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Abstract. Staccato, the Segmentation Agreement Calculator According
to Thomann, is a software tool for assessing the degree of agreement of
multiple segmentations of some time-related data (e.g., gesture phases
or sign language constituents). The software implements an assessment
procedure developed by Bruno Thomann and will be made publicly avail-
able. The article discusses the rationale of the agreement assessment
procedure and points at future extensions of Staccato.

1 Segmentation and Annotation in Gesture Studies

No matter what your favourite definition of co-verbal “hand and arm gesture”
is, at the basic kinematic level gestures are manifested by spatio-temporal bodily
movements. However, not every body movement constitutes gestural behaviour.
Accordingly, a prerequisite of any empirical, data-driven account to gestures is
to locate those segments in the continuous stream of hand and arm movements
that make up the gestures. Furthermore, gestures are structured in themselves: a
gesture basically has a tripartite movement profile, consisting of a preparation, a
stroke, and a retraction phase [5]. Therefore, gestural hand-and-arm movements
not only are to be identified, but are also to be subdivided into phases. In
addition, temporary cessations of motion might occur either before or after the
stroke phase – the so-called pre- and post-stroke holds [7].

The demarcation of the temporal parts of a motion that constitutes a gesture
and its phases is referred to as the segmentation problem throughout this article.
The segmentation problem is not confined to gesture studies, of course; it also
prevails in sign language research, and, generically, in accounts to temporally or-
ganised behaviour in general (think, e.g., of phoneticians that identify phonemes
in a sound stream, choreographers that decompose dance figures, speech pathol-
ogists that demarcate deglutition phases, or traffic authority employees studying
rush hour traffic). We focus on empirical work on gesture, however, where seg-
mentation is typically carried out on video recordings, in which the significant
movements are to be demarcated with respect to the video’s time line.



The segmentation problem has to be kept apart from the annotation problem.
In an annotation session, the annotator (or coder, or rater) has to classify items
according to a set of response categories. A common example is that of nurses
that have to assess the psychological health state of patients, say, in terms of
“happy”, “stoic”, and “sad”.3 In case of gesture studies, the “patients” are ges-
tures that are classified according to categories defined in a classification scheme.
For instance, in case of the Speech-and-Gesture Alignment corpus (SaGA [8])
one set of response categories has been derived from the so-called representation
techniques [9], that is, from the displaying functions gestures employ in order to
depict something, like, for instance, drawing or locating.

item classification
1 A
2 B
3 A
4 B
5 C
...

...
n cn

data
stream



segmentation 

annotation

Fig. 1: The relationship be-
tween segmentation and an-
notation. Firstly, the segmen-
tation of the data stream of
movements results in a set of
n items. Secondly, these items
are classified according to a set
of response categories.

A logical primacy relation obtains between
segmentation and annotation: gesture annota-
tion presupposes segmentation. Figure 1 vi-
sualises the connection between segmentation
and annotation: the items defined by segment-
ing the continuous data stream are the objects
of subsequent annotation. However, the subor-
dinate response categories may influence the
superordinate segmentation of the observable
movements: since exact demarcation might be
relative to a functional or Gestaltist perspec-
tive of annotation labels, a holistic understand-
ing of a given gestural movement may impose
top-down constraints on lower-level segmenta-
tion of this movement. For instance, whether
a complex motion pattern makes up just one
intricate shape-depicting gesture or manifests
two consecutive locating gestures may well be
a matter of interpreting the movement in its
context, most notably, in the context of its ac-
companying speech.

2 Accounting for the Reliability
of Segmentations

Like all informational enrichments of primary data, gesture segmentation has
to be evaluated with regard to reliability (see [2] for an introduction into the
topics of reliability and validity). The standard method for gauging reliability of
annotations are chance-corrected assessments of the agreement between multi-
ple annotations of the same material, either by one annotator (intra-annotator
agreement) or by various annotators (inter-annotator agreement). However, the
reliability of gesture segmentation cannot be assessed by these methods. For
standard agreement measures – like the wide-spread kappa statistic [3] – are ap-
plicable only to annotation data, that is data gained in a test design that consists

3 This particular example is taken from [10, p. 5].
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Fig. 2: Configurations of segmentations. (a) and (b) are undecidable in frequentist
terms. (c) illustrates nuclei (partially reproduced after Figure 1 of [11, p. 341]).

in classifying a fixed set of given items – cf. Section 1 above. The demarcation
of movement segments, by contrast, first of all determines what the items are.
But how, then, is gesture segmentation to be evaluated?

Procedures proposed to assess the reliability of segmentations try to measure
the degree of agreement between segmentations of different annotators in terms
of some metric gauges. As a metric reference value, the time line or the number
of frames of the video film containing the recorded data has been used – cf. the
time slices proposal of [6].

