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Abstract1

In this paper we study a facility location problem in the plane in which a single point (facility)2

and a rapid transit line (highway) are simultaneously located in order to minimize the total travel3

time of the clients to the facility, using the L1 or Manhattan metric. The rapid transit line is4

represented by a line segment with fixed length and arbitrary orientation. The highway is an5

alternative transportation system that can be used by the clients to reduce their travel time to6

the facility. This problem was introduced by Espejo and Rodŕıguez-Ch́ıa in [8]. They gave both7

a characterization of the optimal solutions and an algorithm running in O(n3 logn) time, where8

n represents the number of clients. In this paper we show that Espejo and Rodŕıguez-Ch́ıa’s9

algorithm does not always work correctly. At the same time, we provide a proper characterization10

of the solutions and give an algorithm solving the problem in O(n3) time.11

Keywords: Geometric optimization; Facility location; Transportation; Time distance.12

1 Introduction13

Suppose that we have a set of clients represented as a set of points in the plane, and a service facility14

represented as a point to which all clients have to move. Every client can reach the facility directly15

or by using an alternative rapid transit line or highway, represented by a straight line segment of16

fixed length and arbitrary orientation, in order to reduce the travel time. Whenever a client moves17

directly to the facility, it moves at unit speed and the distance traveled is the Manhattan or L118

distance to the facility. In the case where a client uses the highway, it travels the L1 distance at19

unit speed to one endpoint of the highway, traverses the entire highway with a speed greater than20

one, and finally travels the L1 distance from the other endpoint to the facility at unit speed. All21

clients traverse the highway at the same speed. Given the set of points representing the clients,22

the facility location problem consists in determining at the same time the facility point and the23

highway in order to minimize the total weighted travel time from the clients to the facility. The24

weighted travel time of a client is its travel time multiplied by a weight representing the intensity25

of its demand. This problem was introduced by Espejo and Rodŕıguez-Ch́ıa [8]. We refer to [8] and26

references therein to review both the state of the art and applications of this problem.27
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Geometric problems related to transportation networks have been recently considered in computa-28

tional geometry. Abellanas et. al. introduced the time metric model in [1]: Given an underlying29

metric, the user can travel at speed v when moving along a highway h or unit speed elsewhere. The30

particular case in which the underlying metric is the L1 metric and all highways are axis-parallel31

segments of the same speed, is called the city metric [3]. The optimal positioning of transportation32

systems that minimize the maximum travel time among a set of points has been investigated in de-33

tail in recent papers [2, 6, 4]. Other more general models are studied in [9]. The variant introduced34

by Espejo and Rodŕıguez-Ch́ıa aims to minimize the sum of the travel times (transportation cost)35

from the demand points to the new facility service, which has to be located simultaneously with a36

highway. The highway is used by a demand point whenever it saves time to reach the facility.37

Notation to formulate the problem is as follows. Let S be the set of n client points; f the service
facility point; h the highway; ℓ the length of h; t and t′ the endpoints of h; and v ≥ 1 the speed in
which the points move along h. Let wp > 0 be the weight (or demand) of a client point p. Given
a point u of the plane, let x(u) and y(u) denote the x- and y−coordinates of u respectively. The
distance or travel time (see Figure 1), between a point p and the service facility f is given by the
function

dt,t′(p, f) := min

{

‖p− f‖1, ‖p − t‖1 +
ℓ

v
+ ‖t′ − f‖1, ‖p − t′‖1 +

ℓ

v
+ ‖t− f‖1

}

.

p

f

h
t

t′

Figure 1: The distance between a point p and the facility f using the highway.

Then the problem can be formulated as follows:38

The Facility and Highway Location problem (FHL-problem): Given a set S of n39

points, a weight wp > 0 associated with each point p of S, a fixed highway length ℓ > 0,40

and a fixed speed v ≥ 1, locate a point (facility) f and a line segment (highway) h of41

length ℓ with endpoints t and t′ such that the function
∑

p∈S wp ·dt,t′(p, f) is minimized.42

Espejo and Rodŕıguez-Ch́ıa [8] studied the FHL-problem and gave the following characterization of43

the solutions. Consider the grid G defined by the set of all axis-parallel lines passing through the44

elements of S. They stated that there always exists an optimal highway having one endpoint at45

a vertex of G. Based on this, they proposed an O(n3 log n)-time algorithm to solve the problem.46

