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Abstract. Providing security for a wireless sensor network composed of
small sensor nodes with limited battery power and memory can be a non-
trivial task. A variety of key predistribution schemes have been proposed
which allocate symmetric keys to the sensor nodes before deployment.
In this paper we examine the role of expander graphs in key predistri-
bution schemes for wireless sensor networks. Roughly speaking, a graph
has good expansion if every ‘small’ subset of vertices has a ‘large’ neigh-
bourhood, and intuitively, expansion is a desirable property for graphs of
networks. It has been claimed that good expansion in the product graph
is necessary for ‘optimal’ networks. We demonstrate flaws in this claim,
argue instead that good expansion is desirable in the intersection graph,
and discuss how this can be achieved. We then consider key predistribu-
tion schemes based on expander graph constructions and compare them
to other schemes in the literature. Finally, we propose the use of expan-
sion and other graph-theoretical techniques as metrics for assessing key
predistribution schemes and their resulting wireless sensor networks.
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1 Introduction

A wireless sensor network (WSN) is a collection of small, battery powered de-
vices called sensor nodes. The nodes communicate with each other wirelessly and
the resulting network is usually used for monitoring an environment by gather-
ing local data such as temperature, light or motion. As the nodes are lightweight
and battery powered, it is important to consider battery conservation in order
to allow the network to remain effective for the appropriate period of time, and
to ensure that the storage required of the nodes is not beyond their memory
capacity.

WSNs are suitable for deployment in many different environments, including
potentially hostile areas such as military or earthquake zones, where it would be
dangerous or impractical to carry out the monitoring of data gathering by hand.
In hostile environments it may be necessary to encrypt messages for security and
/ or authentication. Various cryptographic key management schemes have been



proposed for such scenarios. In some cases there is an online key server or base
station to distribute keys to the nodes where needed; if not, key predistribution
schemes (KPSs) are required, which assign keys to nodes before deployment.
Due to the resource-constrained nature of the nodes, it may be infeasible to
use asymmetric cryptographic techinques in some WSN scenarios, and so we
consider symmetric key predistribution schemes.

Since networks may be modelled as graphs, tools from graph theory have
been used both to analyse and to design networks. In particular, we explore
the role of expander graphs in KPSs for WSNs. The expansion of a graph is a
measure of how well connected it is, and how difficult it is to separate subsets
of vertices; we will see the precise definition in Sect. 2.3. The term ‘expander
graphs’ is used informally to refer to graphs with good expansion.

In 2006, expander graph theory was introduced to the study of KPSs for
WSNs from two perspectives. On the one hand, Camtepe et al [5] showed that a
mathematical construction for an expander graph could be used to design a KPS,
resulting in a network which is well connected under certain constraints. On the
other hand, Ghosh [13] claimed that good expansion is a necessary condition for
‘optimal’ WSNs. We examine these claims and determine the role of expander
graphs in KPSs for WSNs.

Firstly, we show that Ghosh’s claim is flawed but identify where expansion
properties are desirable for WSNs, namely in the intersection graph rather than
the product graph. We then analyse the effectiveness of constructions for KPSs
based on expander graphs, showing that they provide perfect resilience against
an adversary but lower connectivity and expansion than many existing KPSs, for
the same network size and key storage. We argue that expansion is an important
metric for assessing KPSs to be used alongside the other common metrics of key
storage, connectivity and resilience for a given network size. However, we note
the difficulty of finding the expansion coefficient of a graph and so propose es-
timating the expansion and using other graph-theoretical techniques to indicate
weaknesses.

We begin by introducing the relevant terminology and concepts in Sect. 2. In
Sect. 3 we outline Ghosh’s claims and show by means of a counter-example that
his conclusion is misdirected towards expansion in product graphs rather than
intersection graphs. In Sect. 4 we discuss how to maximise the probability of a
high expansion coefficent in the intersection graph, and in Sect. 5 we analyse the
extent to which KPSs based on expander graph constructions achieve this, in
comparison to other schemes from the literature. Finally, in Sect. 6 we suggest
practical metrics for analysing and improving KPSs and the resulting WSNs,
and conclude in Sect. 7.

2 Background

2.1 Key Predistribution Schemes for Wireless Sensor Networks

A key predistribution scheme is a well-defined method for determining the com-
bination of keys which should be stored on each node before deployment. Once



the nodes have been deployed in the environment, they broadcast identifiers
which uniquely correspond to the keys they store, and determine the other nodes
(within communication range) with which they share at least one common key,
in order to form a WSN.

There are many ways of designing a KPS, and different KPSs suit different
WSN applications. We consider KPSs which assign symmetric keys, since small
sensor nodes are resource-constrained with low storage, communication and com-
putational abilities, and are often unable to support asymmetric cryptography.
In order to make best use of the nodes’ limited resources, it is usually desirable
to minimise the key storage requirement whilst maximising the connectivity and
resilience of the network. We now define these concepts more precisely.

– Key storage is the maximum number of keys which an individual node is
required to store for a particular KPS.

– Connectivity of a network can be measured or estimated both globally and
locally. We will refer again to global connectivity in Sect. 6 but in general
we will use the measure of local connectivity Pr1. This is defined to be the
probability that two randomly-chosen nodes are ‘connected’ because they
have at least q keys in common. Most KPSs require nodes to share just one
key before they can establish a secure connection, ie. q = 1, and so Pr1 is
simply the probability that a random pair of nodes have at least one key in
common. Some schemes such as the q-composite scheme of Chan et al. [6]
introduce a threshold such that nodes may only communicate if they have
at least q > 1 common keys. Where two nodes share more than q keys, some
protocols dictate that they should use a combination of those keys, such as
a hash, to encrypt their communications.

– Resilience is a measure of the network’s ability to withstand damage from an
adversary. We use the adversary model of a continuous, listening adversary,
which can listen to any communication across the network and continually
over time ‘compromise’ nodes, learning the keys which they store. We mea-
sure the resilience with the parameter fails: we suppose that an adversary
has compromised s nodes, and then compute the probability that a link be-
tween two uncompromised nodes in the network is compromised, that is,
the adversary knows the key(s) being used to secure it. Equivalently, fails
measures the fraction of compromised links between uncompromised nodes
throughout the network, after an adversary has compromised s nodes. No-
tice that high resilience corresponds to a low value of fails. We say that a
network has perfect resilience against such an adversary if fails = 0 for all
1 ≤ s < n− 2.

To illustrate the trade-offs required between these three parameters, we con-
sider some trivial examples of KPSs.

1. Every node is assigned a single key k before deployment.
This would require minimal key storage and ensure that any pair of nodes
could communicate securely, so Pr1 = 1 for all pairs of nodes. However,
there would be minimal resilience against an adversary, as the compromise



of a single node would reveal the key k, rendering all other links insecure.
Formally, fails = 1 for all 1 ≤ s ≤ n − 2, where n is the total number of
nodes.

2. A unique key is assigned to every pair of nodes.

That is, for all 1 ≤ i, j ≤ n, nodes ni and nj are both preloaded with a key
kij , where kij 6= klm for all l 6= i,m 6= j. This is called the complete pairwise
KPS. Such a KPS would have perfect resilience and maximum connectivity,
as Pr1 = 1 for all pairs of nodes. However, each node would have to store
n− 1 keys, which is infeasible when n is large.

3. Every node is assigned a single unique key.

Whilst providing minimal key storage and perfect resilience, this KPS has
no connectivity, as Pr1 = 0 for all pairs of nodes.

We see, then, that it is trivial to optimise any two of these three parameters.
However, for many WSN applications these schemes are inappropriate, and so we
consider KPSs which find trade-offs between all three of these metrics. A variety
of such KPSs have been proposed, both deterministic and random, a survey of
which is given in [4][7][19][23].

We now describe the Eschenauer Gligor KPS [12] as an example of a KPS
which provides values for the three metrics which are appropriate for many WSN
scenarios. It will also be used as a comparison for KPSs based on expander graph
constructions in Sect. 5.

Example 1. The Eschenauer Gligor KPS [12] works in the following way. A key
pool K is generated. To each node ni is assigned a random subset of k keys from
K. The probability of two nodes sharing at least one key is

Pr1 = 1−
(|K|−k

k

)(|K|
k

) . (1)

An equivalent formula is given in [12]. We verify (1) by considering the prob-
ability of two arbitrary nodes ni and nj sharing no common keys. If node ni
stores a set Si of k keys, node nj stores Sj and Si ∩ Sj = ∅, then every key of
Sj must have been picked from the key pool K \ Si, that is from a set of |K| − k
keys. Therefore the probability of two nodes having no keys in common is equal
to the number of ways of choosing k keys from a key pool of |K| − k, divided by
the number of ways of choosing k keys from the full key pool.

As explained in [6], the resilience after the compromise of s nodes is

fails =

(
1−

(
1− k

|K|

)s)q

. (2)

where q is the number of keys shared between two randomly-chosen uncompro-
mised nodes. This leads to the intuitive result that if the adversary has com-
promised one node, learning k keys, and two randomly-chosen uncompromised
nodes share q = 1 key k1, then the probability of the adversary knowing k1 is



fail1 = k
|K| . If q > 1 keys are shared between the nodes then the value of fail1 will

be smaller, as fail1 =
(

k
|K|

)q
.

Table 1 demonstrates the value of Pr1 and upper bound for fail1 for some
different sizes of key pool and key storage. (We assume for this example that all
nodes are within communication range of one another.) It can be seen that by
adjusting the values of |K| and k, with k small, we can achieve arbitrarily large
Pr1 whilst keeping fail1 relatively small. This makes the Eschenauer Gligor KPS
appropriate for many WSN scenarios.

Table 1. Example values for an Eschenauer Gligor KPS

|K| k Pr1 fail1

500 25 0.731529 0.050
500 50 0.996154 0.100
1000 25 0.473112 0.025
1000 50 0.928023 0.050

In accordance with most papers in the literature, we will use key storage,
connectivity and resilience along with network size as metrics for comparing
KPSs. Network size is relevant since for small networks the complete pairwise
KPS is practical, and because some KPSs are not adaptable for all sizes of
network. For example we will see in Sect. 5 that the KPS proposed by Camtepe
et al [5] is only possible for networks of size n = t+1 where t is a prime congruent
to 1 mod 4.

Later, in Sect. 6, we will propose that in addition to network size, key storage,
connectivity and resilience, it is important to consider expansion as a metric
when comparing KPSs.

2.2 Graph Theory

We now introduce some graph-theoretic definitions, beginning with general ter-
minology in this section before giving the specific definitions related to expander
graphs in Sect. 2.3.

A graph G = (V,E) is a set of vertices V = {v1, . . . , vn} and a set of edges
E. We use the notation (vi, vj) ∈ E to express that there is an edge between the
vertices vi and vj , and we say that the edge (vi, vj) is incident to its endpoints
vi and vj . Wherever an edge (vi, vj) exists, vi and vj can be said to be adjacent.

All graphs considered in this paper will be simple graphs, that is, they are
unweighted, undirected and do not contain self-loops or multiple edges. These
terms respectively mean that vertices are not assigned different weights, edges



are not directed from one vertex to the other, there are no edges from the a node
to itself, and any edge between two vertices is unique.

Given subsets of vertices X,Y ⊂ V , the set of edges which connect X and Y
is denoted

E(X,Y ) = {(x, y) : x ∈ X, y ∈ Y and (x, y) ∈ E} ,

and the complement X ofX is the vertices which are not inX, that is,X = V \X.
An ordered set of consecutive edges {(vi1, vi2), (vi2, vi3), . . . , (vi(p−1), vip)} in

which all the vertices vi1, vi2, . . . , vip are distinct is called a path of length p−1. A
cycle is a ‘closed’ path which begins and ends at the same vertex, ie. a cycle is a
path {(vi1, vi2), (vi2, vi3), . . . , (vi(p−1), vip)} where vi1, vi2, . . . , vi(p−1) are distinct
but vi1 = vip. We say that a graph is connected if there is a path between every
pair of vertices, and complete if there is an edge between every pair of vertices.
The degree d(v) of a vertex v is the number of edges incident to that vertex. If
all nodes have the same degree r, we call the graph r-regular.

We draw a graph of a WSN by representing the nodes as vertices and the
‘connections’ as edges. To be precise in our analysis, we distinguish between the
two possible types of ‘connection’ and consider the separate constituent graphs
of a network: the communication graph G1 = (V,E1) where (vi, vj) ∈ E1 if
vi and vj are within communication range, and the key graph G2 = (V,E2)
where (vi, vj) ∈ E2 if vi and vj share at least q common keys. An example of a
communication graph and a key graph are given in Fig. 1.

v1 v2

v3 v4

(a) Comm. graph

{k1, k2} {k3, k4}

{k1, k3} {k1, k4}

(b) Key graph

v1 v2

v3 v4

k1 k3

k1

(c) Intersection graph

Fig. 1. Example of corresponding communication, key and intersection graphs

If the communication graph is complete, it is often omitted from the analysis
as there is no need to check whether nodes can communicate. However, as we
will explain in Sect. 4, the communication graph is commonly modelled using a
random graph, and it then becomes important to analyse how the communication
and key graphs relate to each other.

We say that two nodes vi and vj can communicate securely if (vi, vj) ∈
E1 ∩ E2, that is if they are adjacent in the intersection graph G1 ∩ G2 =
(V,E1 ∩ E2). This is illustrated in Fig. 1(c). We note that the standard definition
of an intersection graph is G1 ∩ G2 = (V1 ∩ V2, E1 ∩ E2), but throughout this
paper V1 = V2 and so we simply refer to the set of vertices as V .



If two nodes are not adjacent in the intersection graph then there are usually
ways for them to communicate by routing messages through intermediary nodes
and/or establishing a new key. Since any protocol for either of these methods
requires extra communication overheads, it is desirable to minimise the diameter
of the intersection graph, that is to minimise the longest path length between
nodes. Similarly, it may also be desirable to minimise the average path length
of the intersection graph.

Finally, we introduce another way of combining two graphs, which will be
needed for Sect. 3 where we consider Ghosh’s claims.

Definition 1. The (Cartesian) product graph of two graphs G = (VG, EG) and
H = (VH , EH) is defined as G.H = (VG × VH , EG.H), where the set of edges
EG.H is defined in the following way: (uv, u′v′) ∈ EG.H if

(u = u′ or (u, u′) ∈ EG)
and

(v = v′ or (v, v′) ∈ EH) .

We will now define expander graphs and explain why their properties are
desirable for WSNs.

2.3 Expander Graphs

For a thorough survey of expander graphs and their applications, see [14]. The
expansion of a graph is a measure of the quality of its connectivity.

Definition 2. A finite graph G = (V,E) is an ε-expander graph, where the
edge-expansion coefficient ε is defined by

ε = min
S⊂V :|S|≤ |V |

2

(
|E(S, S)|
|S|

)
,

where |E(S, S)| denotes the number of edges from the set S to its complement.

The phrase ‘expander graph’ is used informally to refer to graphs with good
expansion, that is, graphs with a high value of ε, as we explain below. We note
that definitions vary across the literature, in particular some defintions use the

strict inequality |S| < |V |
2 . Another name for the edge-expansion coefficient is

the isoperimetric number, and in a graph where every vertex has the same weight
this is equivalent to the Cheeger constant ; see [9] for further details.

We now explore what the definition of the edge-expansion coefficient ε means,
and why a high value of ε is desirable, through the following observations:

– If ε = 0 then we see from the definition that there exists a subset S ⊂ V
without any edges connecting it to the rest of the graph. This implies that
the graph is not connected.

– A graph is connected if and only if ε > 0 (see proof of Proposition 1), hence
all connected graphs are ε-expander graphs for some positive value of ε.



– If ε is ‘small’, for example ε = 1
100 , then there exists a set of vertices S which

is only connected to the rest of the graph by one edge per 100 nodes in S.
This is undesirable for a WSN for the following reasons:
• The set S is vulnerable to being ‘cut off’ from the rest of the network

by a small number of attacks or faults. If S contains c× 100 nodes then
there are only c edges between S and S. A small number of compromises
or failures amongst the particular ≤ 2c nodes incident to these edges will
render all communication between S and S insecure.

• Since S is connected to the rest of the network by comparatively few
edges, a higher communication burden is placed on the small set of ≤ 2c
nodes, since a higher proportion of data needs to be routed through
them. This will drain the batteries of the nodes nearest to the edges
between S and S faster than those of an average node, so that after
some period of time they will run out of energy, disconnecting S from
the rest of the network even though many nodes in S may still have
battery power remaining.

• Reliance on a small number of edges to connect large sets of nodes may
create bottlenecks in the transmission of data through the network, mak-
ing data collection and/or aggregation less efficient.

– If ε is larger, particularly if ε > 1, then there is no ‘easy’ way to disconnect
large sets of nodes, and communication burdens, battery usage and data flow
are more evenly spread.

We see from these observations that intersection graphs with higher values
of ε are more desirable for WSNs. A graph with a ‘large’ value of ε is often said
to have ‘good expansion’. The the size of ε is subject to the following bounds.

Proposition 1. For any connected graph G = (V,E) with |V | ≥ 2,

0 < ε ≤ min
v∈V

d(v) .

Proof. We begin by considering the lower bound. Suppose for a contradiction
that ε = 0. Then there exists a set S ⊂ V such |E(S, S)| = 0. This contradicts
the fact that G is connected. Since ε cannot be negative, we have that ε > 0.

For the upper bound, consider the set S = {v} where v ∈ V . It is clear
that |E(S, S)| = d(v), where d(v) is the degree of v as defined in Sect. 2.2, and

so |E(S,S)|
|S| = d(v)

1 = d(v). Since the definition of the edge-expansion coefficient

ε uses the minimum value over all S ⊂ V with |S| ≤ |V |
2 , we have that ε ≤

minv∈V d(v). ut

In addition to the observations made above, graphs with good expansion
also have low diameter, logarithmic in the size of the network [14] and contain
multiple short, disjoint paths between nodes [16], which is beneficial for schemes
like the multipath reinforcement of Chan et al. [6]. These properties mean that
key graphs with good expansion are particularly desirable for WSNs.



The papers by Camtepe et al. [5] and Shafiei et al. [21] propose KPSs based
on expander graph constructions. These methods of designing a KPS ensure that
the key graph has good expansion, and we further examine these proposals in
Sect. 5. First, we consider the claims made by Ghosh in [13] about the necessity
of good expansion for ‘optimal’ networks.

3 Expansion in Product Graphs

In [13] Ghosh considers KPSs with large network size, low key storage per node,
high connectivity and high resilience. He considers jointly ‘optimising’ these
parameters, although exactly what this means is unclear, since different appli-
cations will prioritise them differently. Nevertheless, he argues that if a KPS is
in some sense ‘optimal’, the product graph of the key graph and communication
graph must have ‘good expansion properties’. We show by a counterexample that
expansion in the product graph is not a helpful measure because the product
graph is almost inevitably an expander graph. Additionally, we show that the
product graph is unable to capture the required detail to analyse a WSN, and
that it is the intersection graph where such analysis is relevant.

In Fig.s 2 and 3 we consider examples of product graphs and examine how
they relate to their constituent communication and key graphs. Figure 2 shows
a communication and a key graph, and their corresponding intersection and
product graphs. The product graph is represented in Fig. 2(d) in a way which
demonstrates its construction, and redrawn in Fig. 2(e) for clarity.

Figure 2(d) illustrates that the product graph construction results in four
copies of the key graph, connected to each other in a pattern which resembles
the communication graph. To provide an alternative perspective, we re-draw the
same graph with the vertices arranged in a circle in Fig. 2(e). To understand the
construction, recall Def. 1 which defines the vertices and edges of the product
graph. We find that there is an edge in the product graph (ac, ab) ∈ EG.H because
a = a and (c, b) ∈ EH . Similarly, (ca, ba) ∈ EG.H because (c, b) ∈ EG and a = a.
However, we find that (aa, ab) /∈ EG.H because whilst a = a, (a, b) /∈ EH .

In Fig. 2 the communication and key graphs are identical, giving the best
possible case for intersection. We now calculate the expansion coefficient of the
product graph. Consider sets S of 1, 2, . . . , 8 vertices (recall from the definition

that we should consider subsets S with |S| ≤ |V |
2 , and here |V | = 16). We

observe that any single vertex is connected to the rest of the graph by at least
three edges, any set of two vertices is connected to the rest of the graph by at
least six edges, etc., so that

ε = min

{
3

1
,

6

2
,

9

3
,

9

4
,

11

5
,

16

6
,

12

7
,

10

8

}
.

That is, ε = 10
8 = 5

4 , so the product graph of Fig. 2 has expansion coefficient
ε = 5

4 .
Now consider Fig. 3, where we have the same key graph but the communi-

cation graph is altered. It has the same number of edges as in Fig. 2 but in such



a b

c d

(a) Comm. graph

a b

c d

(b) Key graph

a b

c d

(c) Intersection graph

aa ab

ac ad

ba bb

bc bd

ca cb

cc cd

da db

dc dd

(d) Cartesian product graph

aa ab

ac

ad

ba

bb

bc

bdcacb

cc

cd

da

db

dc

dd

(e) Cartesian product graph re-drawn

Fig. 2. A product graph corresponding to an identical communication and key graph
pair.

a way that the intersection graph, shown in Fig. 3(c), has no edges. Clearly for
WSN purposes this would mean that no secure communication was possible.

However, the product graph does have edges, and indeed appears well con-
nected. By observation, we find that it too has expansion coefficient ε = 5

4 .
Indeed, after some inspection, we find that the product graphs of Fig.s 2 and 3
are isomorphic, using a simple bijection to relabel vertices as follows:

Fig. 2(e) Fig. 3(e)
(a∗) → (c∗)
(b∗) → (d∗)
(c∗) → (b∗)
(d∗) → (a∗)

This means that all graph-theoretic properties of connectivity, expansion, degree,
diameter etc. are identical between the two product graphs. From this we see that
a product graph with good expansion can occur when the key and communication
graphs intersect ‘fully’, ie. when EG ∩ EH = EG = EH , and when there are no
edges in the intersection, ie. EG ∩ EH = ∅. This shows that the expansion of
the product graph certainly does not correspond to any degree of ‘optimality’
regarding the intersection graph and therefore the WSN. In particular, it strongly
suggests that expansion in the product graph is not a good tool for analysing



a b

c d

(a) Comm. graph

a b

c d

(b) Key graph

a b

c d

(c) Intersection graph

aa ab

ac ad

ba bb

bc bd

ca cb

cc cd

da db

dc dd

(d) Cartesian product graph

aa ab

ac

ad

ba

bb

bc

bdcacb

cc

cd

da

db

dc

dd

(e) Cartesian product graph re-drawn

Fig. 3. A product graph corresponding to a communication and key graph pair with
empty intersection.

the connectivity of WSNs without reference to the intersection graph. Ghosh’s
claim that an ‘optimal’ combination of key and communication graph will result
in a product graph with good expansion tells us very little, since good expansion
in the product graph is almost inevitable, as we will now explain.

Proposition 2. A (Cartesian) product graph G.H = (VG × VH , EG.H) is con-
nected if and only if both G = (VG, EG) and H = (VH , EH) are connected.

Proof. If the product graph is connected then there is a path between all pairs
of vertices u1v1, upvq ∈ V × V , say

(u1v1, u2, v2), (u2v2, u3v3), . . . , (up−1vq−1, upvq) .

Using the definition of the product graph, this implies that either u1 = u2 or
(u1, u2) ∈ EG, and indeed for all 1 ≤ i ≤ p− 1, either ui = ui+1 or (ui, ui+1) ∈
EG. Thus either u1 = up or there is a path from u1 to up in G. Since this is true
for all pairs of vertices u1, up ∈ V , we have that G is connected. By the same
argument, H is also connected.

Suppose that G and H are both connected graphs. Then for each distinct
pair of vertices u1, up ∈ VG, there is a path between them, say

(u1, u2), (u2, u3), . . . , (up−1, up) .



Similarly, for each distinct pair of vertices v1, vq ∈ VH , there is a path, say

(v1, v2), (v2, v3), . . . , (vq−1, vq) .

By the definition of EG.H , we have that (u1v1, u2v2) ∈ EG.H . Thus we can
construct a path

(u1v1, u2v2), (u2v2, u3v3), . . . , (up−1vq−1, upvq)

in G.H between any pair of vertices, and therefore G.H is connected. ut

Corollary 1. If G and H are connected, the product graph G.H has expansion
coefficient εG.H > 0.

Proof. Recall from Prop. 1 that a connected graph is an expander graph for
some value of ε. Therefore, if G and H are connected, the product graph will be
an expander graph for some value of εG.H > 0. ut

We conjecture that with high probability, εG.H > εG, εH and εG.H >> 0.
We justify this by considering the comparatively large degrees of nodes in the
product graph, and the product graph’s similarity to an expander graph con-
struction.

For any node v ∈ V with degrees dG(v), dH(v) in the communication and
key graphs respectively, we can compute its degree in the product graph as

dG.H(v) = dG(v)dH(v) + dG(v) + dH(v) . (3)

Using Prop. 1, we have that

εG.H ≤ min
v∈V

(dG(v)dH(v) + dG(v) + dH(v)) ,

a much higher bound than for the constituent graphs. Since, on average, vertices
of the product graph have higher degree than vertices in the constituent graphs,
and since the construction of the product graph makes ‘isolated’ sets of ver-
tices extremely unlikely, we see that εG.H is likely to be large, and in particular
greater than either of εG and εH . By comparison, the expansion coefficient of the
intersection graph εG∩H is forced to be no more than those of the constituent
graphs, εG and εH , as explained in the next section.

Additionally, the construction of the product graph is not dissimilar to that
of the zig-zag product graph presented in [20] as an expander graph construction,
and used by Shafiei et al in [21] to produce key graphs with good expansion.
We see then that expansion in the product graph is inevitable if the constituent
graphs are connected, is likely to be ‘good’, and does not imply anything about
the quality of the connectivity or expansion in the intersection graph, where it
is needed. Ghosh does not justify his choice of using the product graph as a
means of studying two graphs simultaneously, and we conclude that there are
no benefits to doing so. In order to capture the relevant interaction between the
key and communication graphs, the intersection graph is the relevant tool, and
it is in the intersection graph where good expansion is desired.



4 Expansion in Intersection Graphs

We claim that when comparing two networks of the same size with identical key
storage, connectivity and resilience parameters, the intersection graph with the
better expansion represents the better WSN. We justify this using the following
example.

Example 2. Consider Fig. 4 and suppose that these are two intersection graphs,
representing WSNs. Each graph is 3-regular on 10 nodes. We suppose that an
Eschenauer Gligor KPS (as described in Sect. 2.1) has been used to construct the
key graph, where each node stores three keys chosen randomly from a pool of 25
keys. To simplify the analysis, we say that where nodes have more than one key in
common, they select just one of them for use in securing their communications.

a

c

b

d

e f

g

i

h

j

(a) ε =
1

5

(b) ε =
7

5

Fig. 4. Examples of 3-regular graphs on 10 nodes with different expansion parameters.

Using the formulae given in Sect. 2.1 we calculate that Pr1 = 1− (22
3 )

(25
3 )
≈ 0.33,

fail1 = 3
25 and fails = 1 −

(
1− 3

25

)s
for both graphs. Calculating the expansion,

we observe that in Fig. 4(a) ε = 1
5 . This minimum value is achieved by (for

example) picking the set of 5 vertices S = {a, b, c, d, e}, which is only connected
to the rest of the graph by the single edge (e, f). However, in Fig. 4(b) we find



that ε = 7
5 ; any set of 5 vertices is connected by at least 7 edges to the rest of

the graph.

For WSN applications, the network represented by Fig. 4(a) is less desirable,
because

– it is more vulnerable to a listening adversary, who could decrypt a high pro-
portion of communications through the network by the compromise of a single
node e or f

– nodes e and f are more vulnerable to battery failure

– battery failure of just one of the two nodes e and f would disconnect the
network

– communication bottlenecks are likely to occur around nodes e and f , making
communication through the network less efficient.

Conversely, in Fig. 4(b) the communication burdens are distributed evenly across
the nodes so that battery power will be used more evenly and there are no weak
spots for an adversary to target in order to quickly damage the rest of the network.
The graph can only be split into disjoint sets by the removal of 4 or more nodes,
that is, almost half of the network. It is clear then that Fig. 4(b) represents the
less vulnerable WSN.

From this example we see that some strengths and weaknesses of the ‘layout’
of the WSN are hidden if we only consider the size, key storage, connectivity
and resilience, and in Sect. 6 we discuss the practicality of using expansion as
another metric for assessing networks. Before that, we consider how best to
probabilistically maximise the expansion in an intersection graph, and in Sect. 5
we will consider schemes which aim to produce key graphs with good expansion.

We now consider how to achieve high expansion in an intersection graph
G ∩H.

Proposition 3. An intersection graph G∩H = (V ∩V,EG∩EH) has expansion
parameter

εG∩H ≤ min{εG, εH} .

Proof. We begin by considering the degree of a node in the intersection graph,
which is

dG∩H(v) ≤ min (dG(v), dH(v))

because each edge (v, w) incident to a vertex v in G will be removed in the
intersection unless there is also an edge (v, w) in H. Using Prop. 1, we have that
εG∩H ≤ minv∈V {dG∩H(v)}.

Without loss of generality, suppose that εG ≤ εH . Consider a set S of vertices

in G which achieves the minimum |E(S,S)|
|S| = εG. If every edge of E(S, S) remains

in the intersection then εG∩H ≤ εG, otherwise εG∩H < εG, since no edges are
added elsewhere in the intersection. Therefore we have that εG∩H ≤ min{εG, εH}.

ut



We see that it is necessary that G and H have high expansion coefficients for
G∩H to be a good expander. If the communication graph is complete then the
expansion of the key graph will be preserved in the intersection. If information
about the locations of the nodes is known a priori or if there is some control over
the communication graph, then keys can be assigned to nodes in a more efficient
manner; see [18] for a survey of KPSs for such scenarios.

However, we usually assume that there is little or no control over the commu-
nication graph and model it as a random graph, typically using either the Erdös
Rényi model [11] or the random geometric model, as in [5]. If the communication
graph is random, all that can be done to aid good expansion in the intersection
graph is to design the KPS so that the key graph has as high expansion as possi-
ble for a particular network size and for given levels of key storage, connectivity
and resilience.

5 Analysing the Expansion Properties of Existing KPSs

Many KPSs produce key graphs with high expansion coefficients for chosen levels
of key storage and resilience, as demonstrated by the following examples.

– Random graphs are good expanders with high probability [14], and so Es-
chenauer and Gligor’s random KPS [12] is likely to produce key graphs which
are good expanders, as are other random KPSs such as those given in [6].

– Deterministic schemes based on combinatorial designs, as unified in [19],
typically guarantee properties such as constant node degree and µ common
intersection. That is, if two nodes are not adjacent then they have µ common
neighbours, meaning that the graph has diameter 2, and is therefore a good
expander. In particular, two deterministic KPSs based on constructions for
‘strongly regular’ graphs are given in [17].