Such frequentist analyses, as we will call them, however, fail to capture higher
order structures like the number or the allocation characteristics of marked seg-
ments. The core of the assessment problem is exemplified by the segmentation
patterns depicted in subfigures (a) and (b) of Figure 2. In the figures, segmen-
tations of two annotators are displayed as horizontal lines, indicating the length
of their respective segmentation relative to the temporal x-axis. In subfigure (a)
the annotators agree on the occurrence of a single gesture (or gesture phase)
but merely assign it a different length. In subfigure (b) the annotators identify a
different number of gestures. Both cases exemplify two poles of agreement that
each pertinent reliability assessment has to account for:

1. annotators in example (a) share a reasonably common view of how the ob-
served gestures have to be segmented;

2. annotators from example (b) have no shared understanding of the observed
movements.

Accordingly, notwithstanding that both pairs of segmentations show the same
amount of overlapping, we would nonetheless expect that an method for assessing
the reliability of gesture segmentations assigns a higher degree of agreement in
case of (a) than in case of (b). A frequentist metric measurement, however, is
not able to tell (a) and (b) apart, since the shared extent of markings is the
same for both pairs of segmentations (see the gray area in the subfigures). A
segmentation assessment has to be able to deal with the (b)-case of demarcations,
namely demarcations that coincide in temporal terms but differ in the number
of demarcated items.



We propose to employ a method that has been developed by [11].4 Instead
of simple frequentist measures, Thomann utilises graph-theoretical techniques
that take structural features like the number of items and their allocations into
account. The rationale of the Thomann method is illustrated in Figure 2(c).
Each row of segments has been produced by a different annotator, that is, 2(c)
assembles the markings of five annotators. To what extent do the annotators
agree? In order to prepare an answer to this question, we have to introduce
the notion of nucleus, that is, an aggregation of segmentations from which a
measure of the degree of organisation – the operationalisation of agreement –
is derived. A nucleus is defined in terms of internal homogeneity and external
heterogeneity and is indicated by gray boxes in Figure 2(c). The first condition
simply requires the segments in a nucleus to mutually overlap. According to this
requirement alone, segments 3 to 7 would form a nucleus – what they actually do
not. Segments 3 and 4 are excluded by the second condition, which constrains the
external overlapping relations of all segments of a nucleus to be indistinguishable.
As we can see in 2(c), segment 2 overlaps with segments 5, 6 and 7, but not
with segments 3 and 4. Thus, the external relations of 3 and 4 on the one
hand and of 5 to 7 on the other hand are distinguishable [11, p. 343]. Applying
both conditions yields the nuclei depicted in the illustration, where 7 out of 9
segments are organised in nuclei, that gives an absolute degree of agreement of
7/9 × 100 = 77.78.

Of course, nucleus formation might to a certain degree be just due to chance.
To this end, the absolute degree of agreement is normalised against a random
baseline. The random baseline constitutes the reference value for nuclei formation
that are expected by chance alone. The resulting value of this normalisation is
the degree of organisation [11, p. 343]. It ranges in the interval (−1, 1). A value of
0 means that the empirically found number of segment nuclei equals the number
expected in random configurations. Note that the degree of organisation makes
different configurations of segmentations (say, of various studies) comparable.

Needless to say that the determination of nuclei is too painstaking to do it by
hand. Though there is an algorithm implemented by Thomann himself, no pub-
licly available tool for calculating agreement of segmentation is at disposal. We
offer such a software tool, called (somewhat will-fully) Staccato (Segmentation
Agreement Calculator according to Thomann). Staccato is written in platform-
independent Java. This stand-alone software will become a component of the
standard multimodal annotation tools Elan5 and Anvil6.

3 Example Calculation

To illustrate the usage of Staccato, let’s assume the situation that several an-
notators finished their segmentations of gestures using Elan (see Figure 3(a),

4 We would like to thank Timo Sowa for pointing us at the work of Thomann.
5 www.lat-mpi.eu/tools/elan
6 http://www.anvil-software.de/



which is adopted from Figure 2(c) above). In order to analyse agreement be-
tween participants, the data is loaded as a CSV file (exported from the annota-
tion software). Subsequently, parameters for the agreement calculation are to be
set, namely (1) the number of Monte-Carlo-Iterations, i.e., how often a Monte-
Carlo-Simulation (MCS) will be processed for generating random outcomes of
the Thomann method, (2) the granularity for annotations’ length to adjust the
duration of annotations randomly generated from MCS to the appearance of
durations in the annotated data, and (3) the level of significance to reject null
hypothesis of chance-based agreement.