In this paper we show that the characterization given by Espejo and Rodŕıguez-Ch́ıa is not true in47

general, hence their algorithm does not always give the optimal solution.48

Addendum An anonymous referee pointed out that the authors of [8] published a corrigendum49

to their paper the 19th of January 2012, and that our result was not novel. In here we provide50

a chronological order of the events so that the reader can reach his/her own conclusions. The51

first version of this paper appeared the 5th of April 2011 on arXiv (and a preliminary version also52
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appeared in the proceedings of the Spanish Meeting on Computational Geometry the 27th of June53

2011). We contacted the authors of [8], and provided them with a copy of our paper, including the54

counterexample. Naturally, they were interested in our research, and wanted to know where had55

they done a mistake. The 29th of October 2011, the authors of [8] contacted us claiming that they56

had found the error in their paper. They provided us a write-up containing the corrected version57

of their proof, and suggested we combine our results. Given the difference in notation and the fact58

that this paper subsumes their result, we declined. From the conversation we can only deduce that59

the authors of [8] submitted their corrigendum sometime in early November 2011.60

As of now (16th March 2012), our paper is currently under supervision for journal publication,61

whereas the corrigendum has already appeared at COR. Although we would love if the submission,62

correction and publication process takes less than three months (as it appears to have happened63

with corrigendum at Computers and Operations Research journal), we understand that this is not64

possible in high-end journals. Regardless of our personal opinion of the actions of Espejo and65

Rodriguez-Chia, we believe that the date in which the result was found (and not published in a66

journal) is the relevant one. Thus, we claim that our paper is the first one to claim the error of [8].67

On a side note, we note that the corrigendum of Espejo and Rodriguez-Chia is also wrong, since68

they claim that our characterization is weaker. They specifically say that “The description given by69

[this paper] means an infinite many number of candidates to be one of the endpoints of an optimal70

segment”. Although Lemma 2.1 does not explicitly say so, the algorithm of Section 3 only considers71

O(n3) cases (in particular a finite amount).72

Paper Organization In Section 2 we first provide a proper characterization of the solutions.73

After that we give a counterexample to the Espejo and Rodŕıguez-Ch́ıa’s characterization. We74

provide a set of five points, all having weight equal to one, and prove that no optimal highway has75

one endpoint in a vertex of G. In Section 3 we present an improved algorithm running in O(n3)76

time that correctly solves the FHL-problem. Finally, in Section 5, we state our conclusions and77

proposal for further research.78

2 Properties of an optimal solution79

A primary observation (also stated in [8]) is that the service facility can be located at one of the80

endpoints of the rapid transit line. From now on, we assume f = t′ throughout the paper. This81

assumption simplifies the distance from a point p ∈ S to the facility to the following expression,82

dt(p, f) = min

{

‖p− f‖1, ‖p − t‖1 +
ℓ

v

}

.

Using this observation, the expression of our objective function to minimize is Φ(f, t) =
∑

p∈S wp ·83

dt(p, f). We call this value the total transportation cost associated with f and t (or simply the cost84

of f and t).85

We say that a point p uses the highway if ‖p − t‖1 + ℓ
v
< ‖p − f‖1, and that p does not use it (or86

goes directly to the facility) otherwise. Given f and t, we call travel bisector of f and t (or bisector87

for short) as the set of points z such that ‖z − f‖1 = ‖z − t‖1 + ℓ
v
, see Figure 2. A geometrical88

description of such a bisector can be found in [8], as the boundary of the so-called captation region.89

Lemma 2.1 There exists an optimal solution to the FHL-problem satisfying one of the next con-90
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Figure 2: The bisector of f and t.

ditions:91

(a) One of the endpoints of the highway is a vertex of G.92

(b) One endpoint of the highway is on a horizontal line of G, and the other endpoint is on a93

vertical line of G.94

Proof. Let f and t be the endpoints of an optimal highway h and assume neither of conditions (a)95

and (b) is satisfied. Using local perturbation we will transform this solution into one that satisfies96

one of these conditions. Assume neither f nor t is on any vertical line of G. Let δ1 > 0 (resp.97

δ2 > 0) be the smallest value such that if we translate h with vector (−δ1, 0) (resp. (δ2, 0)) then98

either one endpoint of h touches a vertical line of G or a demand point hits the bisector of f and99

t. Given ε ∈ [−δ1, δ2], let fε, tε, and hε be f , t, and h translated with vector (ε, 0), respectively.100

