Skip to main content

Assembly Detection in Continuous Neural Spike Train Data

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7619))

Abstract

Since Hebb’s work on the organization of the brain [16] finding cell assemblies in neural spike trains has become a vivid field of research. As modern multi-electrode techniques allow to record the electrical potentials of many neurons in parallel, there is an increasing need for efficient and reliable algorithms to identify assemblies as expressed by synchronous spiking activity. We present a method that is able to cope with two core challenges of this complex task: temporal imprecision (spikes are not perfectly aligned across the spike trains) and selective participation (neurons in an ensemble do not all contribute a spike to all synchronous spiking events). Our approach is based on modeling spikes by influence regions of a user-specified width around the exact spike times and a clustering-like grouping of similar spike trains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J.: Maintaining knowledge about temporal intervals. Communications of the ACM 26(11), 832–843 (1983)

    Article  MATH  Google Scholar 

  2. Berger, D., Borgelt, C., Diesmann, M., Gerstein, G., Grün, S.: An accretion based data mining algorithm for identification of sets of correlated neurons. In: 18th Annual Computational Neuroscience Meeting: CNS 2009, vol. 10(suppl. 1), pp. 18–23 (2009)

    Google Scholar 

  3. Berger, D., Borgelt, C., Louis, S., Morrison, A., Grün, S.: Efficient identification of assembly neurons within massively parallel spike trains. Computational Intelligence and Neuroscience, Article ID 439648 (2010), doi: 10.1155/2010/439648

    Google Scholar 

  4. Braune, C., Borgelt, C., Grün, S.: Finding Ensembles of Neurons in Spike Trains by Non-linear Mapping and Statistical Testing. In: Gama, J., Bradley, E., Hollmén, J. (eds.) IDA 2011. LNCS, vol. 7014, pp. 55–66. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Buzsáki, G.: Large-scale Recording of Neuronal Ensembles. Nature Neuroscience 7, 446–461 (2004)

    Article  Google Scholar 

  6. Cox, T.F., Cox, M.A.A.: Multidimensional Scaling, 2nd edn. Chapman and Hall, London (2000)

    Book  Google Scholar 

  7. Dice, L.R.: Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)

    Article  Google Scholar 

  8. Diekman, C.O., Sastry, P.S., Unnikrishnan, K.P.: Statistical significance of sequential firing patterns in multi-neuronal spike trains. Journal of Neuroscience Methods 182(2), 279–284 (2009)

    Article  Google Scholar 

  9. Edwards, A.: An introduction to linear regression and correlation. WH Freeman, New York (1984)

    MATH  Google Scholar 

  10. Feldt, S., Waddell, J., Hetrick, V.L., Berke, J.D., Zochowski, M.: Functional clustering algorithm for the analysis of dynamic network data. Physical Review E 79(5), 056104-1–056104-9 (2009)

    Google Scholar 

  11. Gerstein, G., Perkel, D., Subramanian, K.: Identification of functionally related neural assemblies. Brain Research 140(1), 43–62 (1978)

    Article  Google Scholar 

  12. Grün, S., Diesmann, M., Grammont, F., Riehle, A., Aertsen, A.: Detecting unitary events without discretization of time. Journal of Neuroscience Methods 94, 67–79 (1999)

    Article  Google Scholar 

  13. Grün, S., Abeles, M., Diesmann, M.: Impact of Higher-Order Correlations on Coincidence Distributions of Massively Parallel Data. In: Marinaro, M., Scarpetta, S., Yamaguchi, Y. (eds.) Dynamic Brain - from Neural Spikes to Behaviors. LNCS, vol. 5286, pp. 96–114. Springer, Heidelberg (2008)

    Google Scholar 

  14. Grün, S., Diesmann, M., Aertsen, A.: Unitary events in multiple single-neuron activity. I. Detection and significance. Neural Computation 14(1), 43–80 (2002)

    Article  MATH  Google Scholar 

  15. Hamming, R.: Error detecting and error correcting codes. Bell Systems Tech. Journal 29, 147–160 (1950)

    MathSciNet  Google Scholar 

  16. Hebb, D.: The organization of behavior. J. Wiley & Sons, New York (1949)

    Google Scholar 

  17. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes et des jura. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 547–579 (1901)

    Google Scholar 

  18. Lewicki, M.: A review of methods for spike sorting: The detection and classification of neural action potentials. Network 9(4), R53–R78 (1998)

    Article  MathSciNet  Google Scholar 

  19. Masud, M.S., Borisyuk, R.: Statistical technique for analysing functional connectivity of multiple spike trains. Journal of Neuroscience Methods 196(1), 201–219 (2011)

    Article  Google Scholar 

  20. Pazienti, A., Maldonado, P., Diesmann, M., Grün, S.: Effectiveness of systematic spike dithering depends on the precision of cortical synchronization. Brain Research 1225, 39–46 (2008)

    Article  Google Scholar 

  21. Perkel, D.H., Gerstein, G.L., Moore, G.P.: Neuronal spike trains and stochastic point processes: II. Simultaneous spike trains. Biophysical Journal 7(4), 419–440 (1967)

    Article  Google Scholar 

  22. Picado-Muiño, D., Castro-León, I., Borgelt, C.: Fuzzy frequent pattern mining to identify frequent neuronal patterns in parallel spike trains. Submitted to IDA 2012

    Google Scholar 

  23. Rogers, D., Tanimoto, T.: A computer program for classifying plants. Science 132, 1115–1118 (1960)

    Article  Google Scholar 

  24. Sammon, J.: A nonlinear mapping for data structure analysis. IEEE Trans. Comput. 18(5), 401–409 (1969)

    Article  Google Scholar 

  25. Shmiel, T., Drori, R., Shmiel, O., Ben-Shaul, Y., Nadasdy, Z., Shemesh, M., Teicher, M., Abeles, M.: Temporally precise cortical firing patterns are associated with distinct action segments. Journal of Neurophysiology 96(5), 2645–2652 (2006)

    Article  Google Scholar 

  26. Tanimoto, T.: IBM Internal Report (November 17, 1957)

    Google Scholar 

  27. Yule, G.: On the association of attributes in statistics. Philosophical Transactions of the Royal Society of London, Series A 194, 257–319 (1900)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Braune, C., Borgelt, C., Grün, S. (2012). Assembly Detection in Continuous Neural Spike Train Data. In: Hollmén, J., Klawonn, F., Tucker, A. (eds) Advances in Intelligent Data Analysis XI. IDA 2012. Lecture Notes in Computer Science, vol 7619. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34156-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-34156-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-34155-7

  • Online ISBN: 978-3-642-34156-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics