Skip to main content

Weighting Features for Partition around Medoids Using the Minkowski Metric

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7619))

Abstract

In this paper we introduce the Minkowski weighted partition around medoids algorithm (MW-PAM). This extends the popular partition around medoids algorithm (PAM) by automatically assigning K weights to each feature in a dataset, where K is the number of clusters. Our approach utilizes the within-cluster variance of features to calculate the weights and uses the Minkowski metric.

We show through many experiments that MW-PAM, particularly when initialized with the Build algorithm (also using the Minkowski metric), is superior to other medoid-based algorithms in terms of both accuracy and identification of irrelevant features.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brohee, S., Van Helden, J.: Evaluation of clustering algorithms for protein-protein interaction networks. BMC Bioinformatics 7(1), 488–501 (2006)

    Article  Google Scholar 

  2. Hartigan, J.A.: Clustering algorithms. John Willey & Sons (1975)

    Google Scholar 

  3. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recognition Letters 31(8), 651–666 (2010)

    Article  Google Scholar 

  4. Kaufman, L., Rousseeuw, P.J.: Finding groups in data: an introduction to cluster analysis. Wiley Online Library (1990)

    Google Scholar 

  5. Mirkin, B.: Core concepts in data analysis: summarization, correlation and visualization. Springer, New York (2011)

    Book  MATH  Google Scholar 

  6. Ball, G.H., Hall, D.J.: A clustering technique for summarizing multivariate data. Behavioral Science 12(2), 153–155 (1967)

    Article  Google Scholar 

  7. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, California, USA, pp. 281–297 (1967)

    Google Scholar 

  8. de Amorim, R.C., Komisarczuk, P.: On partitional clustering of malware. In: CyberPatterns, pp. 47–51. Abingdon, Oxfordshire (2012)

    Google Scholar 

  9. Chan, E.Y., Ching, W.K., Ng, M.K., Huang, J.Z.: An optimization algorithm for clustering using weighted dissimilarity measures. Pattern Recognition 37(5), 943–952 (2004)

    Article  MATH  Google Scholar 

  10. Huang, J.Z., Ng, M.K., Rong, H., Li, Z.: Automated variable weighting in k-means type clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(5), 657–668 (2005)

    Article  Google Scholar 

  11. Huang, J.Z., Xu, J., Ng, M., Ye, Y.: Weighting Method for Feature Selection in K-Means. In: Computational Methods of Feature Selection, pp. 193–209. Chapman and Hall (2008)

    Google Scholar 

  12. Mirkin, B.G.: Clustering for data mining: a data recovery approach. CRC Press (2005)

    Google Scholar 

  13. de Amorim, R.C., Mirkin, B.: Minkowski Metric, Feature Weighting and Anomalous Cluster Initializing in K-Means Clustering. Pattern Recognition 45(3), 1061–1075 (2011)

    Article  Google Scholar 

  14. Modha, D.S., Spangler, W.S.: Feature weighting in k-means clustering. Machine Learning 52(3), 217–237 (2003)

    Article  MATH  Google Scholar 

  15. Tsai, C.Y., Chiu, C.C.: Developing a feature weight self-adjustment mechanism for a K-means clustering algorithm. Computational Statistics & Data Analysis 52(10), 4658–4672 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bilenko, M., Basu, S., Mooney, R.J.: Integrating Constraints and Metric Learning in Semi-Supervised Clustering. In: Proceedings of 21st International Conference on Machine Learning, Banff, Canada, pp. 81–88 (2004)

    Google Scholar 

  17. Xing, E.P., Ng, A.Y., Jordan, M.I., Russell, S.: Distance metric learning, with application to clustering with side-information. In: Advances in Neural Information Processing Systems 16, pp. 521–528 (2002)

    Google Scholar 

  18. Makarenkov, V., Legendre, P.: Optimal variable weighting for ultrametric and additive trees and K-means partitioning: Methods and software. Journal of Classification 18(2), 245–271 (2001)

    MathSciNet  MATH  Google Scholar 

  19. Frigui, H., Nasraoui, O.: Unsupervised learning of prototypes and attribute weights. Pattern Recognition 37(3), 567–581 (2004)

    Article  Google Scholar 

  20. Irvine UCI Machine Learning Repository, http://archive.ics.uci.edu/ml/

  21. Nabney, I., Bishop, C.: Netlab neural network software. Matlab Toolbox

    Google Scholar 

  22. de Amorim, R.C.: Constrained Intelligent K-Means: Improving Results with Limited Previous Knowledge. In: ADVCOMP, pp. 176–180 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Amorim, R.C., Fenner, T. (2012). Weighting Features for Partition around Medoids Using the Minkowski Metric. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34156-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34155-7

  • Online ISBN: 978-3-642-34156-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics