
1

Dictionary Construction for Patch-to-Tensor
Embedding

Moshe Salhov Amit Bermanis Guy Wolf Amir Averbuch
School of Computer Science, Tel Aviv University, Tel Aviv 69978

Israel

Abstract

The incorporation of a matrix relations, which encompass multidimensional similarities between local neigh-
borhoods of data points in the underlying manifold of a data, improves the utilization of kernel based data analysis
methodologies. However, the utilization of multidimensional similarities results in a larger kernel and hence the
computational complexity of the corresponding spectral decomposition increases dramatically. In this paper, we
propose an efficient approximation to a spectral decomposition of a multidimensional similarity based kernel.
Furthermore, we propose a dictionary construction that approximates the oversized kernel in this case and its
associated embedding. The performance of the proposed dictionary construction is demonstrated on an example
of a super-kernel that utilizes the Diffusion Maps methodology together with linear-projection operators between
tangent spaces in the manifold.

I. INTRODUCTION

Recent methods for advanced massive high dimensional data analysis utilize a manifold structure on
which data points are assumed to lie. This manifold is immersed (or submersed) in an ambient space that
is defined by observable parameters. Kernel methods such as k-PCA and Diffusion Maps (DM) [4] have
provided good results in analyzing such massive high dimensional data. The defined kernel can be thought
of as an adjacency matrix of a graph whose vertices are the data points in the dataset. The analysis of the
eigenvalues and the corresponding eigenvectors of this matrix reveals many properties and connections
in the graph. These methods are based on the spectral decomposition of a kernel that was designed to
incorporate a scalar similarity measure between data points. The resulting embedding of the data points
into an Euclidean space preserves the qualities represented by the designed kernel. This approach extends
the core of the classical Multi-Dimensional Scaling (MDS) method [6], [9] by considering non-linear
relations instead of just a linear one in its original Gram matrix.

Recently, DM was extended in several different ways to handle the orientation in local tangent spaces
[10]–[13]. The relation between two patches is described by a matrix instead of a scalar value. The
resulting kernel captures enriched similarities between local structures in the underlying manifold. These
enriched similarities can be used to analyze local areas around data points instead of analyzing their
specific locations. For example, this analysis can be beneficial in image processing (analyzing regions
instead of individual pixels) and when the data points are perturbed so that their surrounding area is
more important than their specific position. Since the constructions of these similarities are based on
local tangent spaces, they provide methods to manipulate tangential vector fields (e.g., perform out-of-
sample extensions). These manipulations are beneficial when the analyzed data consists of directional
information in addition to positional information on the manifold. For example, the goal in [2] is to
recover missing data in images utilizing interpolation of the appropriate vector field. Another example
is the utilization of tangential vector fields interpolation on S2 for modeling atmospheric air flow and
oceanic water velocity [8].

The discussed enrichments increase considerably the kernel size. Kernel size is a limiting factor in the
applicability of spectral decomposition based data analysis methods to real problems and considerable
efforts have been invested for example in [1], [7] and others in approximating the spectral decomposition
operator. The dictionary approach presented in [7] constructs a dictionary and the corresponding scalar

2

kernel plus the necessary extension coefficients that approximate the full scalar kernel. The number of
dictionary members depends on the given data, kernel configuration and on the designed parameter that
controls the quality of the full kernel approximation.

In this paper, we utilize the dictionary construction approach from [7] to approximate the spectral
decomposition of a non-scalar kernel that utilizes the underlying patch structure. We describe the necessary
condition for updating a non-scalar dictionary for achieving a bound on the approximation error. Although
the proposed method is applicable to many such kernels, we focus on the linear-projection super-kernel
construction described in [10]. The super-kernel construction there analyzes patches in the manifold instead
of analyzing single data points on the manifold. Each patch is defined as a local neighborhood of a data
point in a dataset sampled from an underlying manifold. The relation between two patches is described
by a matrix, which represents both the affinity between data points at the centers of these patches and
the similarity between their local coordinate systems. Then, the constructed matrices between all patches
are combined into a block matrix that is called super-kernel.

The paper has the following structure. Preliminaries are presented in Section II. Section III formulates
the problem. The dictionary construction and its properties are presented in Section IV. Finally, Section V
displays the experimental results on image segmentation derived from the utilization of a dictionary based
analysis.

II. PRELIMINARIES

A. Manifold Setup
Let M ⊆ Rm be a set of n data points sampled from a manifold M ⊆ Rm that lies in the ambient

space Rm. Let d � m be the intrinsic dimension of M, then, at every data point x ∈ M , the manifold
has a d-dimensional tangent space Tx(M), which is a subspace of Rm. We assume that the manifold
is densely sampled, thus, the tangent space Tx(M) can be approximated by a small enough patch (i.e.,
neighborhood) N(x) ⊆M around x ∈M .

Let o1
x, . . . , o

d
x ∈ Rm, where oix = (oi1x , . . . , o

im
x)T , i = 1, . . . , d, form an orthonormal basis of Tx(M)

and let Ox ∈ Rm×d be a matrix whose columns are these vectors:

Ox ,

 | | |
o1
x · · · oix · · · odx
| | |

 x ∈M. (II.1)

From now on we assume that the vectors in Tx(M) are expressed by their d coordinates according to
the presented basis o1

x, . . . , o
d
x. For each vector u ∈ Tx(M), the vector ũ = Oxu ∈ Rm is the same vector

as u represented by m coordinates, according to the basis of the ambient space. For each vector v ∈ Rm

in the ambient space, the vector v′ = OT
x v ∈ Tx(M) is the linear projection of v on the tangent space

Tx(M).

B. Diffusion Maps
The original Diffusion Maps method [4] is used to analyze a dataset M by exploring the geometry of the

manifold M from which it is sampled. This method is based on defining an isotropic kernel K ∈ Rn×n,
whose elements are defined by

k(x, y) , e−
‖x−y‖2

ε , x, y ∈M, (II.2)

where ε is a meta-parameter of the algorithm. This kernel represents the affinities between data points in
the manifold. The kernel can be viewed as a construction of a weighted graph over the dataset M . The
data points in M are the vertices and the weights (for example, we can use the weight in Eq. II.2) of the
edges are defined by the kernel K. The degree of each data point (i.e., vertex) x ∈ M in this graph is
q(x) ,

∑
y∈M

k(x, y). Normalization of the kernel by this degree produces an n×n row stochastic transition

3

matrix P whose elements are p(x, y) = k(x, y)/q(x), x, y ∈ M , which defines a Markov process (i.e.,
a diffusion process) over the data points in M . A symmetric conjugate P̄ of the transition operator P
defines the diffusion affinities between data points by

p̄(x, y) =
k(x, y)√
q(x)q(y)

=
√
q(x)p(x, y)

1√
q(y)

x, y ∈M. (II.3)

The DM method embeds the manifold into an Euclidean space whose dimensionality is usually signifi-
cantly lower than the original dimensionality. This embedding is a result from the spectral analysis of the
diffusion affinity kernel P̄ . The eigenvalues 1 = σ0 ≥ σ1 ≥ . . . of P̄ and their corresponding eigenvectors
φ̄0, φ̄1, . . . are used to construct the desired map, which embeds each data point x ∈M into the data point
Φ̄(x) = (σiφ̄i(x))δi=0 for a sufficiently small δ, which is the dimension of the embedded space. The exact
value of δ depends on the decay of the spectrum P̄ .

C. Linear-Projection Diffusion Super-Kernel
For x, y ∈ M , define Oxy = OT

xOy ∈ Rd×d where Ox and Oy were defined in Eq. II.1. The matrices
Ox and Oy represent bases for the tangent spaces Tx(M) and Ty(M), respectively. Thus, the matrix Oxy

represents a linear-projection between these tangent spaces, and, in some sense, the similarity between
them. As in [10], it is referred to as a tangent similarity matrix.

Let Ω ∈ Rn×n be a symmetric and positive semi-definite affinity kernel defined on M ⊆ Rm, i.e., each
row or each column in Ω corresponds to a data point in M , and each element [Ω]xy = ω(x, y), x, y ∈M ,
represents the affinity between x and y. In addition, assume that ω(x, y) ≥ 0 for every x, y ∈ M . The
diffusion affinity kernel is an example of such an affinity kernel. Definition II.1 uses the tangent similarity
matrices and the affinity kernel Ω to define the Linear-Projection super-kernel. When the diffusion affinities
in P̄ are used, instead of using the general affinities in Ω, this super-kernels is called a Linear-Projection
Diffusion (LPD) super-kernel.

Definition II.1 (Linear-Projection Diffusion Super-Kernel). A Linear-Projection Diffusion (LPD) super-
kernel is a block matrix G ∈ Rnd×nd of size n×n where each block in it is a d×d matrix. Each row and
each column of blocks in G correspond to a data point in M . A single block G(x,y), x, y ∈M , represents
an affinity (similarity) between the patches N(x) and N(y). Each block G(x,y) ∈ Rd×d of G is defined as
G(x,y) , p̄(x, y)Oxy = a(x, y)OT

xOy, x, y ∈M .

The super-kernel in Definition II.1 encompasses both the diffusion affinities between data points on
the manifold M and the similarities between their tangent spaces. The latter are expressed by the linear-
projection operators between tangent spaces. Specifically, for two tangent spaces Tx(M) and Ty(M)
at x, y ∈ M of the manifold, the operator OT

xOy (i.e., their tangent similarity matrix) expresses a
linear projection from Ty(M) to Tx(M) via the ambient space Rm. The obvious extreme cases are the
identity matrix, which indicates the existence of a complete similarity, and a zero matrix, which indicates
the existence of orthogonality (i.e., a complete dissimilarity). These linear projection operators express
some important properties of the manifold structure, e.g., curvatures between patches and differences in
orientation. More details on the properties of this super-kernel are given in [10], [13].

It is convenient to use the vectors oix and ojy to apply a double-indexing scheme by using the notation
g(oix, o

j
y) , [G(x,y)]ij that considers each single cell in G as an element [G(x,y)]ij , 1 ≤ i, j ≤ d, in the

block G(x,y), where x, y ∈ M . It is important to note that g(oix, o
j
y) is only a convenient notation and

a single element of a block in G does not necessarily have any special meaning. The block itself, as a
whole, holds meaningful similarity information.

Spectral decomposition is used to analyze the super-kernel G. It is utilized to embed the patches N(x),
x ∈M , is a manifold, into a tensor space. Let |λ1| ≥ |λ2| ≥ . . . ≥ |λ`| be the ` most significant eigenvalues
of G and let φ1, φ2, . . . , φ` be their corresponding eigenvectors. Each eigenvector φi, i = 1, . . . , `, is a
vector of length nd. We denote each of its elements by φi(o

j
x), x ∈ M , j = 1, . . . , d. An eigenvector φi

4

can also be regarded as a vector of n blocks, each of which is a vector of length d that corresponds to
a data point x ∈ M on the manifold. To express this notion, we use the notation ϕji (x) = φi(o

j
x). Thus,

the block, which corresponds to x ∈M in φi, is the vector (ϕ1
i (x), . . . , ϕdi (x))T .

The eigenvalues and the eigenvectors of G are used to construct a spectral map

Φ(ojx) = (λt1φ1(ojx), . . . , λ
t
`φ`(o

j
x)), (II.4)

which is similar to the one used in DM and where t is the diffusion transition time. This spectral map is
then used to construct the embedded tensor Tx ∈ R`⊗Rd for each x ∈M . These tensors are represented
by the `× d matrices

Tx ,

 | |
Φ(o1

x) · · · Φ(odx)
| |

 x ∈M. (II.5)

In other words, the coordinates of Tx (i.e., the elements in this matrix) are [Tx]ij = λtiϕ
j
i (x), i =

1, . . . , `, j = 1, . . . , d. Each tensor Tx represents an embedding of the patch N(x), x ∈ M , into the
tensor space R` ⊗Rd.

III. PROBLEM FORMULATION

Under the manifold settings of Section II-A, we assume to have an access to a dataset of n data
points that are sampled from a manifold M⊆ Rm, which lies in the ambient space Rm, whose intrinsic
dimension d � m. In this paper, we consider two related tasks: 1. How to approximate the spectral
decomposition of a super-kernel? 2. How to perform out-of-sample extension of vector fields?

A. The Approximation of the Spectral Decomposition of Super-Kernel
The main goal of this paper is to efficiently approximate the embedded tensors of the super-kernel G

(definition II.1) without computing the entire spectral decomposition of this large matrix. In other words,
let G be the super-kernel that is constructed on the dataset M according to [10]. We aim to find two
matrices E ∈ Rηsd×nd and G̃ ∈ Rηd×ηd such that

G ≈ ET ĜE, (III.1)

where Ĝ is a super-kernel that was constructed by utilizing η � n representative samples from the dataset
M . In order to find a solution to Eq. III.1, we will construct a dictionary of representatives and then use an
out-of-sample extension method to extend the results, which are achieved for them, to the entire dataset.
Furthermore, the presented methodology provides an out-of-sample extension method of the achieved
patch-to-tensor embedding from [10] to new data points x /∈M that are not in the original dataset.

Since the dataset M is finite then we can assume that the data points in it are sequentially ordered as
M = {x1, . . . , xn} and define Xt = {x1, . . . , xt} to be the first t data points in M for every s = 0, . . . , n

where X0
∆
= ∅ and Xn

∆
= M . Then, we use an iterative approach, where each iteration t = 1, 2, . . . , n,

considers the data point xt and compares it to the set Xs−1 ⊂ M of the data points that were already
considered in previous iterations. We also assume that previous iterations already found a dictionary Ds−1

of ηs−1 representatives that are sufficient to represent the embedding of Xs−1. Then, the new data point
xs ∈M\Xs−1 is considered and its embedded tensor is approximated based on an out-of-sample extension
of the PTE of Xs−1 (or rather the dictionary Ds−1). If the approximation is not sufficiently accurate, the
dictionary is updated to contain the new data point. Finally, when all the data points were encountered,
a dictionary subset Dn of ηn representatives is formed and the super-kernel G can be approximated by
this dictionary set instead of the whole dataset M . Given matrices Es and Ĝs, which approximate G as
described in Eq. III.1, an efficient spectral decomposition can be formulated that approximates the spectral
decomposition of G.

5

B. Out-of-Sample Extension for Vector Fields
The patch-to-tensor embedding in [10] is based on the spectral analysis of the super-kernel G. In our

case, we want to use a dictionary (i.e., a set of representatives) to approximate this spectral decomposition
and extend it (using an out-of-sample extension) to the entire dataset. This extension method can also be
utilized to extend this decomposition either from the dictionary or from the dataset to new data points.
According to [13], the super-kernel G can be regarded as an operator on tangent vector fields of the
manifold M restricted to a dataset M . Therefore, the spectral decomposition of G consists of eigen
vector fields which span the range of G. Hence, an out-of-sample extension of the eigen vector fields is
equivalent to the out-of-sample extension of vector fields in the range of G.

Out-of-sample extension of vector fields assumes an a priori knowledge of a set of points M and a
corresponding vector field where each vector lies on the respective local tangent space. Consider a tangent
vector field ~v : M → R

d such that ~v(x) ∈ Tx(M) for all x ∈ M . Then, the given data points are used
to construct the super-kernel G. Since p̄ is positive-definite, then G is also positive-definite1, thus it is
invertible and its range consists of all these vector fields.

