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Orientation and Anisotropy of Multi-component

Shapes

Joviša Žunić and Paul L. Rosin

Abstract There are many situations in which several single objects are better consid-

ered as components of a multi-component shape (e.g. a shoal of fish), but there are

also situations in which a single object is better segmented into natural components

and considered as a multi-component shape (e.g. decomposition of cellular mate-

rials onto the corresponding cells). Interestingly, not much research has been done

on multi-component shapes. Very recently, the orientation and anisotropy problems

were considered and some solutions have been offered. Both problems have straight-

forward applications in different areas of research which are based on a use of image

based technologies, from medicine to astrophysics.

The object orientation problem is a recurrent problem in image processing and com-

puter vision. It is usually an initial step or a part of data pre-processing, implying

that an unsuitable solution could lead to a large cumulative error at the end of the

vision system’s pipeline. An enormous amount of work has been done to develop

different methods for a spectrum of applications. We review the new idea for the

orientation of multi-component shapes, and also its relation to some of the methods

for determining the orientation of single-component shapes. We also show how the

anisotropy measure of multi-component shapes, as a quantity which indicates how

consistently the shape components are oriented, can be obtained as a by-product of

the approach used.
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1 Introduction

Shape is one of the object characteristics which enables many numerical charac-

terizations suitable for computer supported manipulations. Because of that, differ-

ent shape concepts are intensively used in object recognition, object identification

or object classification tasks. Many approaches to analyse and characterise shapes

have been developed. Some of them are very generic, like moment invariants or

Fourier descriptors, while others relate to specific object characteristics, e.g. descrip-

tors like convexity, compactness, etc. Another distinction among these approaches

is based on which points of shapes are used for analysis. Some approaches use all

shape points (area-based ones), other use boundary information only (boundary-

based ones), but there are methods which use only specific shape points (convex

hull vertices or boundary corners) or hybrid methods (shape compactness is often

computed from the relation between shape perimeter and shape area).

Fig. 1 First row: a group of static objects (flowers), a group of moving objects (birds), a group of

different objects (blood cell) make multi-component objects. Second row: the tissue and texture

displayed are sometimes better to be decomposed and analysed as multi-component objects. Third

row: the appearance of a moving object, in a frame sequence, can be considered and analysed as

a multi-component object. Fourth row: different arrangements of simple object make two multi-

component objects with perceptually different orientations [14].
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In the most research and applications to date, shapes are treated as single ob-

jects, even if very often several objects form a group (vehicles on the road, group of

people, etc.), and thus, it could be beneficial to consider them as multi-component

shapes.

It is not difficult to imagine situations in which it is better to decompose a sin-

gle shape into its naturally defined components and then, by treating it as a multi-

component shape, take some advantage over those methods that treat it as a single

shape. There are many more situations where a multi-component shape approach

may be appropriate – e.g., when analysing video sequences, multiple instances of

objects over time can be grouped together and analysed as a multi-component shape.

Several situations where it can be useful to treat objects as multi-component ones

are displayed in Fig. 1.

Here we consider the multi-component shape orientation problem. We overview

recently introduced methods (area-based and boundary-based) for the computation

of orientation of multi-component shapes and its relation to the most standard shape

orientation method (based on the computation of the axis of the least second moment

of inertia). As a by-product of the new method for the computation of orientation

of compound shapes, an anisotropy measure of such shapes can be derived. This

is a first shape measure defined for multi-component shapes and it indicates the

consistency of a set of shape component orientations.

All discussions are illustrated with suitably selected experiments. Strict proofs

are omitted and for them the readers are referred to the source references.

2 Shape Orientation

Computation of shape orientation is a common problem which appears in a large

number of applications in both 2D and 3D, and also in higher-dimensional spaces.

Due to the variety of shapes as well as to the diversity of applications, there is

no single method for the computation of shape orientation which outperforms the

others in all situations. Therefore, many methods have been developed, and differ-

ent techniques have been used, including those based on complex moments [20],

Zernike moments [7], Fourier analysis [1], algebraic arguments [10], etc. The suit-

ability of those methods strongly depends on the particular situation to which they

are applied, as they each have their relative strengths and weaknesses. Due to new

applications and increasing demands for better computational efficiency, in addi-

tion to the previously established methods, there are also many recent examples

[3, 5, 11, 12, 16, 24, 29].

Several methods are defined by using a common approach: Consider a suitably

chosen function F(S,α) which depends on a given shape S and rotation angle α , and

define the orientation of S by the angle which optimizes F(S,α), i.e. by the angle

α for which F(S,α) reaches its minimum or maximum. The most standard method

for the computation of the shape orientation is such a method. More precisely, this

method defines the orientation Ost(S) of a given shape S by the, so called, axis of
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the least second moment of inertia, i.e. by the line which minimises the integral of

the squared distances of the shape points to the line (see Fig. 2). Simple algebraic

manipulation shows that such a line passes through the shape centroid. Note that the

centroid of a given shape S is defined as

(xS,yS) =

(∫∫

S xdxdy
∫∫

S dxdy

∫∫

S ydxdy
∫∫

S dxdy

)

. (1)

So, in order to compute the orientation of a given shape S it is sufficient to find the

minimum of the function

Fst(S,α) =
∫∫

S
r(x,y,α)2dxdy (2)

where r(x,y,α)2 is the perpendicular distance of the point (x,y) to the line which

passes thought the centroid (xS,yS) of S and has a slope α. If we assume that the

Fig. 2 The standard method

defines the orientation of a

given shape by the line which

minimizes the integral of

squared distances of the shape

points to the line.

. .

.
.

.
.

centroid of S coincides with the origin, i.e., (xS,yS) = (0,0), r(x,y,α)2 becomes

(x · sinα − y · cosα)2, and the optimizing function Fst(S,α) in (2) can be expressed

as

Fst(S,α) =
∫∫

S
r(x,y,α)2dxdy

= µ2,0(S) · sin2 α +µ0,2(S) · cos2 α −µ1,1(S) · sin(2α), (3)

where µp,q(S) are the well-known centralised geometric moments [21] defined, for

all p,q ∈ {0,1,2, . . .}, as

µp,q(S) =
∫ ∫

S
(x− xS)

p(y− yS)
qdxdy. (4)

Now, we come to the following definition of the orientation of a given shape.

Definition 1. The orientation of a given shape S is determined by the angle α where

the function Fst(S,α) reaches its minimum.
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This standard method defines the shape orientation in a natural way – by the line

which minimizes the integral of the squared distances of shape points to this line.

Such a definition matches our perception of what the shape orientation should be.

Also, there is a simple formula for the computation of such orientation. It is easy to

check [21] that the angle which minimizes Fst(S,α) satisfies the equation

tan(2 ·O(S)) =
2 ·µ1,1(S)

µ2,0(S)−µ0,2(S)
. (5)

These are desirable properties, but there are some drawbacks too. The main prob-

lem is that there are many situations where the method fails [23, 26] or does not

perform satisfactorily. The situations were the method fails are easy to characterise.

Indeed, considering the the first derivative of Fst(S,α) (see (3))

dFst(S,α)

dα
= (µ2,0(S)−µ0,2(S)) · sin(2α)−2µ1,1(S) · cos(2α), (6)

and looking for the conditions when dFst(S,α)/dα vanishes, it is easy to see that

for all shapes S satisfying

µ2,0(S)−µ0,2(S) = 0 and µ1,1(S) = 0 (7)

the function Fst(S,α) is constant and consequently does not tell which angle should

be selected as the shape’s orientation. N-fold rotationally symmetric shapes are

shapes which satisfy (7) but there are many other (irregular) shapes which satisfy (7)

and consequently could not be oriented by the standard method given by Definition

1.

In order to overcome such problems, [23] suggested a modification of the opti-

mizing function Fst(S,α) by increasing the exponent in (2). The method from [23]

defines the orientation of a given shape S whose centroid coincides with the origin,

by the angle which minimizes

FN(S,α) =
∫∫

S
r(x,y,α)2Ndxdy (8)

for a certain exponent 2N. In such a way, the class of shapes whose orientation

can be computed is expanded. On the other hand, there is not a closed formula

(analogous to (5)) for the computation of the shape orientation by using FN(S,α),
for an arbitrary N.

Notice that difficulties in the computation of the shape orientation can be caused

by the nature of certain shapes. While for many shapes their orientations are intu-

itively clear and can be computed relatively easily, the orientation of some other

shapes may be ambiguous or ill defined. Problems related to the estimation of the

degree to which a shape has a distinct orientation are considered in [28].
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3 Orientation of Multi-component Shapes

As discussed before, there are many methods for the computation of the orientation

of single-component shapes. On the other hand, as mentioned earlier, in many sit-

uations, several single objects usually appear as a group (e.g. the shoal of fish in

Fig. 4, flock of birds in Fig. 1, vehicles on the road, etc). Also, in many situations,

it is suitable to consider a single object as a multi-component one, consisting of

suitably defined components (as cells in embryonic tissue displayed in Fig. 1, or

material micro structure elements, etc). In addition, the appearances of the same ob-

ject at different times can be also considered as components of a multi-component

shape. Some examples where treating objects as multi-component shapes becomes

very natural are in Figure 1 and also in the forthcoming experiments.

In this section we consider the method for the computation of the orientation

of multi-component shapes introduced by [27]. Before that, note that most of the

existing methods for the computation of the orientation of single component shapes

do not have a (at least straightforward) extension which can be used to compute

the orientation of compound shapes. The main reason for this is that most of the

existing methods have a 180 degree ambiguity about the computed orientation. That

is because they define the shape orientation by a line, not by a vector. Thus, the

orientations of ϕ degrees and the orientation of ϕ + 180 degrees are considered

to be the same. A consequence of such an ambiguity is that natural ideas how to

compute the orientation of a multi-component shape from the orientations assigned

to its components, do not work. For example, if S1, S2, . . . , Sn are components of a

multi-component shape S, then most of the existing methods would compute their

orientations as ϕ1 +a1 ·180◦, ϕ2 +a2 ·180◦, . . . , ϕn +an ·180◦, where the numbers

a1, a2, . . . , an are arbitrarily chosen from {0,1}. Thus if, in the simplest variant,

the orientation of multi-component shape S = S1 ∪ S2 ∪ . . .∪ Sn is computed as the

average value of the orientations assigned to its components, then the orientation of

S would be computed as

(ϕ1 +a1 ·180◦)+ . . .+(ϕn +an ·180◦)

n
=

ϕ1 + . . .+ϕn

n
+

(a1 + . . .+an) ·180◦

n

and obviously, for different choices of a1, a2, . . . , an, the computed orientations are

inconsistent (i.e. they could differ for an arbitrary multiple of the fraction 180◦/n).

This is obviously unacceptable.

Now we consider the method for the computation of multi-component shapes

described in [27]. The authors define the orientation of a multi-component shape by

considering the integrals of the squared length of projections of all edges whose end

points belong to a certain component. Before a formal definition, let us introduce

the necessary denotations (see Fig. 3 for an illustration):

– Let −→a = (cosα,sinα) be the unit vector in the direction α;

– Let |pr−→a [AB]| denote the length of the projection of the straight line segment

[AB] onto a line having the slope α .
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Definition 2. Let S be a multi-component shape which consists of m disjoint shapes

S1, S2, . . . , Sm. Then the orientation of S is defined by the angle that maximises the

function Gcomp(S,α) defined by

Gcomp(S,α) =
m

∑
i=1

∫ ∫

A=(x,y)∈Si
B=(u,v)∈Si

∫ ∫

|pr−→a [AB]|2dx dy du dv. (9)

The previous definition is naturally motivated, but also enables a closed formula

for the computation of the orientation of multi-component shapes. This is the state-

ment of the following theorem.

Theorem 1. The angle α where the function Gcomp(S,α) reaches its maximum sat-

isfies the following equation

sin(2α)

cos(2α)
=

2 ·
m

∑
i=1

µ1,1(Si) ·µ0,0(Si)

m

∑
i=1

(µ2,0(Si)−µ0,2(Si)) ·µ0,0(Si)
. (10)

To prove the theorem it is sufficient to enter the following two trivial equalities

|pr−→a [AB]|2 = ((x−u) · cosα +(y− v) · sinα)2, for A = (x,y),B = (u,v) (11)

and
∫ ∫

S×S

∫ ∫

xpyqurvt dx dy du dv = µp,q(S) ·µr,t(S) (12)

into the optimizing function Gcomp(S,α). After that, simple calculus applied to the

equation
dGcomp(S,α)

dα
= 0 establishes the proof. For more details we refer to [27].

Fig. 3 The orientation of

multi-component shapes is

defined by the direction α
which minimizes the integral

of squared projections of

line segments whose end

points belong to a certain

component. x

y

A

B

C

D

α

a
−>

pr  [
AB]

>pr  [
CD]

a
>−

a

−
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The orientation of multi-component shapes computed by optimizing the func-

tion Gcomp(S,α) is theoretically well founded and because of that it can be well

understood. Some of properties are a direct consequence of the definition and can

be proved by using basic calculus. We list some of them.

Property 1. If the method given by Definition 2 is applied to a single component

shape, then the computed orientation is the same as the orientation computed by

the standard definition, i.e. by the optimizing the function Fst(S,α) (see (2) and

(5)). Note that the optimizing function G(S,α) = Gcomp(S,α), specified for single

component shapes, and the optimizing function Fst(S,α) are different, but they are

connected with the following, easily provable, equality

G(S,α)+2 ·µ0,0(S) ·Fst(S,α) = 2 ·µ0,0(S) · (µ2,0(S)+µ0,2(S)). (13)

Since the right-hand side of (13) does not depend on α we deduce that the max-

imum of G(S,α) and the minimum of Fst(S,α) are reached at the same point. In

other words, the direction α which defines the orientation of S by applying the stan-

dard method is the same as the direction which defines the orientation of S if the

Definition 2 is applied to single component shapes.

Property 2. As it is expected, there are situations where the method given by

Definition 2 fails. Due to the definition of the optimizing function Gcomp(S,α), a

simple characterization of such situations is possible. Indeed, by using (11) we de-

duce:

Gcomp(S,α) = cos2 α ·
m

∑
i=1

2µ0,0(Si)µ2,0(Si)+ sin2 α ·
m

∑
i=1

2µ0,0(Si)µ0,2(Si)

+sin(2α) ·
m

∑
i=1

2µ0,0(Si)µ1,1(Si). (14)

The last equality says immediately that the first derivative
dGcomp(S,α)

dα
is identi-

cally equal to zero (i.e. Gcomp(S,α) is constant) if and only if the following two

conditions are satisfied

m

∑
i=1

µ0,0(Si) ·µ1,1(Si) = 0 and
m

∑
i=1

µ0,0(Si) · (µ2,0(Si)−µ0,2(Si)) = 0. (15)

So, under the conditions in (15) the optimizing function is constant and no direction

can be selected as the shape orientation.

The equation (14) also says that the components Si of a multi-component shape

S = S1 ∪ . . .∪Sm which satisfy

µ1,1(Si) = 0 and µ2,0(Si)−µ0,2(Si) = 0,
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(i.e. the shapes are not orientable by the standard method) do not contribute to the

Gcomp(S,α) and because of that, such components Si, can be omitted when comput-

ing the orientation of S.

Notice that in case of Gcomp(S,α) = constant we can increase the exponent in

(9) and define the orientation of S by the direction which maximizes the following

function

Gcomp,N(S,α) =
m

∑
i=1

∫ ∫

A=(x,y)∈Si
B=(u,v)∈Si

∫ ∫

|pr−→a [AB]|2Ndx dy du dv.

In this way the class of multi-component shapes whose orientation is well defined

would be extended. A drawback is that there is no closed formula (similar to (10))

which enables easy computation of such a defined multi-component shape orienta-

tion.

The next property seems to be a reasonable requirement for all methods for the

computation of the orientation of multi-component shapes.

Property 3. If all components Si of S = S1∪ . . .∪Sm have an identical orientation

α , then the orientation of S is also α.
To prove the above statement it is sufficient to notice that if all components Si

have the same orientation (see Property 1), then there would exist an angle α0 such

that all summands
∫ ∫

A=(x,y)∈Si
B=(u,v)∈Si

∫ ∫

|pr−→a [AB]|2dx dy du dv. (16)

in (9) reach their maximum for the angle α = α0. An easy consequence is that

α = α0 optimizes Gcomp(S,α) = ∑m
i=1

∫ ∫

A=(x,y)∈Si
B=(u,v)∈Si

∫∫

|pr−→a [AB]|2dx dy du dv, as well.

This means that the orientation of S coincides with the orientation of its components

Si.

Property 4. The method established by Definition 2 is very flexible, in that the

influence of the shape component’s size (to the computed orientation) can vary. In

the initial form in Definition 2 the moments µ1,1(Si), µ2,0(Si) and µ0,2(Si) are mul-

tiplied with the size/area of Si, i.e. by µ0,0(Si). But the method allows µ0,0(Si) to

be replaced with µ0,0(Si)
T for some suitable choice of T . In this way the influence

of the shape components to the computed orientation can be controlled. The choice

T =−2 is of a particular importance. In this case the size/area of the shape compo-

nents does not have any influence to the computed orientation. This is very suitable

since objects, which are of the same size in reality, often appear in images at varying

scales since their size depends on their relative position with respect to the camera

used to capture the image.
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3.1 Experiments

This subsection includes several experiments which illustrate how the method for

the computation of the orientation of multi-component shapes works in practice.

Since this is the first method for the computation of the orientation of such shapes,

there are no suitable methods for comparison. In the experiments presented, together

with the orientations computed by the new method, the orientations computed by

the standard method, which treats all the multi-component objects as a single ob-

ject, are also displayed. However, orientations computed by the standard method

are displayed just for illustrative purposes, not for qualitative comparison against

the new method.