It is easy to see that |dtε(p, fε) − dt(p, f)| = |ε| for all points p. Given a real number x, let sgn(x)101

denote the sign of x. We partition S into three sets S1, S2 and S3 as follows:102

S1 = {p ∈ S | sgn(dtε(p, fε)− dt(p, f)) = sgn(ε), ∀ε ∈ [−δ1, δ2] \ {0}}
S2 = {p ∈ S | sgn(dtε(p, fε)− dt(p, f)) = − sgn(ε), ∀ε ∈ [−δ1, δ2] \ {0}}
S3 = {p ∈ S | sgn(dtε(p, fε)− dt(p, f)) = −1, ∀ε ∈ [−δ1, δ2] \ {0}}

Observe that points of S3 are in the bisector of f and t; S1 contains the demand points that travel103

rightwards to reach f directly or by using the highway, and S2 contains the points that travel104

leftwards.105

Theoretically, one could consider the case in which a point belongs to set S4 = {p ∈ S | sgn(dtε(p, fε)−106

dt(p, f)) = 1, ∀ε ∈ [−δ1, δ2] \ {0}}. Geometrically speaking, the points of this set are those that,107

when translating the highway in either directions, the distance between them and the entry point108

of the highway increases. This situation can only happen when the point is aligned with the entry109

point. That is, point p ∈ S4 if and only if either (i) p uses the highway to reach the facility and it is110

vertically aligned with t, or (ii) p walks to the facility and it is vertically aligned with f . However,111

by definition of δ1 and δ2, no point of S can belong to (or enter) S4 during the whole translation.112

By the linearity of the L1 metric, whenever we translate the highway ε units to the right (for some113

arbitrarily small ε, 0 < ε ≤ δ1), the highway will be ε units closer for points in S2 ∪ S3, but ε units114

further away for points of S1. Analogously, the distance to the facility decreases for points in S1∪S3115

and increases for points of S2 when translating h leftwards. Let N =
∑

p∈S1
wp −

∑

p∈S2
wp and116

k =
∑

p∈S3
wp. Thus, for any vector (ε, 0), ε ∈ [−δ1, δ2] \ {0}, the change of the objective function117
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when we translate the highway with vector (ε, 0) is equal to the following expression:118

Φ(fε, tε)− Φ(f, t) =
∑

p∈S

wp · dtε(p, fε)−
∑

p∈S

wp · dt(p, f)

= ε
∑

p∈S1

wp − ε
∑

p∈S2

wp − |ε|
∑

p∈S3

wp

= Nε− k|ε|

Since we initially assumed that the location of h is optimal, we must have both N = k = 0119

(otherwise translating h rightwards or leftwards would result in a decrease of the objective fuction).120

In particular, we can translate h in either direction so that the cost of the objective function is121

unchanged.122

More importantly, observe that the value of k must remain 0 on the whole translation: if at some123

point it becomes positive we can find a translation from that point that reduces the cost of the124

objective function. In particular, the set S3 must remain empty during the whole translation. Any125

point that changes from set S1 to S2 (or vice versa) must first enter S3. Since the latter set remains126

empty during the whole translation, no point can change between sets S1, S2, or S3 until either f127

or t is vertically aligned with a point of S.128

We perform the same operations on the y coordinates and obtain that one of the two endpoints is129

on a horizontal line of G, hence satisfying one of the two conditions of the Lemma. �130

When the highway’s length is equal to zero, the FHL-problem is the weighted 1-median prob-131

lem in metric L1 [7], and in this case the item (a) of Lemma 2.1 holds. Espejo and Rodŕıguez-132

Ch́ıa [8] claimed that there always exists an optimal solution of the FHL-problem that satisfies133

Lemma 2.1 (a). Unfortunately, this claim is not true in general and their algorithm may miss some134

highway locations; indeed, it may miss the optimal location and thus fail. We provide here one135

counterexample and the following result.136

Lemma 2.2 There exists a set of unweighted points in which no optimal solution to the FHL-137

problem satisfies Lemma 2.1 (a).138

Proof. Consider the problem instance with five points whose coordinates are (−4, 0), (−3,−1),139