The out-of-sample extension of a new data point under the PTE settings aims to find the new corre-
sponding vector in the local tangent space of the new point. The extension coefficients ~u are designed
to minimize ‖G~u − ~v‖2 over the given set of training points. These coefficients, which minimize the l2
norm, are computed by using the inverse of G such that

~u = G−1~v. (III.2)

The coefficient ~u can be interpreted as a vector field ~u : M → R
d over the set of training points or,

equivalently,
~v(x) =

∑
y∈M

G(x,y)~u(y), x ∈M, (III.3)

where ~u(y), y ∈M , are considered as the coefficients of the vector field ~v according to the super-kernel
G. Consider a new data point x′ ∈ M\M with the matrix Ox′ whose columns o1

x′ , . . . , o
d
x′ form an

orthonormal basis for the tangent space Tx′(M). We can extend the vector field to a new data point x′

by setting the value ~v(x′) to be
~v(x′) ,

∑
y∈M

G̃(x′,y)~u(y), (III.4)

where G̃(x′,y) = p̄(x′, y)OT
x′Oy, y ∈ M , are the non-scalar affinity blocks between the new point and

the data points in the dataset. The extension in Eq. III.4 is consistent with the values ~v(x), x ∈ M , in
Eq. III.3.

While the new affinity blocks in Eq. III.4 are not known in advance as part of the super-kernel, they
are easily computed for any new point. This approximation only considers values of the vector field ~u at
the data points in M , which can be computed in advance by using the pseudo inverse of the super-kernel
G. This phase is not complicated, but it is beyond the scope of this paper since it is not crucial for the
presented dictionary construction. Therefore, this provides a feasible out-of-sample extension of a vector
field, which is similar to the methods shown in [3], [5] for the scalar case.

The extension in Eq. III.4 can be interpreted geometrically by separately considering projections and
the scalar weights in the affinity blocks of the super-kernel. First, the extension projects the coefficient
vector field ~u from the manifold M to the tangent space Tx′(M) of the new data point x′. This projection
expresses the coefficient vectors in local terms of the manifold around x′. Then, the value of the vector
field ~v at x′ is computed by using a weighted sum of the projected coefficient vectors on the tangent
space Tx′(M).

1See Theorem 3.1 in [10], where the weak inequalities in Eqs. 3.1 and 3.2 in the proof are replaced by strict inequalities.

6

IV. PATCH-BASED DICTIONARY

According to Lemma 3.3 in [10], the sum in Eq. III.3 can be rephrased in terms of the embedded
tensors to be

~v(x) =
∑
y∈M

T Tx Ty~u(y), x ∈M. (IV.1)

However, due to linear dependencies between the embedded tensors, this sum may contain redundant
elements. Indeed, if Tz =

∑
z 6=y∈M czyTy for some scalar coefficients czy ∈ R, z 6= y ∈ M , then Eq. IV.1

becomes
~v(x) =

∑
z 6=y∈M

T Tx Ty(~u(y) + czy~u(z)), x ∈M. (IV.2)

This enables us to eliminate the redundant tensors. By taking an iterative approach, we obtain a small
subset of tensors, which is a set of linearly independent tensors that are sufficient for computing Eqs. III.3
and III.4.

Similarly, we can use matrix coefficients instead of scalar ones to incorporate reacher relations between
tensors. Therefore, Tz is tensorialy dependent in {Ty}z 6=y∈M if it satisfies

Tz =
∑

z 6=y∈M

TyCz
y , (IV.3)

for some matrix coefficients Cz
y ∈ Rd×d, z 6= y ∈M . The defined dependency expresses more redundan-

cies than the standard linear dependency. As a result, we obtain a sparser set of tensorialy independent
tensors that enables us to efficiently compute Eqs. III.3 and III.4. This set of representative tensors
constitutes a dictionary that compactly represents the embedded tensor space.

A. Dictionary Construction
We use an iterative approach to construct the described dictionary by sequential scann of the data points

in M . At the first iteration, we define the scanned set X1 = {x1} and the dictionary D1 = {x1}. At each
iteration s = 2, . . . , n, we have a new data point xs, the scanned set Xs−1 = {x1, . . . , xs−1} from the
previous iteration, the dictionary Ds−1 that represents Xs−1. The dictionary Ds−1 is in fact a subset of
ηs−1 data points from Xs−1 that are sufficient to represent its embedded tensors. We define the scanned
set Xs = Xs−1 ∪ {xs}. Our goal is to define the dictionary Ds of Xs, based on the dictionary Ds−1 with
the new data point xs. To do this, a dependency criterion has to be imposed. If this criterion is satisfied,
then the the dictionary remains the same Ds = Ds−1. Otherwise, it is updated to include the new data
point Ds = Ds−1 ∪ {xs}.

We use a dependency criterion similar to the approximated linear dependency (ALD) criterion used
in KRLS [7]. The ALD measures the distance between vector candidates and the span by the dictionary
vectors, to determine if the dictionary should be updated. In our case, we want to approximate the tensorial
dependency (see Eq. IV.3) of the examined tensor Txs on the tensors in the dictionary Ds−1. Therefore,
we define the distance of Txs from the dictionary Ds−1 by

δs , min
C1,...,Cηs−1

∥∥∥∥∥
ηs−1∑
j=1

TyjCj − Txs

∥∥∥∥∥
2

F

, C1, . . . , Cηs−1 ∈ Rd×d, (IV.4)

where ‖·‖F denotes the Frobenius norm, and C1, . . . , Cηs−1 are matrix coefficients in Eq. IV.3. Then, we
define the approximated tensorial dependency (ATD) criterion to be δs ≤ µ, for some accuracy threshold
µ > 0. If the ATD criterion is satisfied, then the tensor Txs can be approximated by the dictionary Ds−1,
using the matrix coefficients Cs

1 , . . . , C
s
ηs−1

that achieve the minimum in Eq. IV.4. Otherwise, the dictionary
has to be updated by adding xs to it.