In the first example in Fig. 4 three images are displayed. In all three cases the

objects that appear (humans, fish and blood cell components) are treated as com-

ponents of a multi-component shape (a group of people, a shoal, a blood sample)

and are then oriented. In the case of the group of people and the fish shoal the com-

puted orientations (by the new method) are in accordance with our perception. As

expected the computation by the standard method (i.e. treating the multi-component

shapes as single ones) does not lead to orientations which match our perception. The

same could be said for the third example (blood cell) even though the our perception

of what the orientation should be is not as strong as in the first two examples.

Fig. 4 Real images are in the first row. After thresholding, the image components are treated as

components of a multi-component shape and then oriented by the method given by Definition 2

– the orientations computed are presented by short dark arrows. Long grey arrows represent the

orientations computed by the standard method where all components are taken together to build a

single shape.

The next figure illustrates a very nice and useful property of the new method. It

illustrates that for multi-component shapes whose components are relatively con-

sistently oriented, the computed orientation of a subset of such shapes coincides
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with the orientation of the whole shape. Somehow it could be said that the com-

puted orientations do not depend much on the frame used to capture a portion of the

multi-component shape considered. The humans and fish shoal images (in Fig. 5)

are split onto two halves. The halves are treated as multi-component shapes and ori-

ented by the new method. The computed orientations are shown by the short dark

arrows. As it can be seen such computed orientations are consistent – i.e. the ori-

entations of the halves coincide with the orientation of the whole multi-component

shape. As expected, the orientations computed by the standard method (long grey

arrows) do not coincide.

Fig. 5 The orientation computed by the method from Definition 2 for halves and the whole shape

illustrate the “Frame independence” property of the new method for the orientation of multi-

component shapes.

The third example in this subsection illustrates a possible application of the

method to the orientation of textures. Wood textures, displayed in the first row in

Fig. 6, are not multi-component objects with clearly defined components. Never-

theless, after suitable thresholding the components become apparent, and the ori-

entation of such obtained multi-component shapes can be computed. The results

are in the third row and it could be said (in the absence of ground truth) that the

orientations obtained are in accordance with our perception.

The last example in this subsection is somewhat different from the previous ones.

In this case, a gait sequence is taken from NLPR Gait Database [25] and each ap-

pearance of a human silhouette in the sequence of the frames is considered as a

component of the multi-component shape analysed. So, in this case the shape com-

ponents are distributed temporally across the sequence (not spatially over the image,

as in the previous examples).

After segmentation many errors, which typically appear, have been removed us-

ing standard morphological techniques. However, several large errors remain and

the task was to detect them. Due to the nature of the shapes it is expected that all

components (i.e. silhouettes) are fairly consistently oriented if they are extracted

properly. Thus, we make the hypothesis that the silhouettes with orientations incon-

sistent with the majority of silhouettes suffer from segmentation errors. The differ-

ence in multi-component shape orientation caused by removing the least consistent

component has been used as a criterion to find possible outliers. In the example
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Fig. 6 Texture images, in the first row, are thresholded and their orientation is then computed

as the orientation of multi-component shapes which correspond to the black-and-white images

in the second row. The images in the third row are re-oriented in accordance with the computed

orientations.

given, due to the errors in the processing chain that produced the sequence of binary

images, the person’s leading leg has been displaced and this silhouette/frame has

been detected as an outlier, as shown in Fig. 7.

Fig. 7 The extracted silhouettes from a gait sequence are displayed (the first row) and underneath

is an intensity coding of each silhouette to show its degree of being an outlier (dark means high

likelihood). A magnified view of the most outlying silhouette and its neighbours is in the third row.
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4 Boundary-based Orientation

So far we have considered area-based methods only, i.e. the methods which use

all the shape points for the computation of (in this particular case) shape orienta-

tion. But boundary-based methods for the computation of shape orientation are also

considered in the literature. Apart from the fact that some area-based methods for

the computation of the shape orientation have a straightforward extension to their

boundary-based analogues, there are some boundary-based methods which can not

be derived in such a way – some examples are in [12, 29].

The methods considered in the previous section have an easy extension to

boundary-based methods. For example, an analogue to the standard method for the

computation of shape orientation is the method which orients a given shape by the

line which minimizes the integral of the squared distance of the boundary points to

this line. Since only the boundary points are used for the computation, this method is

considered as a boundary-based one. The line which minimizes the optimizing inte-

gral can be obtained by following the same formalism as in the case of the standard

method, but the appearing area integrals should be replaced by line integrals.

So, first we have to place S such that its its boundary-based centroid coincides

with the origin. The boundary-based centroid (x∂S,y∂S) is defined as the average of

the boundary points. This means that

(x∂S,y∂S) =

(∫

∂S x(s)ds
∫

∂S ds

∫

∂S y(s)ds
∫

∂S ds

)

. (17)

where the boundary ∂S of S is given in an arc-length parametrization: x = x(s), y =
y(s), s∈ [0, perimeter o f S]. Note that such a choice of the boundary representation

is suitable because it preserves rotational invariance – i.e. if the shape is rotated for

a certain angle, then the computed orientation is changed by the same angle. In the

rest of this chapter an arc-length parametrization of the appearing boundaries/curves

will be always assumed, even not mentioned.

