈ E implies (θ(v),θ(w)) ∈ E ′. If θ is a bijection, then it is called a graph
isomorphism; if in addition G′ = G, then it is called a graph automorphism or sym-
metry of G. The set of all such symmetries forms under composition the symmetry
group Sym(G) of a graph. Symmetries play the role of ‘generalized translations’ on
a graph.

Shapes X ⊆ V and image functions f : V →T defined on a graph G with values
in a complete lattice T will be denoted by (X |G) and ( f |G), respectively, and may
be referred to as binary graphs and multilevel graphs. In case of multilevel graphs,
the values of the functions ( f |G) may be discrete, e.g. T = {0,1, ...,m− 1}, or
continuous, e.g. T = R. Similarly a graph operator for shapes or functions will be
denoted by ψ(·|G). The argument G will be omitted if there is no risk of confusion.
A graph operator ψ is called increasing if it is increasing in its first argument (shape
or function), i.e. X ⊆ Y implies ψ(X |G)⊆ ψ(Y |G), and G-increasing if it increases
in G, i.e., G′ ⊆ G implies ψ( f |G′)≤ψ( f |G) for all graph functions ( f |G). A graph
operator ψ is called invariant under graph symmetries τ ∈ Sym(G) if τψ = ψτ .

Henceforth and until mentioned otherwise, we shall focus our discussion on bi-
nary graph operators. Given a graph G = (V,E), the binary graph dilations and ero-
sions on P(V ) can be defined via a graph neighborhood function N : V →P(V )
which assigns at each vertex v a neighborhood N(v). Taking the union of all such
neighborhoods for the vertices of a shape X ⊆ V creates a graph dilation of X ; then,
by using (5) we also find its adjunct erosion:

δ N(X |G) !
⋃

v∈X
N(v), εN(X |G) ! {v ∈V : N(v)⊆ X} (11)

At each vertex v, the shape of N(v) may vary according to the local graph structure
and this inherently makes the above morphological graph operators adaptive. At
each v, the reflected neighborhood is defined by

Ň(v) ! {w ∈V : v ∈ N(w)} (12)

This is related to operator duality as follows. The dual (or negative) of a binary
graph operator is defined by ψ∗(X |G) = (ψ(X∗|G))∗, where X∗ =V \X . Then, the
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dual graph dilation and erosion w.r.t. a neighborhood function coincide with the
erosion and dilation, respectively, w.r.t. the reflected neighborhood function:

δ ∗N = ε Ň , ε∗N = δ Ň (13)

If N(v) = Ň(v) for each v, we have a symmetric neighborhood function. Such an
example is Vincent’s unit-scale graph neighborhood function [41]

N1(v) ! {w ∈V : (v,w) ∈ E}∪{v} (14)

which, when centered at a vertex v, includes this vertex and all others that form an
edge with it. If we use it in (11), this leads to the simplest unit-scale graph dilation
δ 1(X |G) and erosion ε1(X |G). Since (δ 1,ε1) is an adjunction, the composition
α1 = δ 1ε1 and β 1 = ε1δ 1 is a graph opening and closing, respectively. See Fig. 2
for an example. All four of these operators inherit the standard increasing property
from their lattice definition and are invariant under graph symmetries. However, δ 1
is G-increasing, ε1 is G-decreasing, and α1 and β 1 are neither of these.

(a) The vertex set on
which we apply morpho-
logical operators

(b) Dilation (c) Erosion

(d) Closing (e) Opening

Fig. 2 Binary graph operators using a unit-scale symmetric neighborhood function.

Heijmans et al. [20, 21] have generalized the above (symmetric neighborhood
N1) approach by introducing the concept of a structuring graph (s-graph). This
is a graph A = (VA ,EA ) of a relatively small size and has as additional structure
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two nonempty and possibly overlapping subsets: the buds BA ⊆ VA and the roots
RA ⊆ VA . It may not be connected and plays the role of a locally adaptive graph
template, where (compared to Euclidean morphology) the buds correspond to the
points of a structuring graph and the roots correspond to its origin. See Fig. 3 for
examples. An s-graph A corresponds to the following neighborhood function

NA (v|G) =
⋃
{θ(BA ) : θ embeds A into G at v} (15)

where we say that θ embeds A into G at v if θ is a group homomorphism of A
into G and v ∈ θ(RA ). Such an embedding matches the s-graph A with the local
structure of the graph G. The simple neighborhood N1 of (14) corresponds to the
s-graph of Fig. 3(a), with two vertices which both are buds and one of them is
a root. Replacing (15) in (11) creates an adjunction of graph dilation and erosion
(δ A ,εA ) by structuring graphs. These are symmetry-invariant operators, i.e. they
commute with group symmetries τ , because the neighborhood function of their s-
graph is invariant under group symmetries: i.e., NA (τ(v)|G) = τNA (v|G), where
τX = {τ(v) : v ∈ X}.

(a) The s-graph that cor-
responds to the simple
neighborhood. Specifi-
cally, using this s-graph
as a strucuring element,
the neighborhood of a
node is the set of nodes
that are adjacent to it.

(b) A structuring graph and its reflection. The re-
flected s-graph has the same vertices and edges as
the original s-graph but their bud and root sets are
interchanged.

Fig. 3 Examples of structuring graphs. Arrows indicate roots. Large circular nodes denote buds.

Finally, the reflection of the neighborhood of an s-graph equals the neighborhood
of another s-graph ˇA , called the reflection of A :

ŇA (v|G) = N ˇA (v|G) (16)

The reflected s-graph ˇA has the same vertices and edges as the original s-graph A
but their bud and root sets are interchanged: B ˇA = RA and R ˇA = BA (see Fig. 3).
The dual operator of a dilation by an s-graph is the erosion by its reflected s-graph,
and vice-versa, as prescribed by (13).

All the previously defined binary graph operators are increasing and can be ex-
tended to multilevel graphs. Specifically, a multilevel graph ( f |G) can also be rep-
resented by its level sets Xh( f |G) = {v ∈V : f (v)≥ h}, h ∈T :
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( f |G)(v) = sup{h ∈T : v ∈ Xh( f |G)} (17)

By applying an increasing binary graph operator ψ to all level sets and using thresh-
old superposition, we can extend ψ to a flat operator on multilevel graphs:

ψ( f |G)(v) = sup{h ∈T : v ∈ ψ(Xh( f )|G)} (18)

For example, if ψ(X |G) is a set dilation by the s-graph A , the corresponding func-
tion operator is

δ A ( f |G)(v) = max
w∈NA (v|G)

f (w) (19)

Two useful choices for the function values are either discrete with T = {0,1, ...,m−
1}, or continuous with T = R.

2.3 Multiscale Morphology on Graphs

We need to discuss the notion of scale in graph morphology in order to obtain the
graph counterparts of multiscale dilation and erosion defined in Section 2.1. Con-
sider a graph G = (V,E) and a nonempty subset X ⊆ V of its vertices. Let A be an
s-graph. One approach could be to define the dilation at scale r = 1,2, ... of a vertex
subset X w.r.t. the s-graph A by δ rA (X |G) where rA denotes the r-fold graph dila-
tion of the s-graph with itself. This approach would encounter the problem presented
in Fig. 4. Specifically the scaled versions of the s-graph have complicated structure
and in general, it would be highly unlikely to find an appropriate embedding in the
graph at every node of X to calculate the dilation of the set.

Fig. 4 Left: a structuring
graph. Right: The scaled by
r = 2 version of the s-graph.
A scaling of a simple s-graph
has increasingly complicated
structure and therefore, for
larger scales it is difficult
or impossible to find an
embedding to an arbitrary
graph at each node. This fact
necessitates an alternative
definition of scale on graphs.

Thus, we propose the following alternative new definition of the scaled versions
of graph dilation and erosion in order to overcome the issues mentioned. We define
recursively the graph dilation of X at integer scale r = 1,2, ... with respect to the
s-graph A by
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δ r
A (X | G) = δ A (δ r−1

A (X | G) | G) (20)

Essentially, we interchange the order with which we apply the dilation operators; in
the classic framework in order to get the r-scale dilation we first find the r-scaling
of the structuring graph and then perform the dilation with the set, whereas in our
definition we dilate the set X with the structuring graph r times. Generalizing this
notion of scale to multilevel dilation of a function f : V → T we get the following
definition. The dilation of f at integer scales r will be given at each v ∈V by

φr(v) ! δ A (φr−1( f | G) | G)(v), φ1(v) = δ A ( f | G)(v) (21)

This provides a recursive computation of the multiscale dilations of a function
f : V → T and leads us to the following Proposition which offers an alternative
recursive computation that involves a simple morphological gradient on a graph.

Proposition 1. Given a graph G = (V,E), the evolution of the multiscale dilation
of a function f : V → T by an s-graph A is described by the following difference
equation at each vertex v ∈V :

φr+1(v)−φr(v) = max
w∈NA (v|G)

{φr(w)−φr(v)}. (22)

Proof. By combining (21) with (19) we get

φr+1(v) = δA (φr( f | G))(v) = max
w∈NA (v|G)

{φr(w)−φr(v)}+φr(v)

01

3 Geodesic Active Contours on Graphs

Kass et al. in [22] introduced the concept of energy minimizing snakes” driven by
forces that pull it towards special features in the image like edges or lines. Specifi-
cally, the goal is to find in an image areas that are naturally distinguished from their
background. The classical approach consists of a gradual deformation of an original
curve towards the edges of those objects through the minimization, between succes-
sive time steps, of energy functionals which depend on the shape of the curve itself,
its distance from the salient image features and finally terms that stabilize the snakes
near local minima.

The main disadvantage of this initial approach is that the curve dynamics in-
curred do not allow changing the topology of the original contour; for example if
the original curve contains two distinct objects the original snake will not be sepa-
rated in two independent snakes. Heuristic solutions have been proposed in [31] but
a topology-free approach has been given independently by Caselles et al. [12] and
Malladi et al. [27]. These models are based on the theory of the curve evolution and
geometric flows and the curve is propagating by means of a velocity that contains
two terms, one related to the regularity of the curve and the other shrinks or expands
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towards the boundary. Finally, the curve dynamics take the form of a geometric flow
(PDE) and can be implemented conveniently using the level set methods proposed
by Osher and Sethian [32] that can accommodate changes in the topology between
successive curves.

In particular let C(q) : [0,1] → R2 be parameterized planar curve and let I :
[0,1]2→R+ be the image in which one needs to detect the objects’ boundaries. Note
that we denote the curve by C(·) when we interpret it as a vector-valued function
and by C when we interpret it as a set of points. The energy functional associated
with C can be written as follows:

E(C) = α
∫ 1

0
‖C′(q)‖2 dq−λ

∫ 1

0
g(‖∇I(C(q))‖)dq a,λ ≥ 0 (23)

Let g : [0,+∞)→ R+ be a strictly decreasing function such that g(r)→ 0 as
r→ ∞. Caselles et al. in [13] show that the problem of finding the minimum energy
curve as defined in (23) is equivalent to finding the minimum length curve in a
Riemannian space induced from image I, whose length is given by

LR =
∫ 1

0
g(‖∇I(C(q))‖)‖C′(q)‖dq =

∫ L(C)

0
g(‖∇I(C(q))‖)ds, (24)

where L(C) is the Euclidean length of the curve C. Furthermore, it is shown that a
curve which is governed from the dynamics

∂C(t)
∂ t

= g(I) ·κ ·N− (∇g ·N) ·N (25)

where κ is the Euclidean curvature and N is the unit inward normal, moves in the
direction of the gradient of the length LR.