7

Lemma IV.1. Let Ĝs−1 ∈ Rdηs−1×dηs−1 be the super-kernel of the data points in the dictionary Ds−1,
and let Hs ∈ Rdηs−1×d be a ηs−1 × 1 block matrix whose j-th d × d block is G(yj ,xs), j = 1, . . . , ηs−1.
Then, the optimal matrix coefficients (from Eq. IV.4) are {C(s)

j }j=1,...,ηs−1 , where C(s)
j is the j-th d × d

block of the ηs−1 × 1 d × d blocks matrix Ĝ−1
s−1Hs. The corresponding error δs in Eq. IV.4 satisfies

δs = tr[G(xs,xs) −HT
s Ĝ
−1
s−1Hs].

Proof: The minimizer in Eq. IV.4 can be rephrased as

δs = min
C1,...,Cηs−1

tr

(ηs−1∑
j=1

TyjCj − Txs

)T (ηs−1∑
j=1

TyjCj − Txs

) .

Algebraic simplifications yield

δs = min
C1,...,Cηs−1

{
tr

[
ηs−1∑
i=1

ηs−1∑
j=1

CT
i T Tyi TyjCj −

ηs−1∑
j=1

T TxsTyjCj

−
ηs−1∑
j=1

CT
j T Tyj Txs + T TxsTxs

]}
.

The products between the embedded tensors (e.g., T Tyj Txs , j = 1, . . . , ηs−1) can be replaced with the
corresponding super-kernel blocks via Lemma 3.3 in [10]. We perform these substitutions and get

δs = min
A

tr
[
AT Ĝs−1A−HT

s A− ATHs +G(xs,xs)

]
, (IV.5)

where A ∈ Rdηs−1×d is a ηs−1 × 1 block matrix whose j-th d × d block is Cj , j = 1, . . . , ηs−1. Solving
the optimization (i.e., minimization) in Eq. IV.5 yields the solution

As = Ĝ−1
s−1Hs, (IV.6)

which proves the lemma.
Lemma IV.1, which provides an expression for the dictionary-based approximation, is expressed in

super-kernel terms. Essentially, this eliminates the need for prior knowledge of the embedded tensors
during the dictionary construction. At each iteration s, we consider the criterion δs < µ. Based on this
condition, we decide whether to add xs to the dictionary or just approximate its tensor. The threshold
µ is anyway given in advance as a meta-parameter and δt can be computed by using the expression in
Lemma IV.1, which does not depend on the embedded tensors. Therefore, the dictionary construction
process only requires knowledge of the super-kernel blocks that are required to compute this expression
at every iteration. In fact, the number of required blocks is relatively limited since it is determined by the
size of the dictionary and not by the size of the dataset.

B. The Dictionary Construction Algorithm
In this section, we specify the operations that take place by each iteration t of the construction algorithm.

Assume that Es is a ηs × d by s× d block matrix at iteration s whose (i, j) entry (block) is the optimal
coefficient matrix C(j)

i , 1 ≤ i ≤ ηs, 1 ≤ j ≤ s. The coefficient matrix C(j)
i has two solutions that depend

on the ATD criterion calculated at iteration s. First, Lemma IV.1 is applied to compute δs. Then, two
possible scenarios are considered:

1. δs ≤ µ,hence Txs is ATD on Ds−1. The dictionary remains the same, i.e., Ds = Ds−1 and Ĝs = Ĝs−1.
The coefficient matrix Es = [Es−1 As] is computed by concatenating the matrix As = Ĝ−1

s−1Hs

(from the proof of Lemma IV.1) to the coefficient matrix from the previous s− 1 iteration.

8

2. δs > µ,hence Txs is not ATD on Ds−1. The vector xs is added to the dictionary, i.e., Ds = Ds−1∪{xs}.
Computing Es is done by adding the identity matrix and the zero matrix in appropriate places.
The dictionary related super-kernel Ĝs becomes

Ĝs =

[
Ĝs−1 Hs

HT
s G(xs,xs)

]
. (IV.7)

The computation of the ATD conditions during these iterations requires to get Ĝ−1
s of the dictionary

based super-kernels. The block matrix inversion is utilized to derive

Ĝ−1
s =

[
Ĝ−1
s−1 + At∆−1

s (At)T −At∆−1
s

−∆−1
s (At)T ∆−1

s

]
, (IV.8)

where ∆s = G(xs,xs) −HT
s Ĝ
−1
s−1Hs is computed through the ATD test.

At each iteration s, the PTE of the data points Xs (or, more accurately, their patches) is based on the
spectral decomposition of the super-kernel Gs of this set. This spectral decomposition is approximated
by using the extension matrix Es and the dictionary related super-kernel Ĝs (Eq. IV.7).

Let ET
s = QsRs be the QR decomposition of this extension matrix, where Qs ∈ Rds×dηs is an orthogonal

matrix and R ∈ Rdηs×dηs is the upper triangular matrix. Additionally, let RsĜsR
T
s = ŨsΣsŨ

T
s be the

SVD of RsĜsR
T
s . Then, the SVD of ET

s ĜsEs is ET
s ĜsEs = (QsŨs)ΣsQsŨ

T
s . Thus, the SVD of Gs i

approximated by SVD such that Gs ≈ UsΣsU
T
s , where

Us = QsŨs. (IV.9)

Algorithm IV.1: Patch-to-Tensor Dictionary Construction and Embedding Approximation (PTEA)
Input: Data points: x1, ..., xn ∈ Rm.

