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Abstract. Unwinding relations have been widely used to prove that
finite systems are secure with respect to a variety of noninterference
policies. The latter are prominent instances of security-relevant hyper-
properties. As hyperproperties are defined on potentially infinite systems,
a new mathematical development is needed in order to (re)use unwinding
relations for generic verification of security-relevant hyperproperties. In
this paper we propose a framework for coinductive unwinding of security
relevant hyperproperties. To illustrate the usefulness of the framework,
we show that Mantel’s Basic Security Predicates (BSPs), the noninter-
ference policies they compose, as well as their respective unwinding rela-
tions, have a meaningful coinductive reinterpretation. We prove that in a
number of cases the coinductive variants of the unwinding relations imply
the respective coinductive variants of the BSPs. Moreover, the latter can
be used to compose high-level security-relevant hyperproperties for both
finite and infinite systems. A number of the unwinding theorems also
hold as expected. In conclusion, the proposed framework and results are
useful both theoretically in the study of hyperproperties and in practice
for verification of hyperproperties on potentially infinite systems.

1 Introduction

Unwinding is a well-known technique used to prove that systems are secure with
respect to a variety of noninterference policies, which essentially regulate the flow
of information within a system. The original term and idea of unwinding date
back to the work of Goguen and Meseguer [3]. As they describe it, unwinding
is the process of translating a security policy, first, into local constraints on
the transition system, inductively guaranteeing that the policy is satisfied, and
second, into a finite set of lemmas such that any system that satisfies the lemmas
is guaranteed to satisfy the policy. The idea is intuitively appealing because the
connection between the transitions of the system and the higher level policy,
often expressed as difficult to check relations on execution traces, is given by an
unwinding theorem.

There is a substantial amount of work on unwinding of information flow
policies [3,5,15,13,10,16]. Each of these results are developed for a specific defi-
nition(s) and hence they lack modularity. This is unfortunate, as it results in the
need to reprove many similar results. In an attempt to remedy this, Mantel [7,8]
introduced a modular framework in which most well-known information flow
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policies can be composed from a set of basic security predicates (BSPs). A major
advantage of Mantel’s framework is precisely its modularity: BSPs common to
different definitions need to be verified only once per system; the same holds
for unwinding relations. Interestingly, some BSPs are equivalent to, and can be
constructed as, conjunctions of unwinding relations, whereas other BSPs are
over-approximated by conjunctions of unwinding relations. Mantel’s unwinding
relations are noteworthy for at least two major reasons. First, because they can
be arbitrary relations rather than equivalence relations, as are typically found
in the literature. And second, because they can be specified locally, on states
of the system, as opposed to the more traditional, global, trace-based unwind-
ing relations. In addition to the local unwinding relations for his BSPs, Mantel
presented unwinding theorems for most known possibilistic security policies.

Later on, Clarkson and Schneider introduced the notion of hyperproperties [2]
in order to formalize security policies. A hyperproperty is a set of sets of (infi-
nite) execution traces, or alternatively a property on trace sets or a second-order
predicate over execution traces. Hyperproperties generalize properties and are
expressive enough to capture most interesting security policies on systems, in-
cluding notions of noninterference, but also many other policies. The notion of a
hyperproperty is intuitively appealing, because it represents the set of systems
permitted by some policy. Unfortunately, a generic verification methodology for
hyperproperties does not exist. In this work, we make a step towards such a
methodology based on unwinding.

The problem of directly using Mantel’s framework for verification of hy-
perproperties, in particular for security-relevant ones, is that the framework is
geared towards reasoning about only terminating behaviors (finite systems). In
order to enable reasoning about infinite systems, particularly about systems hav-
ing confidential events occurring infinitely often, we illustrate the need of and
propose a new mathematical development. We present a coinductive reinterpre-
tation of Mantel’s unwinding relations, BSPs and security-relevant hyperprop-
erties. The security relevant hyperproperties are different than the respective
policies studied by Mantel, required by the fact that systems are possibly in-
finite. This results in different definitions of the BSPs and the respective un-
winding relations. Another consequence is that security policies have different
semantics on finite systems compared to the ones presented by Mantel. Further,
we show that the respective variants of a number of the unwinding theorems
hold as expected. Our contribution opens the door to verification of nontrivial,
potentially infinite systems w.r.t. security relevant hyperproperties. Moreover,
it reuses key ideas from Mantel’s framework, which is both well-established and
conceptually appealing. Finally, it sheds light on the significance of incremental
hyperproperties, recently proposed by Milushev and Clarke [12].