(12, 8), (13, 5), and (13, 7), respectively (see Figure 3). In the problem instance, we give unit weight140

to all points, and set the length h of the highway as ℓ =
√
180 ≈ 13, 5. For simplicity in the141

calculations, we also set v = ℓ, but any other large number works as well. The cost associated to142

the highway of endpoints f = (12, 6) and t = (0, 0) is 10 + 2ℓ/v = 12. We claim that this location143

is better than any other solution with an endpoint at a vertex of G.144

If one endpoint of h is a vertex of G in the line x = −3, then the other endpoint is located to the145

left of the line x = 11 because −3 + ℓ < 11. In that case we can translate h rightwards with vector146

(1
2
, 0) improving the objective function. The same holds if one endpoint of h is a vertex in the line147

x = −4. Similarly, if one endpoint is a vertex in the line x = 13, then we can translate h leftwards148

with vector (−1

2
, 0) and the objective function decreases.149

Consider now locating one of the highway endpoints at coordinates (12, 0) or (12,−1). Observe that150

the walking time (i.e., the traveling time when the highway is not used) from the points (−4, 0) and151

(−3,−1) takes at least 15 units of time, which is more than the cost associated with our solution.152

The same happens to the sum of the traveling times of the three other points. Hence, if f is located153

at one of the two vertices, the five points must use highway (otherwise the travel time is higher than154
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(0, 0)
(−4, 0)

(−3,−1)

(13, 5)

(13, 7)

(12, 8)

(12, 6)

G

f

t

OX

h

Figure 3: A counterexample to the algorithm of Espejo and Rodŕıguez-Ch́ıa.

our solution). Analogously, if t is located at grid points (12, 0) or (12,−1), no point of S will use the155

highway. In either case, the corresponding solution is at least as high as the sum of distances from156

all points of S to the geometric median, which is higher than the cost associated with our solution.157

Consider now the cases in which one of the endpoints has coordinates (12, y0) for some y0 ∈ {5, 7, 8}.
We start by showing that, in any of the three cases, the optimal position of the other endpoint of
the highway (denoted by e) must lie on the line y = 0. Since the highway’s length is equal to ℓ,
the possible positions of e lie both in circle σ of radius ℓ centered at (12, y0) and to the left of line
x = 12. Observe that the clients that walk to e are points a = (−4, 0) and b = (−3,−1), located
always to the left of e. Hence, we are interested in minimizing the expression ‖a−e‖1+‖b−e‖1. Let
a′, b′ ∈ σ denote respectively the closest points to a and b with the L1 metric, which verify y(a′) = 0
and y(b′) = −1. Observe that if y(e) > 0 then ‖a−a′‖1 < ‖a−e‖1 and ‖b−a′‖1 < ‖b−e‖1 implying

‖a− a′‖1 + ‖b− a′‖1 < ‖a− e‖1 + ‖b− e‖1

(see Figure 4 a)). Similarly, if y(e) < −1, then

‖a− b′‖1 + ‖b− b′‖1 < ‖a− e‖1 + ‖b− e‖1.

Therefore, e must satisfy −1 ≤ y(e) ≤ 0 (see Figure 4 b)). In this case we have158

‖a− e‖1 + ‖b− e‖1 = x(e)− x(a) + y(a)− y(e) + x(e)− x(b) + y(e)− y(b)

= 2x(e) + 8

Then ‖a− e‖1 + ‖b− e‖1 is minimized when x(e) is minimum, and it happens when y(e) = 0.159

If y0 = 8, then h can be translated downwards with vector (0,−1

2
) and the value of the objective160

function decreases. Thus point (12, 8) is discarded. It remains to show that there is a solution161
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a

b

e

a

b

e

a) b)

Figure 4: a = (−4, 0) and b = (−3,−1). When one endpoint of the highway has coordinates (12, 8), (12, 7),
or (12, 5), the optimal position of the other endpoint e is on the line y = 0.

better than the one having an endpoint at either (12, 7) or (12, 5), and the other endpoint on the162

line y = 0. Observe that if f and t belong to the lines y = 0 and x = 12, respectively, then by163

exchanging f and t the value of the objective function reduces in ℓ/v. Then consider the case where164

y(t) = 0 and x(f) = 12.165

Let t = (0, 0) and f = (12, 6). Given a value ε, let tε be the point with coordinates (ε, 0) and fε166

be the point in the line x = 12 such that y(fε) > 0 and the Euclidean distance between fε and167

tε is equal to ℓ (see Figure 5). Let [−δ1, δ2], δ1, δ2 > 0, be the maximal-length interval such that168

5 ≤ y(fε) ≤ 7 for all ε ∈ [−δ1, δ2]. Note δ1 =
√
155− 12 < 1 and δ2 = 12−

√
131 < 1. Then |ε| < 1.169

OY

(0, 0)

(12, 5)

(12, 7)

(12, 6)

f

t

OX

fε

tε

(12, 7)

Figure 5: Definitions of fε and tε.