Parameters: Patch size ρ, max approximation tolerance µ, `, ν, G, Ds, n
1: Initialize: Ĝ1 = G(x1,x1) (block, definition II.1), Ĝ−1

1 = G−1
(x1,x1), E1 = Id, D1 = {x1}, η1 = 1

2: for s = 2 to n do
Compute Hs =

[
G(x1,xs), ..., G(Xηs ,xs)

]
ATD Test:

Compute As = Ĝ−1
s−1Hs

Compute ∆ = G(xs,xs) −HT
s As

Compute δ = tr[∆]
If δ < µ

Set Es =
[
Es−1 As

]
Set Ds = Ds−1

Else (update dictionary)

Set Es =

[
Es−1 0

0 Id

]
Set Ds = Ds−1 ∪ {xs}
Update Ĝs according to Eq. IV.7
Update Ĝ−1

s according to Eq. IV.8
Set ηs = ηs−1 + 1

3: Approximate Un according Eq. IV.9.
4: Use Un to compute the approximated spectral map Φ(ojx), x ∈M , j = 1, . . . , d, according to Eq. ??

(considering the first ` eigenvalues and eigenvectors).
5: Use the spectral map Φ to construct the tensors Tx ∈ R` ⊗Rd, x ∈M , according to Eq. II.5.

9

The main computational cost of this approach lies in the computation of the QR decomposition that is
estimated to be O(d3η2

s(s − ηs/3)). The computational cost is substantially smaller in comparison with
the full SVD computation cost that is O(d3s3).

The dictionary construction followed by the patch-to-tensor embedding approximation process is de-
scribed in Algorithm IV.1.

C. The Super-Kernel Approximation Error Bound
The dictionary construction allows us to approximate the entire super-kernel without direct computation

of every block in it. Given the dictionary construction product Es, the super-kernel Gs of the data points
in Xs is approximated by

Gs ≈ ET
s ĜsEs, (IV.10)

where Ĝs ∈ Rηsd×ηsd is the super-kernel of the data points in the dictionary Ds.
For quantification of Eq. IV.10, let Ψs

∆
= [Tx1 , ..., Txs] be the ` × sd matrix that aggregates all the

embedded tensors up to step s, let Ψ̂s
∆
= [Ty1 , ..., Tyηs] be the `× ηsd matrix that aggregates all embedded

tensors of the dictionary members Ds and let Ψres
s , Ψs − Ψ̂sEs = [ψres

1 , . . . , ψres
s], where ψres

s , Txs −∑ηs−1

j=1 TyjC
(s)
j . Then, due to Eq. IV.4 and the ATD condition, ‖Ψres

s ‖
2
F ≤ sµ. From the definition of

the super-kernel, we get Gs = ΨT
s Ψs and Ĝs = Ψ̂T

s Ψ̂s. Therefore, by substituting Ψs we get Gs =
EsĜsE

T
s + (Ψres

s)TΨres
s where all the cross terms vanish by the optimality of Es. As a consequence, the

approximation error in step s, Rs = Gs−EsĜsE
T
s = (Ψres

s)TΨres
s , satisfies ‖Rs‖2

F ≤ sν. In particular, for
s = n, ‖Rn‖2

F ≤ nν.

D. Out-of-Sample Extension for Vector Fields
The presented dictionary can be utilized to estimate a tangential vector field by using a recursive

algorithm similar to the well known Kernel Recursive Least Squares (KRLS) in [7]. In a supervised
learning scheme, the predictor in Eq. III.4 is designed to minimize the l2 distance between the predicted
vector field at each iteration s and the actual given vector field (as part of the training set) by

J(~w) =
s∑
i=1

‖ν̂(xi)− ν(xi)‖2
2 =

s∑
i=1

∥∥∥∥∥
t∑

j=1

G(xi,xj) ~wj − ν(xi)

∥∥∥∥∥
2

2

= ‖G~w − ~ν‖2
2, (IV.11)

where ~w is the predictor weights vector and ~ν is the concatenation of all the given training values of
the vector field2. The Recursive Least Squares solution, which minimizes J(~w), is given by ~wo = G−1~ν.
In the case when the number of vector examples is large, the complexity of inverting the super-kernel
tends to be expensive in terms of computational cost and memory requirements. Furthermore, the length
of the predictor weight vector ~wo depends on the number of training samples. Hence, redundant samples,
which generate linearly-dependent rows in the super-kernel, will cause over-fitting by the predictor. One
possible remedy for these problems is to utilize the sparsification procedure from Section IV-B in order
to design the predictor. The optimizer ~wo can be formulated by introducing the dictionary estimated
super-kernel as J(~w) = ‖G~w − ~ν‖2

2 ≈ ‖ET
s ĜsEsw − ~ν‖2

2 by Eq. IV.10. Let α = Esw, then the predictor
is reformulated as ~̂ν(xi) =

∑s
j=1C

(s)
j G(xj ,xi)αj , and the corresponding predictor’s l2 error is given by

J(α) = ‖ET
s ĜsEsw − f‖ = ‖ET

s Ĝsα− ~ν‖, which can be minimized by

αo = (ET
s Ĝs)

†f = Ĝ−1
s (EsE

T
s)−1f. (IV.12)

Now, the predictor coefficients αo is computed using the dictionary-based super-kernel Ĝs and the corre-
sponding extension matrix Es. It is important to note that in some applications, it is sufficient to consider
only the dictionary members and corresponding kernel plus vectors sampled from the given vector field.
In this case, the extenstion/predictor coefficients can be directly designed according to Eq. III.2.