Assume now that the curve C(t) is a level set of a function u : R2×R+ → R.
Namely, C(t) is the set of points x for which u(x, t) is equal to a constant (for exam-
ple u = 0). It is shown that if the function u(x, t) satisfies

∂u
∂ t

= g(I)‖∇u‖(c+κ)+∇g(I) ·∇u, (26)

then the corresponding level set satisfies (25).
Our goal is to approximate all terms in the right hand side of (26) on graphs and

finally construct a difference equation which would approximate the active contour
dynamics for edge detection. The next subsection is devoted to the analysis of the
simplest case of curve evolution on graphs, that is the constant velocity motion
introducing useful ideas from graph morphology operators. Observe that this case
corresponds to approximating the first term of the RHS of (26). Subsequently, we
will approximate the rest of the terms participating in the curve dynamics to end up
with a geodesic active contour model on graphs.
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3.1 Constant-Velocity Active Contours on Graphs

We derive the difference equation that describes the evolution of the contour of a
set that expands with constant velocity on a graph. In the continuous case, a contour
undergoing such an evolution corresponds to the boundary of the multiscale dilation
of the set by a unit disk. If this set is given as a level set of a graylevel function
u : R2×R+→ R, then the evolution of u is described by

∂u
∂ t

= ‖∇u‖. (27)

Consider a subset X of V . Let A be a structuring graph. Imitating the continuous
case, the constant velocity expansion of X corresponds to its r-scale dilation, de-
noted by Xr. If X is given as the level set of an original graylevel function u0 : X→R
and Xr is the level set of the r-scale graylevel function ur : X → R, then the differ-
ence equation that governs ur, by using Proposition 1, is

ur+1(v)−ur(v) = max
w∈NA (v|G)

{ur(w)−ur(v)}. (28)

The above expression is a discrete equivalent of the gradient magnitude on
graphs. Similar expressions are being used in the literature, [39, 14, 4]. Our work
extends previous results to more general structuring elements and exploits the re-
vealed insight to approximate other geometric properties of differential operators
on graphs in the next sections. In order to account for topological inhomogeneities
of the graph one could calculate the gradient as the maximum rate of increase and
its direction as the direction of the edge along which the rate of increase is larger.
Therefore, (29) is the graph counterpart of (27), which implies the approximation of
‖∇u‖ at node v by maxw∈NA (v|G){u(w)−u(v)}.

Summarizing, let X be a set of nodes whose contour expands with constant ve-
locity c. Then, to implement its evolution on a graph we proceed as follows:

1. Let u0 be the signed distance function from X , defined by

u0(v) =

{
minw∈G\X dE(w,v) if v ∈ X ,

−minw∈X dE(w,v) if v /∈ X ,

where X is the zero level set of u0, and dE(w,v) corresponds to the Eu-
clidean distance between the nodes w and v.

2. Evolve ur according to the following, at scales r = 1,2, ...

ur+1(v)−ur(v) = c · max
w∈NA (v|G)

{ur(w)−ur(v)}. (29)

3. The set Xr = {v ∈ X : ur(v)≥ 0} corresponds to the r-scale dilation of X .
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Figure 5 illustrates the results for the constant velocity expansion of a circular
contour. Throughout this chapter for all our simulations we are using the simple
structuring graph of Fig. 3(a) that generates the simple neighborhood. Moreover we
embed our shapes on a geometric random graph on the unit square. The geomet-
ric random graph is characterized by two parameters; the number of nodes N and
a radius ρ . N nodes are being placed uniformly at random on the unit square in-
dependently from one another. If the Euclidean distance between those two nodes
is less than ρ then there is an edge between them. Typical values for N is 6000 to
10000 while ρ ranges from 0.015 to 0.04. Given the number of nodes, the parameter
ρ affects the expected degree of a node and is proportional to the square root of its
value.

Fig. 5 Constant velocity evolution of a circular contour on a geometric random graph on the unit
square. The structuring graph is an edge.
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3.2 Direction of the Gradient on Graphs

Observing equation (26), in order to obtain a model for active contours on graphs,
we need to define, except from the magnitude of the gradient vector which we have
already done in the previous section, its direction and also a characterization for the
curvature of the corresponding curve.

Beginning from the first, trusting our intuition from real analysis, it would make
sense to choose as the direction of the gradient on graphs the direction of the edge
that corresponds to the maximum difference of the values of the function u. In other
words, let a function u be defined on the set of nodes v ∈V of the graph G = (V,E).
Then

∇u
‖∇u‖ (v) = evŵ, ŵ = argmaxw∈NA (v|G){u(w)−u(v)}. (30)

where evw is the unit vector in the direction of the edge (v,w). Although this ap-
proximation looks intuitive it does not work well in practice. In fact, consider the
setting depicted in Fig. 6. Such a scenario is fairly usual in a graph structure due to
its discrete nature. In other words choosing an edge out of finitely many can create
asymmetries which vastly influence the result. Specifically, by using the edge indi-
cated in the figure for our calculations neglects the values of the function for the
rest of the nodes in one’s neighborhood. Note that in the continuous case such an
issue does not occur under the continuity and differentiability assumptions that are
usually made.

Fig. 6 Illustration of the dis-
advantages of choosing the
maximum increase direction
as the gradient direction. Ob-
serve that all directions yield
approximately the same in-
crease but only one edge is
chosen. This happens exactly
because of the discrete na-
ture of the graph’s structure.
Alternatively, we propose a
weighted average of edge di-
rections where the weights are
the function differences along
each edge.

Taking the above into account we propose to approximate the gradient direction
on graphs through a weighted average of the direction of all edges in a node’s neigh-
borhood, where weights will be the normalized corresponding differences, that is
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∇u
‖∇u‖ (v) !

∑w∈NA (v|G)(u(w)−u(v))evw

‖∑w∈NA (v|G)(u(w)−u(v))evw‖
(31)

Finally, depending on the application, especially in those instances where there
is evident nonuniformity in the values of the function u within the neighborhood of
a vertex v one may need to control the influence of the edges with large increases.
In those cases we may need to use the following expression as the direction of the
gradient:

∇u
‖∇u‖ (v) !

∑
w∈NA (v|G)

sign(u(w)−u(v)) evw(
maxs∈NA (v|G){‖u(s)−u(v)‖}−‖u(w)−u(v)‖

)p
+ε

∥∥∥∥∥ ∑
w∈NA (v|G)

sign(u(w)−u(v)) evw(
maxs∈NA (v|G){‖u(s)−u(v)‖}−‖u(w)−u(v)‖

)p
+ε

∥∥∥∥∥
(32)

Essentially, under (32) the edges along which the change in the value of the
function is closer to the maximum contribute more to the gradient direction. By
changing the parameter p we can adjust how strongly such edges affect the final
outcome. Finally, ε is a small constant that guarantees that the denominators in (32)
are well defined. In the special case where ε = 0 only the direction of maximum
increase survives. For our simulations we have used the empirical values p = 0.7
and ε = 0.05.

Having determined a meaning for the gradient of a function on a graph the only
term remaining to be given a meaning on our more abstract graph structure is the
curvature of the contour of each level set of the function u.

3.3 Curvature Calculation on Graphs

In the continuous case the curvature of a curve given as the contour of a level set of
a function u can be computed using

κ = div
(

∇u
‖∇u‖

)
. (33)

On the other hand we have derived expressions for the term ∇u
‖∇u‖ on a graph.

Therefore, the remaining step is to propose an expression for the computation of the
divergence of a function on a graph. Consider a vector function F : R2 → R2. The
divergence of F at a point x is defined as

divF(x) = lim
S→{x}

∮
Γ (S) F ·nd!

|S| , (34)
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where S is a two dimensional region, Γ (S) its boundary, n the outward unit normal
to that boundary, and |S| its enclosed area.

To study the graph case consider Fig. 7. We can conclude that a good approxi-
mation for computing the divergence of F on a graph is the following

divF(v) =
∑w∈NA (v|G) LwF(w) · evw

S(v)
(35)

where

• Lw corresponds to the length of the perpendicular to edge evw,
• S(v) corresponds to the area between the perpendicular to the edges lines,

as illustrated in Figure 7.

Fig. 7 Computing diver-
gence on a graph: Let the
green vectors denote the val-
ues of function F, the red
vectors be the unit vectors
corresponding to each edge
and let the gray lines be
perpendicular to the corre-
sponding edge.

At this point we can perform all the necessary calculations to compute the curva-
ture of the contour of the level set of a graylevel function u on a graph. To illustrate
the behavior of the expression proposed consider a circular shaped contour as in
Fig. 8. We would expect the curvature for all points on the circle to be a positive
number, if we were working in the continuous setting. On a graph, the curvature
cannot be expected to be constant but the average value should be positive and the
curvature at each point should oscillate around the average. This behavior is cap-
tured in Fig. 8.

3.4 Convolution on Graphs

The external image-dependent force is given by the edge-stopping function g(I).
The main goal of g(I) is actually to stop the evolving curve when it arrives to the
objects boundaries. Among the many choices proposed in the literature, we use the
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(a) Circle on geometric graph. (b) The curvature on the circle.

Fig. 8 The curvature on a circle calculated with the method proposed in Section 3.3. We omit the
edges for illustration purposes.

following taken from [12, 27]:

g(‖∇Iσ‖) =
1

1+ ‖∇Iσ ‖2
λ 2

(36)

where,

Iσ = I ∗Gσ , Gσ (x,y) =
1

2πσ 2 exp
(
−x2 + y2

2σ2

)
. (37)

In order to compute the smoothed version Iσ of I we need to define the convolu-
tion operation on graphs. Let G = (V,E) denote the underlying graph. Let dE(v,w)
denote the Euclidean distance between vertices v and w. For each v,w∈V define the
function Gw

σ (v) as follows:

Gw
σ (v) =

1√
2πσ 2

exp
(
−dE(v,w)2

2σ2

)
. (38)

The smoothed version Iσ can be computed by mimicking the continuous convolution
operation as follows:

Iσ (v) = ∑
w∈V

I(v)Gw
σ (v). (39)

3.5 Active Contours on Graphs - The Algorithm

Here we combine all the previous approximations to the PDE for geodesic active
contours and summarize the algorithm for automatic graph segmentation.

Consider a graph G = (V,E) and let a function I : V → R assign a real value to
each of the graph nodes.
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Algorithm-Active Contour on Graphs

1. Compute the smoothed version Iσ of I as described in Section 3.4.
2. Compute the magnitude of ∇Iσ as described in Section 3.1 and then com-

pute the function g(‖∇Iσ‖).
3. Initiate the algorithm with a set of nodes that contains the objects to be

found and let φo denote the signed distance function from the contour of
the determined set.

4. For each r ∈ N compute ∇φr−1, ‖∇φr−1‖ and the curvature κ at each node
v as described in Sections 3.1 and 3.3. Iterate according to the following
difference equation:

φr+1−φr = g(‖∇Iσ‖)‖∇φr−1‖(c+κ)+g(‖∇Iσ‖) ·∇φr−1, c≥ 0 (40)

Figure 9 illustrates the algorithm for the case of finding the boundaries of three
disjoint objects (connected clusters of graph nodes).

4 Multiscale Skeletonization on Graphs

Since Blum’s introduction of the skeleton or medial axis transform [5], it has re-
ceived voluminous attention and has become one of the main tools for shape analy-
sis and representation. The main process to find the skeleton is a distance wavefront
propagation. In Euclidean spaces (Rd , d = 2,3) this can be modeled either using a
continuous distance formulation [5] or via continuous-space morphology [26, 36]
or via PDEs that simulate these evolution operations [38, 3, 18, 40]. In the dis-
crete 2D or 3D space Zd , the above approaches are replaced by discrete distance
transforms and discrete morphology; for surveys and references see [34, 36]. The
Chamfer distance transform is not always equivalent to the discrete morphology ap-
proach, unless the Chamfer ball is used as structuring element. Recent extensions
of discrete distance transforms in 3D for skeletonization can be found in [2, 6]. One
main disadvantage of the skeleton is its sensitivity on perturbations of the bound-
ary. This can be partially addressed by using multiscale skeletons [29, 33], which
provide a flexible framework of keeping only the skeleton parts that correspond to a
smoothing of the original shape.

In this chapter we focus on the discrete skeleton transform obtained via multi-
scale morphology. For a discrete shape X ⊆ Z2 on regular grid, the morphological
algorithm [29] computes the skeleton S(X) of X , w.r.t. a disk-like unit-scale sym-
metric shape B,

S(X) =
N⋃

n=0
Sn(X), (41)

as a union of disjoint skeleton subsets Sn(X), where
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Fig. 9 Illustration of the active contour algorithms on graphs for finding three distinct objects on a
graph. Note the change in the contour’s topology. Time evolves from top left to bottom right.