– Camtepe et al. [5] and Shafiei et al. [21] propose KPSs based on expander
graph constructions and demonstrate that these schemes compare well to
other well-regarded KPS approaches.

We now consider the KPSs based on expander graph constructions in more
detail, and compare them to the other schemes listed above. Camtepe et al.
[5] use the Ramanujan construction which produces an ‘asymptotically optimal’
expander graph (see [14]) for network size n = t+ 1 and key storage k = s+ 1,
where t and s are primes congruent to 1 mod 4. Shafiei et al. [21] use the zig-zag
construction, which has the benefit of being more flexible to produce key graphs
for any sizes of n and k. Both papers use the following method:

1. construct an expander graph G for the appropriate network size and degree

– in the case of [5], remove any self-loops or multiple edges and replace
with randomly-selected edges such that all nodes have the same degree

2. assign a unique pairwise key to every edge of G
3. preload each node with the set of keys which correspond to its set of edges



This ensures that the key graph has high expansion for the chosen network size
and node degree r which equals the key storage k.

However, we claim that it is possible to achieve higher expansion in a KPS
for the same network size and key storage. This is because in the KPSs based on
expander graph constructions, the node degree r is the same as the key storage
k, because unique pairwise keys are used. In other KPSs we usually expect that
k < d(v) for all vertices v, as illustrated by the following example.

Example 3. In the Eschenauer Gligor random KPS [12], the key storage k is
almost certainly less than the degree d(v) of each node v ∈ V in the key graph.
For example, if nodes store 50 keys randomly selected from a pool of 1000 keys,
then the expected degree of any node is

(n− 1)×

(
1−

(
950
50

)(
1000
50

)) .

If the network has 1000 nodes, this means that the expected degree is ≈ 71.905.
This implies that for the same values of k and n, Pr1 is greater in the Eschenauer
Gligor scheme than in KPSs produced by expander graph constructions. Since
random graphs are known to be good expanders with high probability, this means
that, contrary to intuition, a key graph based on an expander graph construction
is likely to be a worse expander than a key graph generated by the Eschenauer
Gligor scheme.

Similarly, most schemes based on combinatorial designs also reuse keys so
that k < d(v), and therefore produce graphs with higher average degree and
better expansion than those based on expander graph constructions. A benefit
of the KPSs based on expander graph constructions is that each key is only used
for one edge, meaning that the graphs have perfect resilience: fails = 0 for all
1 ≤ s ≤ n−2. Therefore, in comparison to many other comparable schemes with
perfect resilience, these constructions do provide graphs with good expansion.
However, for fixed values of k and n, if it is desirable to achieve high expansion
and higher connectivity at the cost of slightly lowered resilience, then a KPS
based on an expander graph construction is not the best choice.

6 Using Expansion as a Metric

We have seen that for two networks of the same size with fixed values of key stor-
age, connectivity and resilience, the WSN represented by the intersection graph
with the highest expansion coefficient ε is the best suited for WSN applications.
Therefore we suggest that expansion is an important metric to be considered
alongside those listed above, when designing KPSs and assessing their suitability
for use in WSNs. However, we now state some drawbacks to the use of expansion
as a metric, and explain the extent to which they can be overcome.



Difficulty of determining the expansion coefficient. Determining the expansion
coefficient of a given graph is known to be co-NP-complete [3], and so testing
KPSs for their expansion coefficient is not an easy task. Additionally, even if the
expansion coefficient of the key graph is known, the expansion of the intersection
graph will not be known a priori if the communication graph is modelled as a
random graph.

Nevertheless, a method for estimating the expansion coefficient using the
eigenvalues of the incidence matrix of the graph is given in [9], which could
be used in the comparison of KPSs. Indeed, if it is possible to determine the
locations of the nodes after deployment, for example using an online base station
or GPS, it may be feasible to construct the intersection graph and therefore
estimate the expansion, once the WSN has been deployed. This is likely to be
relevant if post-deployment key management protocols are available such as key
refreshing [2] or key redistribution [10], for which it could be useful to know as
much as possible about the vulnerability of the WSN. Some key management
protocols are able to provide targeted improvements to specific weak areas of
the network, and we explain below how best to identify such weaknesses.

Limitations of the expansion coefficient. We note that the expansion coefficient
alone does not claim to fully describe the structure of the graph, giving only a
‘worst case’ assessment. That is, the value of ε only reflects the weakest point of
the graph and tells us nothing about the structure of the graph elsewhere.

For example, consider an intersection graph on n nodes which is effectively
partitioned into two sets: a set of n − 1 nodes with high expansion, and a fi-
nal node which is disconnected from the rest of the graph, as demonstrated in
Fig. 5(b). We would find that ε = 0, and we would suspect that the graph is less
than desirable for WSN applications.

However, particularly in a network of thousands of nodes, the disconnection
of one is unlikely to be severely detrimental to the network; indeed, loss of some
nodes due to poor positioning or battery failure may be expected. Knowing only
that ε = 0 does not distinguish between the following cases:

1. the graph is completely disconnected (Fig. 5(a))
2. a single node is disconnected from the rest of the graph, which otherwise has

good expansion (Fig. 5(b))
3. the disconnected graph is a union of smaller graphs, some with good expan-

sion (Fig. 5(c))

If an intersection graph falls into Case 1 then it is likely that the key graph
has low connectivity, ie. a low value of Pr1. However, for the same values of
network size, key storage, connectivity and resilience, knowing only that ε = 0
in the intersection graph cannot distinguish between the Cases 2 and 3, though
Case 2 is likely to be much better for WSN applications.

Therefore, we suggest some graph-theoretic tools which also serve as indica-
tors of whether the structure of a graph is suitable for WSNs. These may be
used alone or in conjunction with (an estimate of) the expansion coefficient in



(a) ε = 0 (b) ε = 0

(c) ε = 0

Fig. 5. Distinguishing between cases where ε = 0

order to analyse a proposed KPS, and where possible to analyse the resulting
intersection graph.

Components We note that to distinguish between the cases in Fig. 5 it is
relevant to know the number of components. A component of a graph is a con-
nected subgraph containing the maximal number of edges [8], that is, a subset
S of one or more vertices of the graph, where the vertices of S are connected
but E(S, S) = ∅. Hence Fig. 5(a) has nine components, Fig. 5(b) has two, and
Fig. 5(c) has three. For WSN applications where data must be routed throughout
the network, it is desirable to minimise the number of components.

Unlike finding the expansion coefficient of a graph, calculating the number
of components can be done in linear time using depth-first search, as described
in [15]. The global connectivity of a graph is the number of nodes in its largest
component divided by the total number of nodes. We wish the global connectivity
to be as close to one as possible.

Cut-edges A cut-edge (also known as a bridge) is an edge whose deletion in-
creases the number of components. Equivalently, an edge is a cut-edge if it is
not contained in any cycle of the graph. This is illustrated in Fig. 4, where the
edge (e, f) is a cut-edge.

As we have seen, cut-edges in the intersection graph for a WSN are unde-
sirable because they can cause bottlenecks, increase communication burdens on



the nodes at their endpoints, and create weak points of the network where a
small fault or compromise by an adversary creates a lot of damage. Therefore,
one of the reasons why expander graphs are desirable for WSNs is because they
are less likely to have cut-edges:

– If ε > 1

b |V |
2 c

then we know that there is no cut-edge which, if removed, would

separate the graph into two components, each of size |V |2 .
– If ε = 1

2 then it is possible that there are cut-edges which, if removed, would
disconnect at most two nodes from the network

– If ε > 1 then for all S ⊂ V with |S| ≤ |V |2 ,

|E(S, S)| > |S| ≥ 1 ,

and so there can be no cut-edges in the graph.

Determining whether a graph contains cut-edges can also be done by a linear
time algorithm [22].

Cutpoints There is also a related notion of cutpoints in graphs, for which we
will need the following definitions from [8]. A subgraph of a graph G(V,E) is a
graph GS(VS , ES) in which VS ⊂ V and ES ⊂ E. If VS or ES is a proper subset
(that is, VS 6= V or ES 6= E), then the subgraph is a proper subgraph of G. If
VS or ES is empty, the subgraph is called the null graph.

In a connected graph G, if there exists a proper non-null subgraph GS such
that GS and its complement have only one node ni in common, then the node ni
is called a cutpoint of G. In an unconnected graph, a node is called a cutpoint if
it is a cutpoint of one of its components. If G has no self-loops, then a cutpoint
is a node whose removal increases the number of components by at least one.
We see then that in Fig. 4(a), nodes e and f are cutpoints, and that graphs with
good expansion will have few cutpoints.

If a graph contains no cutpoints it is said to be nonseparable or biconnected,
which again is clearly desirable for an intersection graph representing a WSN.
The website [1] gives examples of Java algorithms which find the nonseparable
components of given graphs and can even add edges to make graphs nonsepara-
ble.

These tools are just a few of the simple, effective ways to analyse an inter-
section graph of a deployed WSN, and to make intelligent improvements to the
structure of the graph wherever the post-deployment key management protocols
allow.

7 Conclusion

We have shown that if we fix levels of key storage, network size, connectivity
and resilience, then the larger the value of the expansion coefficient ε in the
intersection graph, the better suited it will be for WSNs. This is because graphs



with good expansion are well connected with low diameter and do not have
the vulnerabilities of cut-edges and cutpoints. We have shown that the expan-
sion coefficient of the product graph is not a relevant metric, but that it is the
intersection graph where good expansion is desired.

In a setting where there is control over the communication graph, the expan-
sion of the intersection graph should be an important consideration in the design
of the key graph. If there is no control over the communication graph, then after
choosing levels of network size, key storage, connectivity and resilience, the best
choice of KPS is the one with the highest expansion, since it will maximise the
probability of achieving good expansion in the intersection graph.

We have shown that KPSs based on expander graph constructions are able
to produce key graphs with high expansion for a given network size and key
storage, and use unique pairwise keys to give perfect resilience. However, many
existing KPSs are able to achieve better expansion for the same key storage and
network size, at the cost of lower resilience.

Finally, we have suggested that expansion is an important metric for compar-
ing KPSs proposed for WSNs, and a useful parameter for analysing intersection
graphs after deployment in order to improve weak parts of the network. Deter-
mining the expansion of a graph is co-NP-complete and gives only a worst-case
assessment of the graph. Therefore we have proposed the use of linear time
algorithms to estimate the expansion, and introduced related graph-theoretic
properties which could be used to analyse the key and intersection graphs of
WSNs.
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