2For the sake of simplicity, we use this slight abuse of notations, namely, using the same notation for the vector field and for the aggregation
of its known values.

10

V. ILLUSTRATION OF DATA ANALYSIS VIA DICTIONARY BASED PATCH-TO-TENSOR EMBEDDING

The PTE methodology in [10] provides a general framework that can be utilized to a wide spectrum
of data analysis tasks such as clustering, classification, anomaly detection and related manifold learning
tasks. In this section, we demonstrate the utilization of the proposed dictionary construction based PTE
to two interesting applications: I. Vector field extension. II. Image segmentation.

(a) (b)

Fig. V.1. The generated vector field. (a) Full view. (b) Zoom.

Example I: Vector field extension: In this example, we utilize a synthetic vector field F for the
demonstration. The synthetic vector field consists of |M | = N = 8050 points sampled from a two
dimensional half sphere M that is immersed in R3 by F : M → R3 such that for any x ∈ M we have
F (x) ∈ Tx(M). For each data point, we generate a vector that lies on the tangent plane of the sphere at
the corresponding data point. Figure V.1 illustrates the described vector field by two views.

The dictionary in this example is constructed using Algorithm IV.1 with the meta-parameters ε = 0.0218
and µ = 0.0005. The resulting dictionary contains ηN = 414 dictionary members. Figure V.2 presents the
dictionary members, which provides an almost uniform sampling of the sphere.

Under the above settings, the vector OT
xF (x) is a coordinate vector of F (x) for the local basis of

Tx(M). Our goal is to extend F to any data point y ∈ M\M . In our example, for each data point
x ∈M , we have a closed-form for its local patch. Each patch at the data point x = (x1, x2) is spanned by
two vectors S1 = (1, 0,−x1

√
1− x2

1 − x2
2) and S2 = (0, 1,−x2

√
1− x2

1 − x2
2). Hence, the corresponding

tangent space Ox is given by the SVD of [S1, S2]T . Furthermore, we choose the vectors of the vector field
to be the corresponding vector F (x) = (1, 0,−x1

√
1− x2

1 − x2
2). Equation III.2 provides the solution to

the extension problem given the dictionary members and the corresponding super-kernel. For each point
y that is not in the dictionary, we compute Eq. III.4 to find the extended vector field. The resulting vector
field is compared to the original vector field in Fig. V.3.

In order to evaluate the performance of the extension, we compared both the length of the resulting
vector and its direction. Figure V.4 describes the cumulative distribution function of these squared errors.
The cumulative distribution functions in Fig. V.4 suggest that, compared to the ground truth vector field,
about 93% of the estimated vectors have a vector length square error of less than 10−2, and 95% have
vector direction square error of less than 2 · 10−2 radians.

Example II: Image segmentation: Image segmentation aims to cluster pixels into image regions that
correspond to individual surfaces, objects, or natural parts of objects. Image segmentation plays a key
rule in many computer vision tasks such as object recognition, image compression, image editing, image
retrieval, to name some.

11

(a) (b)

Fig. V.2. The generated vector field (arrow) and chosen dictionary members (circle). (a) Full view. (a) Zoom.

Under the PTE framework [10], the image is viewed as a super-kernel constructed to reflect the affinities
between the pixels and the projection of the related tangent spaces. The PTE construction translates a
given pixel related features into tensors in the embedded space. The image segmentation is achieved
through tensors clustering into similar groups in the embedding space.

For the image segmentation examples, we utilized the pixel color information and its spatial (x,y)
location multiplied by the scaling factor w = 0.1. Hence, given an RGB image with Ix× Iy pixels, we
generated the dataset X of size 5× (Ix · Iy).

Algorithm IV.1 is used to construct an embedding of X in a tensor space. The first step in Algorithm IV.1
constructs local patches. Each generated patch captures the relevant neighborhood and considers both
color and spatial similarities. Hence, a patch is more likely to include attributes related to spatially
close pixels. It is important to note that the affinity kernel is computed according to Eq. II.2 where ε
equals the mean Euclidean distance between all pairs in X . The PTE parameters l and ρ were chosen
to generate homogeneous segments. The dictionary’s approximation tolerance µ was chosen arbitrarily
to be µ = 0.001. The k-means algorithm with sum of square differences was used to cluster the tensors
into similar groups. The final clustering results from the embedded tensors as a function of the diffusion
transition time t are presented in Figs. V.5-V.6.

These figures present the outputs from the application of the PTE segmentation that are based on the
dictionary construction. In each figure, (a) is the original image. The images’ sizes are given in Table V.1.

(a) (b)

Fig. V.3. The extended vector field (red) and the given vector field (blue). (a) Full view. (b) Zoom.

12

(a)

(b)

Fig. V.4. The cumulative distribution function of MSE of (a) Estimated vector length and (b) Estimated vector direction.