Next, in order to compute the boundary-based orientation of a given shape S, we

have to find the minimum of the function

Lbo(∂S,α) =
∫

∂S
r(x,y,α)2ds (18)

where r(x,y,α) is, as in (2), the orthogonal distance of the point (x,y) to the line

passing through the origin and having the slope α.
The optimizing function Lbo(∂S,α) can be expressed as

Lbo(∂S,α) = ν2,0(∂S) · sin2 α +ν0,2(∂S) · cos2 α −ν1,1(∂S) · sin(2α), (19)

where νp,q(∂S) are the normalised line moments [2] defined as

νp,q(∂S) =

∫

∂S
(x− x∂S)

p(y− y∂S)
qds, (20)
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Fig. 8 On the left: The standard method defines the orientation of the shape by the line which min-

imizes the integral of squared distances of the shape boundary points to the line. On the right: the

boundary-based method for computation of the orientation of multi-component shapes considers

the projections of edges whose end points belong to the boundary of a certain component.

for all p,q∈{0,1,2, . . .}. Finally, the maximum of the optimizing function Lbo(∂S,α)
is reached for α = Obo(∂S) which satisfies the following equation:

tan(2 ·Obo(∂S)) =
2 ·ν1,1(∂S)

ν2,0(∂S)−ν0,2(∂S)
. (21)

The equality (21) is an obvious analogue for the equality (5) related to the stan-

dard area-based method. This is as expected because the same formalism is used in

both area-based and boundary-based cases.

The idea used in Section 3 to define the orientation of multi-component shapes

also has a boundary-based analogue. The problem is studied in detail in [15].

Following the idea from [27], the authors consider the projections of the edges

whose end points belong to the boundary of a certain component of a given multi-

component shape and define the shape orientation by the line which maximises the

integral of the squared values of the projections of such edges to the line. The formal

definition follows.

Definition 3. Let S = S1 ∪ . . .∪ Sm be a multi-component shape and let the bound-

ary of S be the union of the boundaries ∂Si of the components of S: ∂S = ∂S1 ∪
. . .∪ ∂Sm. The orientation of S is defined by the angle that maximises the function

Lcomp(∂S,α) defined as follows

Lcomp(∂S,α) =
m

∑
i=1

∫

s∈[0,per(Si)]
l∈[0,per(Si)]

∫

|pr−→a [Ai(s)Bi(l)]|
2ds dl. (22)

Definition 3 enables easy computation of the angle which defines the orientation

of ∂S, as given by the following theorem.
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Theorem 2. Let S be a multi-component shape whose boundary is ∂S = ∂S1 ∪ . . .∪
∂Sm. The angle α where the function Lcomp(∂S,α) reaches its maximum satisfies

the following equation

tan(2α) =

2 ·
m

∑
i=1

ν1,1(∂Si) ·ν0,0(∂Si)

m

∑
i=1

(ν2,0(∂Si)−ν0,2(∂Si)) ·µ0,0(∂Si)
. (23)

Being derived in an analogous way as the area-based method for the computation

of the multi-component shapes, the method given by Definition 3 also satisfies the

Properties 1–4 listed in Section 3, before the experimental section. It is worth men-

tioning that the method also enables the control of the influence of the perimeter of

the shape components to the computed orientation. If, for some applications, such

an influence should be ignored then the moments ν1,1(∂Si), ν2,0(∂Si), and ν0,2(∂Si)
which appear in (23) should be multiplied by (ν0,0(∂Si))

−2.

To close this section, let us mention that (in general) boundary-based approaches

to define the orientation of shapes allow some extra generalizations. One such gen-

eralisation was considered in [12]. Therein the shape orientation is computed based

on the projections of the tangent vectors at the shape boundary points, weighted by

the suitably chosen function of the boundary curvature at the corresponding points.

The advantage of such an approach is not only that the boundary curvature, as an im-

portant shape feature, is involved in the computation of the shape orientation. This

also provides an easy approach to overcome situations were the orientations are not

computable. It is sufficient to modify the curvature based weighting function, and

shapes which were not “orientable” by an initial choice of the weighting function

can become orientable with another choice. The computation of the shape orienta-

tion remains possible by a closed form formula whether the weighting function is

changed or not. For more details see [12].

4.1 Experiments

In this section we have two examples to illustrate how the boundary-based method

(established by Definition 22) works.

First we consider the embryonic tissue displayed in Fig. 9. Cell boundaries are

extracted and then the boundary-based method for the computation of the orienta-

tion of multi-component shapes is applied. The orientations are computed for the

whole image and also separately for the upper and lower parts. The computed ori-

entations are consistent (presented by short dark arrows) which actually implies that

the tissue displayed has an inherent consistent orientation. The orientations com-

puted by the boundary-based analogue (by optimizing Lbo(∂S,α) from (18)), are

different (long grey arrows), as it was expected.
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Fig. 9 Boundaries of cells

of an embryonic tissue (on

the left) are extracted, and

then split onto an “upper”

and “lower” part (on the

right). Orientations computed

by optimizing Lcomp(∂S,α)
all coincide (short dark ar-

rows). The orientations by

the analogue of the standard

method are shown by long

grey arrows.

In the second example the boundary-based method for multi-component shapes

(Definition 3) has been used to compute the orientations of signatures. Better results

were obtained than when the orientations were computed by the standard boundary-

based method. Fig. 10 displays signatures of subject s048 from Munich and Perona

[13]. In the first row the signatures are oriented by applying the standard boundary-

based method and the problems are obvious. Signatures are not oriented consis-

tently, which is a problem because the similarity measure used in [13] was not ro-

tationally invariant. In the second row are the same signatures but oriented by the

boundary-based multi-component method. Prior to the computation of the orienta-

tion, the signatures were segmented at the vertices with small subtended angles. The

obtained orientations are very consistent, as required.

Fig. 10 Figure: Signatures of subject s048 from Munich and Perona [13]. Signatures in the top row

are re-oriented according to the standard method while the bottom row displays the same signatures

re-oriented according to the multi-component method.

5 Anisotropy of Multi-component Shapes

In all the methods presented here, shape orientation is computed by optimizing a

suitably chosen function which depends on the orientation angle and the shape con-

sidered. Depending on the method selected, either the angle which maximizes the
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optimizing function or the angle which defines the minimum of the optimizing func-

tion is selected as the shape orientation. To have a reliable method for orienting the

shape it is important to have distinct minima and maxima of the optimizing func-

tion. This is because in image processing and computer vision tasks we deal with

discrete data and very often in the presence of noise. Thus, if the optima of the op-

timizing function are not distinct significant values then the computed orientations

could arise due to noise or digitization errors, rather than from inherent properties of

the shapes. Note that for a fixed shape the difference of maxima and minima of the

optimizing function could dependent strongly on the method applied. That is why

most of the methods only suit certain applications well. The question of whether

a shape possess an inherent orientation or not is considered in [28]. The authors

have introduced a shape orientability measure as a quantity which should indicate

to which degree a shape has a distinct orientation.

The ratio Est(S) of the maxima and minima of the optimizing function Fst(S,α),
in the case of the standard method, is well studied and widely used in shape based

image analysis. The quantity

Est(S) =
µ2,0(S)+µ0,2(S)+

√

4 · (µ1,1(S))2 +(µ2,0(S)−µ0,2(S))2

µ2,0(S)+µ0,2(S)−
√

4 · (µ1,1(S))2 +(µ2,0(S)−µ0,2(S))2
. (24)

is well-known as the shape elongation measure. Est(S) ranges over [1,∞) and takes

the value 1 if S is a circle. A problem is that there are many other shapes whose

elongation equals 1. In addition, Est(S) is invariant with respect to translation, rota-

tion and scaling transformations and is easily and accurately computable from the

object images [8, 9].

The elongation measure Est(S) has its boundary-based analogue – the area mo-

ments in (24) have to be replaced with the corresponding line integrals along the

shape boundaries. Another elongation measure is suggested by [22].

Another related property is shape anisotropy. It has a natural meaning for single

component shapes. For example, for a shape centred at the origin in both 2D and

3D, it could be inversely related to the degree to which the shape points are equally

distributed in all directions [18, 19]. It has been used as a useful feature in shape

(object) classification tasks but also as a property which highly correlates with some

mechanical characteristics of certain real objects and materials [4, 6]. It is also of

interest when analyzing tracks of different species of animals [17].

The anisotropy measure of multi-component shapes has not been considered be-

fore, but it seems that it should be given different meaning than in the case of single

component shapes. Our understanding is that an anisotropy measure for the multi-

component shapes should indicate how consistently the shape’s components are ori-

ented. It has turned out that a quantity defined as the ratio between the maxima and

minima of the function Lcomp(∂S,α) from Definition 3 provides such a measure.

So, we give the following definition.

Definition 4. Let S1, . . . , Sm be components of a compound shape S. Then the

anisotropy A (S) of S is defined as
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A (S) =
maxα∈[0,2π) Lcomp(∂S,α)

minα∈[0,2π) Lcomp(∂S,α)
=

maxα∈[0,2π) Lcomp(∂S1 ∪ . . .∪Sm,α)

minα∈[0,2π) Lcomp(∂S1 ∪ . . .∪Sm,α)
. (25)

The anisotropy measure A (S) for multi-component shapes ranges over [1,∞)
and is invariant with respect to translations, rotations and scaling transformations.

It also enables an explicit formula for its computation. By basic calculus it can be

shown that the maxima and minima of Lcomp(∂S,α) are:

max
α∈[0,2π)

Lcomp(∂S,α) =C+
√

A2 +B2, min
α∈[0,2π)

Lcomp(∂S,α) =C−
√

A2 +B2

where the quantities A, B, and C are

A =
m

∑
i=1

(ν2,0(∂Si)−µ0,2(∂Si)) ·ν0,0(∂Si),

B =
m

∑
i=1

2 ·ν1,1(∂Si) ·ν0,0(∂Si),

C =
m

∑
i=1

(ν2,0(∂Si)+ν0,2(∂Si)) ·ν0,0(∂Si).

We illustrate how the anisotropy measure A (S) acts by two examples. Notice

that the anisotropy measure, as defined here, also depends on the elongation of the

shape components, not only on their orientations. This also seems acceptable, e.g.

a stereotype for a multi-component shape with a high anisotropy A (S) is a shape

whose components have high elongations and the same orientation.

The first example is in Fig. 11. The shapes in both rows are treated as a multiple

component object (e.g. a herd of cattle and a group of cars). The anisotropy was first

computed for just the cattle, giving a value of 3.49. The anisotropy of the cattle’s

shadows alone increases to 7.57 since the shadows are more consistently orientated,

and are also slightly more elongated. Merging the cattle and their shadows produces

even more elongated regions, which lead to an increase of the herd’s anisotropy to

12.08. The anisotropy of the cars (in the second row) is 1.38, which is very small.

This is to be expected since the orientations of the individual cars vary strongly.

The second example which indicates how the anisotropy measure A (S) acts is in

Fig. 12, in which anisotropy is used to select appropriate elongated regions to enable

skew correction of the document. The first image (on the left) in the first row is the

original image. Its components are letters whose orientations vary strongly, but also

many of the letters have a low elongation. This results in a very low anisotropy of

this image, as it can be seen from the graph given in the second row.

After blurring is applied to the image the characters start to merge into words,

which are both more consistently oriented and more elongated. This leads to an

increase of the anisotropy (see the second image in the first row). If enough blurring

is applied to merge characters/words into continuous lines the anisotropy increases

dramatically (see the third image in the first row).

More blurring is counter productive to the task of skew correction, as sections of

adjacent lines merge, and their anisotropy quickly drops (the last image in the first

row).
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Fig. 11 Object boundaries are extracted from the original images and considered as components

of the boundary of a multi-component shape. The highest anisotropy of 12.08 is measured if the

cattle and their shadows are merged and considered as individual components of multi-component

shapes. A low anisotropy measure of 1.38 is computed for the compound shape in the second row.

6 Conclusion

Multi-component shapes have not been considered much in literature. This is some-

what surprising since there are many situations in which objects act as a part of

a very compact group, or where single objects need to be decomposed onto com-

ponents for analysis. There are also some less obvious situations were the multi-

component approach can be useful.

We have focused on two problems related to multi-component shapes: comput-

ing orientation and anisotropy. Both problems have only recently been considered

[15, 27] and some solution were offered. These problems do not have analogues

in the existing single-component shape based methods. Thus, new ideas have to be

developed.

The obtained results are promising, and have been justified with a number of ex-

periments. The extension to the other shape based techniques will be investigated in

the future. Due to the variety of ways that a multi-component shape can be defined,

there are plenty of different demands which have to be satisfied by the methods

developed. Moreover, there are some specific demands which do not exist when

dealing with single-component shapes. To mention just two of them, which have

been discussed in this chapter: the frame independence property and the tunable

influence of the component size to the method performance.
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Fig. 12 The image on the left is blurred and thresholded, and the resulting component anisotropy

is plotted. Three of the thresholded images are shown demonstrating that maximum anisotropy is

achieved when many of the words are merged into lines.
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27. Žunić, J, Rosin, P.L.: An alternative approach to computing shape orientation with an appli-

cation to compound shapes. Int. Journal Computer Vision 81, 138–154 (2009)
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