Sn(X) = (X⊕nB)\ [(X*nB)◦B], (42)

indexed by the discrete scale n = 0,1, ...,N, with N = max{n : X *nB 4= /0}, where
nB denotes the n-fold dilation of B with itself. Reconstruction of the original shape
or its opening-smoothed versions requires the morphological skeleton transform
(S0,S1, ...,SN), or equivalently the skeleton S(X) and the quench function (the re-
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striction of the distance transform onto the skeleton set):

X◦kB =
N⋃

n≥k
Sn(X)⊕nB, k = 0,1,2, ... (43)

Some generalizations of the above algorithm can be found in [25].
To extend multiscale skeletonization to shapes defined on arbitrary graphs G =

(V,E), we first provide a lattice formulation of the above discrete skeletonization
algorithm adjusted for graph shapes. Let the shape be represented by a subset X of
vertices of the graph and let A be a structuring graph. Then the skeleton of X can
be obtained as follows:

S(X |G) !
N⋃

n=0
Sn(X |G) (44)

where
Sn(X |G) ! εn

A (X |G)\δ A εn+1
A (X |G) (45)

Taking the union of all or some of the skeleton subsets after dilating them in propor-
tion to their scale yields respectively an exact or partial reconstruction of the graph
shape:

α kA (X |G) = δ k
A ε k

A (X |G) =
N⋃

n=k
δ n

A [Sn(X |G)] (46)

Namely, by not using the first k subsets, the above algorithm reconstructs the k-scale
opening of the original graph shape.

Next we explore the application of the difference equation based techniques that
we developed in order to calculate the skeleton of a shape defined on graphs. Specif-
ically, we propose a calculation of the multiscale graph dilations and erosions in-
volved using the active contour and level set approximations that we introduced in
Section 3. The main idea can be summarized in the following:

Algorithm - Skeleton Calculation

Initialization:
u(·) = dsgn(· | X) (X is the shape whose skeleton we are computing)
S→ /0
execution:
while maxv∈G u(v)> 0 do

u′(v) = minw∈NA (v) u(w) (erosion-εn
A (X))

r(v) = minw∈NA (v) u′(w) (erosion- εn+1
A (X))

o(v) = maxw∈NA (v) r(w) (dilation- δ A εn+1
A (X))

S← S∪{v : u′(v)≥ 0}\{v : o(v)≥ 0} (set difference)
u(v) = u′(v)

end while
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The results of our graph skeleton algorithm, simulated on a handshape object
represented by a geometric random graph, are presented in Fig. 10.

(a) Original handshape image. (b) The signed distance function on the graph
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(c) The calculated skeleton.

Fig. 10 The skeleton of a handshape image calculated using our algorithm. The green squares
correspond to the embedding of the handshape image on the geometric random graph. The red
dots correspond to the skeleton transform. The yellow circles are irrelevant nodes of the underlying
graph.
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5 Conclusions

In this chapter we have proposed an approximation to level set implementation of
morphological operators, skeleton transforms and geodesic active contours on arbi-
trary graphs. Our motivation comes from the importance and the success of such
concepts and techniques in image analysis as well as the existence of a strong theo-
retical background on graph morphology.

In our simulations we have mainly assumed geometric random graphs and simple
structuring graphs. The choice of the simple s-graph is reasonable for any underlying
graph structure with no prior information on the graph’s characteristics. It is of great
interest to other applications to correlate information on the underlying graph with
the choice of the structuring graph.

Moreover, we are proposing approximations to concepts from calculus and there
is space for better heuristics and modifications to this end. Keeping in mind the
original energy minimization approach for geodesic active contours instead of the
analytic solution, by properly defining and calculating an energy that corresponds to
each contour and applying a step by step minimization procedure we obtain another
approach to geodesic active contours. On the other hand, since the latter involves
a minimization problem at each time step it is computationally less efficient but it
may yield more accurate results.

Finally, regarding the application of the above ideas that we have introduced
to multiscale shape skeletonization on arbitrary graphs, one research direction of
interest is how to analyze or guarantee the connectedness of the resulting skeleton.
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