Each figure describes the output from the segmentation as a function of the diffusion parameter t. The
effect of the diffusion transition time on the segmentation is significant for the ‘Hand’ image. For example,
we can see the first three images in Fig. V.5 that correspond to t = 1 and t = 3, respectively. They provide
poor segmentation results. As t increases, the segmentation becomes more homogenous thus the main
structures in the original image can be separated. For example, see t = 4 in (e). Another consequence from
the increase in the diffusion transition time parameter t is the smoothing effect on the pairwise distances
between data points in the embedded space. By increasing t, the pairwise distance between similar tensors

Image Size d SVD Cost - Full G SVD Cost - Approx. G Dict. Size
Hand 104x128 2 O

(
266243

)
O (26624× 16) 2

Sport 40x77 2 O
(
61603

)
O (6160× 16) 2

TABLE V.1
COMPARING THE ESTIMATED PERFORMANCE COST OF THE DICTIONARY, WHERE d IS THE ESTIMATED INTRINSIC DIMENSION, SVD

Cost - Full G IS THE COMPUTATIONAL COST ESTIMATE FOR A FULL KERNEL DECOMPOSITION, SVD Cost - Approx. G IS THE
COMPUTATIONAL COST ESTIMATE FOR THE DECOMPOSITION OF THE APPROXIMATED KERNEL ACCORDING TO EQ. IV.9 AND Dict. Size

IS THE NUMBER OF DICTIONARY MEMBERS.

13

is reduced while he distances between dissimilar tensors increases.
The dictionary construction enables us to practically utilize the PTE for segmentation of reasonably sized

images. The computational costs were significantly reduced from the application of the SVD decomposition
that utilizes the full super-kernel. These performances were achieved by using the dictionary-based
SVD/QR of the extension coefficient matrix E, which is efficiently computed using the methods described
in the paper.

VI. CONCLUSIONS

The proposed construction extends the dictionary construction in [7] to use the LPD super-kernel
from [10], [13]. This is done by an efficient dictionary based construction that assumes the data is
sampled from an underlying manifold and utilizes non-scalar relations and similarities between patches of
the manifold instead of utilizing individual data points. The utilized dictionary contains these patches of
the underlying manifold, which are represented by the embedded tensors from [10], instead of individual
data points. Therefore, it encompasses multidimensional similarities between local areas of the data. It
alleviates the computational costs of the spectral analysis of such data (e.g., the Patch-to-Tensor Embedding
presented in [10]).

Acknowledgements: This research was supported by the Israel Science Foundation (Grant No. 1041/10),
the Israel Ministry of Science & Technology (Grant No. 3-9096). The third author was supported by the
Eshkol Fellowship from the Israel Ministry of Science & Technology.

REFERENCES

[1] C.T.H. Baker. The Numerical Treatment of Integral Equations. Oxford: Clarendon Press, 1977.
[2] C. Ballester, M. Bertalmio, G. Sapiro, and J. Verdera. Filling-in by joint interpolation of vector fields and gray levels. IEEE Trans.

Image Processing, 10:1200–1211, 2001.
[3] A. Bermanis, A. Averbuch, and R.R. Coifman. Multiscale data sampling and function extension. Applied and Computational Harmonic

Analysis, 2012. DOI:10.1016/j.acha.2012.03.002.
[4] R.R. Coifman and S. Lafon. Diffusion maps. Applied and Computational Harmonic Analysis, 21(1):5–30, 2006.
[5] R.R. Coifman and S. Lafon. Geometric harmonics: A novel tool for multiscale out-of-sample extension of empirical functions. Applied

and Computational Harmonic Analysis, 21(1):31–52, 2006.
[6] T. Cox and M. Cox. Multidimensional Scaling. Chapman and Hall, London, UK, 1994.
[7] Y. Engel, S. Mannor, and R. Meir. The kernel recursive least-squares algorithm. Signal Processing, IEEE Transactions on, 52(8):2275

– 2285, aug. 2004.

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. V.5. Segmentation results from the application of the PTEA algorithm to ‘Hand’ with l = 10 and d = 10. (a) Original image. (b)
Segmentation with t = 1. (c) Segmentation with t = 2. (d) Segmentation with t = 3. (e) Segmentation with t = 4. (f) Segmentation with
t = 5. (g) Segmentation with t = 6. (h) Segmentation with t = 7.

14

(a) (b) (c) (d) (e) (f) (g) (h)

Fig. V.6. Segmentation results from the application of the PTEA algorithm to ‘Sport’ with l = 10 and d = 20. (a) Original image. (b)
Segmentation with t = 1. (c) Segmentation with t = 2. (d) Segmentation with t = 3. (e) Segmentation with t = 4. (f) Segmentation with
t = 5. (g) Segmentation with t = 6. (h) Segmentation with t = 7.

[8] E. J. Fuselier and G.B. Wright. Stability and error estimates for vector field interpolation and decomposition on the sphere with rbfs.
SIAM J. Numer. Anal., 47(5):3213–3239, October 2009.

[9] J.B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29:1–27, 1964.
[10] M. Salhov, G. Wolf, and A. Averbuch. Patch-to-tensor embedding. Applied and Computational Harmonic Analysis, 33(2):182 – 203,

2012.
[11] A. Singer and H.-t. Wu. Orientability and diffusion maps. Applied and Computational Harmonic Analysis, 31(1):44–58, 2011.
[12] A. Singer and H.-t. Wu. Vector diffusion maps and the connection laplacian. Communications on Pure and Applied Mathematics,

65(8):1067–1144, 2012.
[13] G. Wolf and A. Averbuch. Linear-projection diffusion on smooth Euclidean submanifolds. Applied and Computational Harmonic

Analysis, 2012. DOI:10.1016/j.acha.2012.03.003.