170

The variation of the objective function’s value when f and t are moved to fε and tε, respectively,171

is equal to172

g(ε) := Φ(fε, tε)− Φ(f, t)

= 2 (x(tε)− x(t))− (y(fε)− y(f))

= 2ε−
(

√

36 + 24ε− ε2 − 6
)

.

In the following we will show that
√
36 + 24ε− ε2 < 6+ 2ε, for all ε ∈ [−δ1, δ2] \ {0}. In particular,173

we will have g(ε) > 0 (except when ε = 0), implying that our highway location is optimal. First174

observe that 4ε2 + 24ε + 36 = (2ε + 6)2 > 36 + 24ε − ε2. Since |ε| < 1 then 2ε + 6 > 0 and175

36 + 24ε − ε2 > 0, which implies 2ε + 6 >
√
36 + 24ε− ε2. Thus g(ε) > 0 and the highway with176
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endpoints f and t gives a better solution than that having an endpoint at (12, 7) or (12, 5). This177

completes the proof. �178

In the next section we provide a correct algorithm that solves the problem in O(n3) time. We179

assume general position, that is, there are no two points on a same line having slope in the set180

{−1, 0, 1,∞}.181

3 The algorithm182

Lemma 2.1 can be used to find an optimal solution to the FHL-problem. Although the method is183

quite similar for both cases in Lemma 2.1, we address the two cases independently for the sake of184

clarity. By Vertex-FHL-problem we will denote the FHL-problem for the cases in which Lemma 2.1185

a) holds, and by Edge-FHL-problem the FHL-problem for the cases in which Lemma 2.1 b) holds.186

In the next subsections we give an O(n3)-time algorithm for each variant of the problem. In both187

of them we assume w.l.o.g. that highway’s length ℓ is equal to one.188

In the following θ will denote the positive angle of the highway with respect to the positive direction189

of the x-axis. For the sake of clarity, we will assume that θ ∈ [0, π
4
]. When θ belongs to the interval190

[k π
4
, (k+1)π

4
], k = 1, . . . , 7, both the Vertex- and Edge-FHL-problem can be solved in a similar way.191

Given a point u and an angle θ, let u(θ) be the point with coordinates (x(u) + cos θ, y(u) + sin θ).192

There exists an angle φ ∈ [0, π
4
] such that the bisector of the endpoints f and t = f(θ) has the shape193

in Figure 2 a) for all θ ∈ [0, φ), and has the shape in Figure 2 b) for all θ ∈ (φ, π
4
]. Such an angle φ194

verifies cos(φ)− sin(φ) = 1

v
. Furthermore, φ = 1

2
arcsin(1− 1

v2
) and φ 6= π

4
unless v is infinite. Refer195

to [8] for a detailed description of this situation.196

Let Πx, Πy, and Πx+y denote the point set S sorted according to the x-, y-, and (x + y)-order,197

respectively.198

3.1 Solving the Vertex-FHL-problem199

For each vertex u of G we can solve the problem subject to f = u or t = u. We show how to obtain200

a solution if f = u. The case where t = u can be solved analogously.201

Suppose w.l.o.g. that the vertex f = u is the origin of the coordinate system and the highway angle202

is θ, for θ ∈ [0, π
4
]. Then t = u(θ) = (cos θ, sin θ). and the distance dt(p, f) between a point p ∈ S203

and the facility u has the expression c1 + c2 cos θ + c3 sin θ, where c1, c2, c3 are constants satisfying204

c2, c3 ∈ {−1, 0, 1}. When θ goes from 0 to π
4
, this expression changes at the values of θ such that:205

• The point p switches from using the highway to going directly to the facility (or vice versa).206

We call these changes bisector events. A bisector event occurs when the bisector between the207

highway’s endpoints u and u(θ), contains p. At most two bisector events are obtained for each208

point p.209

• The highway endpoint u(θ) crosses the vertical or horizontal line passing through p. We call210

this event grid event. Again, each point of S generates at most two grid events.211

• θ = φ. We call it the φ-event.212
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We refer the interested reader to [8] for a detailed description of the above events1. The cost of213

their algorithm is dominated by the time spent sorting the order in which events take place. In214

order to avoid this time, we use the following result:215

Lemma 3.1 After an O(n log n)-time preprocessing, the angular order of all the events associated216

with a given vertex of G can be obtained in linear time.217

Proof. The preprocessing consists in computing Πx, Πy, and Πx+y, which can be done in O(n log n)218

time. Now, let u be a vertex of G. It is straightforward to see that they are O(n) grid events and219

that we can obtain their angular order in linear time by using both Πx and Πy. Let us show how220

to obtain the bisector events in O(n) time.221

The bisector of u and u(θ) consists of two axis-aligned half-lines and a line segment with slope222

-1 connecting their endpoints (see Figure 2 and [8] for further details). Given a point p, when θ223

goes from 0 to π/4 the bisector between u and u(θ) passes through p at most twice, that is, when224

p belongs to one of the half-lines of the bisector and when p belongs to the line segment. If p225

belongs to the line segment of the bisector then the event is denoted by αp (see Figure 6 b)). If p226

belongs to the leftmost half-line of the bisector, which is always vertical, we denote that event by227

βp (see Figure 6 a)). Otherwise, if p belongs to the rightmost half-line which can be either vertical228

or horizontal we denote that event by γp (see Figure 6 c) and d)). Observe that if the rightmost229

half-line is vertical then γp < φ, otherwise γp > φ. Refer to [8] for a characterization to identify230

whether a point p ∈ S generates a bisector event for some angle θ.231

u

u(βp)p

βp

u

u(αp)

p

αp

a) b)

u

u(γp)

p

γp

c)

u

u(γp)

pγp

d)

Figure 6: The bisector events of p when θ ∈ [0, π

4
]. a) p belongs to the leftmost half-line of the bisector of u

and u(θ). b) p belongs to the segment. c,d) p belongs to the rightmost half-line of the bisector.

Let Π1 be the subsequence of Πx+y containing all elements p such that αp ∈ [0, π
4
], Π2 be the232

subsequence of Πx containing all elements p such that βp ∈ [0, π
4
], and Π3 be the subsequence233

of Πx that contains all elements p such that y(p) < y(u) and γp ∈ [0, φ], concatenated with the234

subsequence of Πy that contains all elements p such that x(p) > x(u) and γp ∈ [φ, π
4
]. Given a point235

p ∈ S, the corresponding events of p in [0, π
4
] can be found in constant time, thus Π1, Π2, and Π3236

can be built in linear time.237

1Although their events are very similar to the ones we described, the authors of [8] refer to them as projection and
limit points. We prefer to use the term “event”, since “point” is reserved for the elements of S
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The following statements are true for any point p ∈ S:238

(a) x(p) + y(p) = 1

2
(cosαp + sinαp +

1

v
) for all points p in Π1.239

(b) x(p) = 1

2
(cos βp − sin βp +

1

v
) for all points p in Π2.240

(c) x(p) = 1

2
(cos γp + sin γp +

1

v
) for all points p in Π3 such that γp < φ.241

(d) y(p) = 1

2
(− cos γp + sin γp +

1

v
) for all points p in Π3 such that γp > φ.242

Let Γ1 (resp. Γ2, Γ3) be the sequence obtained by replacing each element p in Π1 (resp. Π2, Π3)243

by αp (resp. βp, γp). Therefore, from statements (a) − (d) and the monotonicity of the functions244

cos θ+sin θ, cos θ− sin θ, and − cos θ+sin θ in the interval [0, π
4
], we obtain that Γ1, Γ2, and Γ3 are245

sorted sequences. Using a standard method for merging sorted lists, we can merge in linear time246

Γ1, Γ2, Γ3, the grid events, and the φ-event. Therefore, the angular order of all events associated247

with a vertex u can be obtained in O(n) time and the result follows. �248

Theorem 3.2 The Vertex-FHL-problem can be solved in O(n3) time.249

Proof. Let u be a vertex of G. Using Lemma 3.1, we obtain in linear time the angular order of250

the O(n) events associated with u. The events induce a partition of [0, π
4
] into maximal intervals.251

For each of those intervals, the objective function takes the form g(θ) := Φ(f, t) = Φ(u, u(θ)) =252

b1 + b2 cos θ + b3 sin θ, where b1, b2, b3 are constants. This problem is of constant size in each253

subinterval and the minimum of g(θ) can be found in O(1) time. Furthermore, the expression of254

g(θ) can be updated in constant time when θ crosses an event point distinct of φ when going from255

0 to π
4
. In the case where θ crosses φ, g(θ) can be updated in at most O(n) time. Then the problem256

subject to f = u can be solved in linear time. The case in which t = u can be addressed in a similar257

way. It gives an overall O(n3) time complexity because G has O(n2) vertices. �258

3.2 Solving the Edge-FHL-problem259

We now consider the case in which the optimal solution satisfies condition b) of Lemma 2.1. Namely,260

we consider a horizontal line eh of G and each vertical line ev of G. For every pair of such lines,261

we consider eight different sub-cases, depending on whether h is located above/below eh, right-262

wards/leftwards of ev , and f ∈ eh and t ∈ ev (or vice versa). For a fixed sub-case, we parametrize263

the location of the highway by the angle θ that the highway forms with eh. As in the Vertex-FHL264

case, we assume that f ∈ eh, t ∈ ev, and θ ∈ [0, π
4
].265

We implicitly redefine the coordinate system so that eh and ev intersect at the origin o. Let θ ∈ [0, π
4
]266

be the positive angle of the highway with respect to the positive direction of the x-axis and f = xθ,267

t = yθ be the highway endpoints, see Figure 7.268

First notice that, since we are again doing a continuous translation of h, the events that affect269

the value of the objective function are exactly the same as those that happen in the Vertex-FHL-270

problem: bisector-, grid- and φ- events. We start by showing that the equivalent of Lemma 3.1 also271

holds:272

Lemma 3.3 After an O(n log n)-time preprocessing, the angular order of all the events associated273

with a pair of perpendicular lines of G can be obtained in linear time.274
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f = xθ

t = yθ

θ
o = (0, 0)

eh

ev

Figure 7: Solving the Edge-FHL-problem.

Proof. We can follow the arguments of Lemma 3.1. Firstly, we note that there are O(n) grid events275

and their angular order can be obtained in linear time by using both Πx and Πy.276

Given a point p ∈ S, let the events αp, βp, and γp be defined as in the Vertex-FHL case. Refer to277

Figure 6. Let Π1 be the subsequence of Πx+y containing all elements p such that αp ∈ [0, π
4
], Π2 be278

the subsequence of Πx containing all elements p such that βp ∈ [0, π
4
], and Π3 be the subsequence279

of Πx that contains all elements p such that y(p) < y(o) and γp ∈ [0, φ], concatenated with the280

subsequence of Πy that contains all elements p such that x(p) > x(o) and γp ∈ [φ, π
4
]. Note that281

Π1, Π2, and Π3 can be built in linear time.282

Given a point p ∈ S, the following statements are true:283

(a) x(p) + y(p) = 1

2
(− cosαp + sinαp +

1

v
) for all points p in Π1.284

(b) x(p) = 1

2
(− cos βp − sin βp +

1

v
) for all points p in Π2.285

(c) x(p) = 1

2
(− cos γp + sin γp +

1

v
) for all points p in Π3 such that γp < φ.286

(d) y(p) = 1

2
(− cos γp + sin γp +

1

v
) for all points p in Π3 such that γp > φ.287

Let Γ1 (resp. Γ2, Γ3) be the sequence obtained by replacing each element p in Π1 (resp. Π2,288

Π3) by αp (resp. βp, γb). Therefore, by using similar arguments to those used in Lemma 3.1 the289

angular order of all events can be obtained in O(n) time, once the lists Πx, Πy and Πx+y have been290

precomputed. �291

Consider now a small interval [θ1, θ2] in which no event occurs. Observe that, after the coordinate292

system redefinition, we have f = xθ = (− cos θ, 0), and t = yθ = (0, ℓ sin θ). Let p ∈ S be a point293

that uses the highway to reach the facility; since only the y-coordinate of t changes, its distance to294

f can be expressed as c1 ± sin θ for some c1 > 0. Analogously, if p walks to f , its distance is of the295

form c1 ± cos θ for some c1 > 0. That is, the distance between a point of S and f in any interval is296

of the form c1 + c2 sin θ + c3 cos θ for some constants c1 > 0 and c2, c3 ∈ {−1, 0, 1}.297