The result of running the agreement calculation with 10 000 MCS, a granu-
larity for annotation length of 10, and α = 0.05 is given in Fig. 3(b). The Degree
of Organisation of 0.549 24 signifies participants’ agreement to be much higher
than chance (see explanation above). To get a graphical overview of the results,
a CSV file can be exported from Staccato and imported into the annotation
software (see Figure 3(c)). The result not only shows the Degree of Organisation
but also Fields, NucleusNominations and Nuclei. Fields are subsets where all
annotations are connected via overlaps. NucleusNominations are nominations
that potentially might form a nucleus (see [11, p.44] for a definition). Figure
3(b) also shows normalised data for the MCS outcome.

4 Discussions

The preceding sections introduced the segmentation problem and argues in
favour of the nucleus-based account of [11] for assessing the degree of inter-
or intra-coder agreement on annotations. The procedure has been implemented
in the Staccato tool. Implementation follows the independence assumption be-
tween segmentation and annotation, as advocated in Section 1. Given top-down
influences on segmentations, there nevertheless might be some reasons do per-
form a classification-sensitive reliability assessment of segmentations. How this
is accomplished within Staccato will be the topic of the discussion in Section
4.1. Subsequently, we contrast our approach to a related one which has recently
been proposed.

4.1 Classification-Sensitive Assessment of Segmentation Reliability

In section 1 we acknowledged a potential top-down influence of annotation on
segmentation, but the Staccato treatment so far ignores any annotation infor-
mation. How can we account for annotation labels in the evaluation of seg-
mentations? There is a straightforward answer to this question: the Staccato
procedure is to be made label-aware. That means, that all segmentations are
grouped according to the type they are assigned to. The nuclei-based algorithm
then operates on this groups instead of the set of segments in toto. Each result
can then be compared to its random baseline, given an indicator for serious (i.e.,
not chanced-based) agreement for each class defined by the annotation. This
way, an assessment of the combined segmentation/annotation for each labelled
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Fig. 3: Annotated data (a), result of the Thomann method in Staccato (b), and
output exported from Staccato (c): some tiers are split into further tiers using
indices to avoid overlaps. The original data appears in a sorted order as tier Row
that was generated by Staccato for the purpose of higher performance.



segment is achieved. In order to estimate overall reliability, the mean of the single
results can be taken.

Depending on the kind of annotation in question, simply averaging the Stac-
cato outcomes for different annotation groups of segments might be to coarse-
grained, probably disguising some inner structure among the annotation labels.
Consider an annotation scheme where hypernym labels introduce hyponym sub-
labels, for instance an annotation scheme for dialogue acts like the taxonomy
of [1]. There, the Information-providing function called Inform is a super-type
for the three dialogue acts Answer, Agreement, Disagreement (where Answer
and Disagreement introduce sub-labels themselves). Intuitively, if in a two-rater
study the one rater decides for the hypernym label Inform while the other one
chooses Agreement, their disagreement is not so strong since Inform and Agree-
ment are compatible due to their hyponym relation. Compatibility vanishes if
one rater chooses Agreement while the other chooses Disagreement, however.
Treating both cases alike in an evaluation would result in an unbalanced re-
liability assessment. What is needed in this case is a weighting function that
reflects the relationships among annotation labels and thereby balances evalu-
ation measures. Such a weighting can easily be added: the Staccato result for
each annotation group contributes its value modified by certain weighting factor
to the average overall outcome. In its present stage of development Staccato
does not account for annotations. We will extend Staccato with the option of
label-sensitive calculation in the near future.

4.2 Comparison with Holle & Rein

At about the same time we prepared Staccato, [4] (H&R in the following) also
approached the segmentation problem. H&R tried to adhere to the kappa statis-
tic. The algorithm they present is a “time stretched” variant of Cohen’s kappa
for two raters. For each segment demarcated by one of the annotators it is
looked whether the other annotator identifies a segment with sufficient overlap,
too. H&R furthermore motivate by threshold testing that an overlap of 60% is
empirically adequate. Its “conservative” character, that is, its being likened to
standard annotation evaluations makes it an attractive procedure. However, we
think that there are three shortcomings compared to the Staccato way:

1. H&R’s procedure is constrained to the case of two raters. That means that
the example presented in Figure 2(c) and our three-annotator segmentation
data gained in the SaGA project [8] cannot be handled by the H&R ap-
proach. Since Staccato is the more general method, both can only be fairly
compared in their overlapping domain, that is the case of two annotators as
exemplified by Figure 2(c). H&R have explicitly taken care for the partic-
ular overlapping relation of segments drawn in the figure: in order to avoid
perfect agreement in this case they have to invoke a 50+% rule of overlap
measured at the longer one of segments. Due to that stipulation the config-
uration illustrated in Figure 2(c) counts as a case of disagreement for H&R.
The same result is achieved with Staccato, where it follows naturally from



the internal homogeneity and external heterogeneity constraints. This find-
ing corroborates that Staccato provides the more general procedure, which
comprises H&R’s approach as a special case.

2. The H&R algorithm does not provide a chance-correction for segmentations.
There doesn’t seem to be any reason to assume that there is no “segmenta-
tion under uncertainty” that gives rise to more or less randomly set markings
as is the case in annotation tasks. Staccato incorporates a way to assess a
random baseline from the start.

3. H&R binarise annotation label sets with more than two elements. However,
binarisation leads to a distortion of results. In the appendix we provide a
detailed example that shows exemplarily how binarisation of three annota-
tion categories brings about better kappa coefficients. This means, that the
H&R procedure systematically leads to inflated results.

There is also a more subtle difference between our conception of the rela-
tionship between segmentation and annotation and the one put forward in [4].
H&R argue for independence of segmentation and annotation, but model them
in a dependent way (only labelled segments are considered). To the contrary, in
Section 4.1 we argue for an interplay, but leave its concrete account open: one
can choose between a separated evaluation of annotation and segmentation, or
one can evaluate both in a combined way.
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Appendix

The Holle & Rein procedure is worked through by means of a synthetic example, that
shows that binarisation of annotation categories can distort the degree of agreement
between raters. The synthetic data is presented in Table 1(a). Two of three possible
binarisations are given in Tables 1(b) and 1(c). The corresponding contingency tables
are given in Table 2.

R1

1 2 Total

R2 1 n11 n12 n1+

2 n21 n22 n2+

Total n+1 n+2 n

Fig. 4: Schema of a contin-
gency table for two annota-
tors R1 and R2 and two re-
sponse categories 1 and 2.

The Kappa statistic is calculated according to
the following formula:

κ =
P (A)− P (E)

1− P (E)
(1)

P (A) is the proportion of superficial agreement,
that is, the count of all items for which the raters
have chosen the same annotation value. P (E) is
the chance estimator. For the Kappa statistics, the
chance estimator is derived from raters’ biases: P (E)
is the product of the sum of raters’ marginal frequen-
cies ni+ and n+1 as obtained by cross-tabulating the
data, see formula (2) and the schema of a contin-
gency table in Figure 4.

P (E) =

k∑
i=1

ni+

n
· n+i

n
(2)

The calculation of the Kappa statistic of the “original data” from Tables 1(a) and
2(a) is given in equation (3):

κ =
0.6− 0.34

1− 0.34
=

0.26

0.66
≈ 0.4 (3)

where P (E) is obtained as follows:

P (E) = 0.5 · 0.3 + 0.4 · 0.4 + 0.1 · 0.3 = 0.34 (4)

Likewise, the calculation for the first binarisation of the Kappa coefficient is given
in (5):

κ =
0.8− 0.455

1− 0.455
=

0.345

0.545
≈ 0.633 (5)



Item R1 R2
1 A A
2 A A
3 A A
4 A B
5 A B
6 B B
7 B B
8 B C
9 B C

10 C C

(a) “Original”
data

Item R1 R2
1 a a
2 a a
3 a a
4 a b
5 a b
6 b b
7 b b
8 b b
9 b b

10 b b

(b) First binarisa-
tion: A 7→ a and
B,C 7→ b

Item R1 R2
1 a a
2 a a
3 a a
4 a a
5 a a
6 a a
7 a a
8 a b
9 a b

10 b b

(c) Second binari-
sation: A,B 7→ a
and C 7→ b

Table 1: Outcome of a synthetic annotation session of two raters R1 and R2 who
classified 10 items according to 3 response categories A, B, C.

R1

A B C Ttl.

A 3 3
R2 B 2 2 4

C 2 1 3

Ttl. 5 4 1 10

(a) Contingency table for
“original data”

R1

a b Ttl.

R2 a 3 3
b 2 5 7

Ttl. 5 5 10

(b) Contingency table
for first binarisation

R1

a b Ttl.

R2 a 7 7
b 2 1 3

Ttl. 9 1 10

(c) Contingency table
for second binarisation

Table 2: Contingency tables

and
P (E) = 0.5 · 0.3 + 0.5 · 0.7 = 0.455 (6)

For the second binarisation we receive the following coefficient (7):

κ =
0.8− 0.66

1− 0.66
=

0.14

0.34
≈ 0.412 (7)

and
P (E) = 0.9 · 0.7 + 0.1 · 0.3 = 0.66 (8)

As can easily be verified by the reader, the Kappa value increases in case of bina-
risations (although just slightly for the second one). This means, that the binarisation
method used by H&R may lead to systematic overestimation of the degree of agreement
between two raters’ segmentations.