Theorem 3.4 The Edge-FHL-problem can be solved in O(n3) time.298

Proof. We can use a method similar to the one used in the Vertex-FHL-problem. Let eh be a299

horizontal line of G and ev be a vertical line of G.300

Using Lemma 3.3, we obtain in linear time the angular order of the O(n) events associated with eh301

and ev. The events induce a partition of [0, π
4
] into maximal intervals. For each of those intervals the302

objective function has the form g(θ) := Φ(f, t) = Φ(xθ, yθ) = b1 + b2 cos θ + b3 sin θ, where b1 > 0,303
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Figure 8 ℓ v Cost Ratio

a) 0 - 49 1
b) 1 2 46 0.93

4 45.5 0.92
106 45 0.91

c) 7.07 2 34.07 0.7
4 30.54 0.62
106 27 0.55

d) 13.41 2 27.41 0.56
4 20.71 0.42
106 14 0.29

e) 16.55 2 9 0.18
4 8.5 0.17
106 8 0.16

Table 1: Total transportation cost as a function of the highway’s length and speed. The last column shows
how much does the highway improve the total transportation cost (compared to the case in which only a
facility is located)

and b2, b3 ∈ Z are constants. This problem has constant size, hence the minimum of g(θ) can be304

found in O(1) time. Furthermore, the expression of g(θ) can be updated in constant time when θ305

crosses an event point distinct of φ when it goes from 0 to π
4
. In the case where θ crosses φ, g(θ)306

can be updated in at most O(n) time. Then the problem subject to f ∈ eh and t ∈ ev can be solved307

in linear time. It gives an overall O(n3) time complexity because G has O(n2) pairs consisting of a308

horizontal and a vertical line. �309

4 Experimental results310

Similar to [8], we explore examples of solutions to the FHL-problem for different values of the length311

of the line segment. The problem instance is given by the unweighted points with coordinates312

(−4, 0), (−3,−1), (12, 8), (13, 5), and (13, 7) as in Lemma 2.2 and we consider locating a highway313

for different values of length and speed. Given a fixed value of speed, say v = 2, Figure 8 shows the314

location of the optimal highways for some values of ℓ. Note that the case ℓ = 0 is the Fermat-Weber315

problem for the L1-metric. The highway’s length and the associated total transportation cost for316

each of these solutions can be seen in Table 4. The optimal solution for each of the cases (and its317

associated cost) has been obtained with the help of a computer.318

Observe that, for some values of ℓ, the optimal solution satisfies condition (a) of Lemma 2.1, but in319

other situations condition (b) is satisfied instead (see Figure 8 d), where the highway’s length has320

been set to 13.41). Experimentally we observed that increasing the highway’s length decreases the321

total transportation cost until ℓ =
√
305, in which a total cost of 5 + 2ℓ/v is obtained (see Figure 8322

e)). Afterwards the cost gradually increases until we locate a highway so long that no point of S323

uses it to reach f . We also note that for this demand point set the highway’s speed has a small324

impact on the optimal solution. Indeed, increasing the highway’s speed changes the total cost but325

the location of the highway in the above instance is unaffected by the highway’s speed (provided326

that v > 1). The fourth column in Table 4 gives the small variation of the total cost with respect327

to the speed. This suggests the following open problem: given an instance of the FHL-problem, can328

we efficiently compute the highway’s length that minimizes the total transportation cost?329
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f

a)

f

b)

f

c)

f

d)

f

e)

Figure 8: Solution of the same instance of the FHL-problem for different values of ℓ. The optimal highway
is depicted in red (and the endpoint containing f as a cross). The exact highway’s length and the associated
total transportation cost can be seen in Table 4.

5 Concluding remarks330

As further research, it would be worth studying the same problem in other metrics or using different331

optimization criteria. Another interesting variant would be to consider the problem when the length332

of the highway is not given in advance and it is a variable in the problem. Additionally, we could333

consider a similar distance model in which the clients can enter and exit the highway at any point334

(called freeway in [5]).335

Motivated from the experimental results of Section 4, we can deduce that the highway’s length336

has a strong impact on the optimal solution. As one would expect, when the highway’s length is337

small, the total cost barely changes. We obtain a similar effect when the highway to locate is very338

long, since traveling to the opposite endpoint takes more time than walking directly to the facility.339

Hence, it would be interesting to consider a variation of the problem in which we can also adjust340

the highway’s length. Specially, one would like to find a balance between the cost of constructing a341

longer highway and the improvement in the total transportation cost.342
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