The rest of the paper is structured as follows. Section 2 provides some back-
ground material and motivation. Section 3 introduces the proposed coinductive
variants of some well-known holistic security hyperproperties and their respec-
tive BSPs. Section 4 presents the proposed coinductive variants of the unwinding
relations of selected BSPs. Section 5 presents the coinductive versions of three
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types of theorems: firstly, theorems connecting unwinding relations and BSPs,
secondly, ones connecting BSPs and holistic hyperproperties and thirdly, a ver-
sion of Mantel’s unwinding theorems, which can be used directly for verification.
In Section 6 we discuss our main contributions and compare them with related
work. Finally, we conclude by summarizing our results and sharing some ideas for
future work. The proofs and more examples can be found in the accompanying
technical report [11].

2 Background and Motivation

2.1 Background

Let A be a fixed alphabet of abstract observations, sometimes called events.
A string is a finite sequence of elements of A. The set of all strings over A is
denoted A∗. A stream of A’s is an infinite sequence of elements of A. The set
of all streams over A is Aω = {σ | σ : {0, 1, 2, . . .} → A}. A stream σ can be
specified in terms of its first element σ(0) and its stream derivative σ′, given by
σ′(n) = σ(n + 1); these operators are also known as head and tail. A trace is a
finite or infinite sequence of elements of A. The set of all traces over A is denoted
A∞ = A∗ ∪ Aω. Let 2 be any two element set, for instance 2 = {true, false}. A
system is a set of traces. The set of all systems is Sys = 2A

∞
, the set of infinite

systems is Sysω = 2A
ω

.

Properties vs. Hyperproperties. Clarkson and Schneider present a theory
of policies based on properties and hyperproperties [2]. A property is a set of
traces. The set of all properties is Prop = 2A

∞
. A hyperproperty is a set of sets

of traces or equivalently a set of properties. The set of all hyperproperties is

HP = 22
A∞

= 2Prop = 2Sys. Note that our definition, unlike the original one,
does not require all traces to be infinite; as a result termination-sensitive defini-
tions can be expressed in a more natural fashion.

Partial Automata. We model systems as partial automata [14]. A partial au-
tomaton with input alphabet A and a start state is defined coalgebraically as a
4-tuple 〈S, o, t, s0〉, where set S is the possibly infinite state space of the automa-
ton, the observation function o : S → 2 says whether a state is accepting or not,
the function t : S → (1 + S)A gives the transition structure and s0 is the initial
state. Notation SA stands for the set of functions with signature A→ S; 1 + S
is notation used for the set {⊥} ∪ S: whenever the function t(s) is undefined, it
is the constant function mapping A to ⊥; if t(s) is defined for some a ∈ A, then
t(s)(a) = s′ gives the next state.

Let A∗ ·δ = {w ·δ | w ∈ A∗} be the set of finitely deadlocked words. Note that
δ /∈ A is a special symbol to signify divergence. The collection of all languages
acceptable by partial automata is A∞δ = A∗ ∪ (A∗ · δ) ∪ Aω. For words w ∈ A∗
and sets L ⊆ A∞δ , define the w-derivative of L to be Lw = {v ∈ A∞δ | w · v ∈ L}.
Finally, let t|Z be the projection of a string t to elements from some set Z.
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Trees. Following our recent work [12], we model system behavior as potentially
infinite trees instead of as sets of traces. A tree is obtained from a language (or
set of traces) by continuously taking derivatives with respect to elements of A.
The start state of the system corresponds to the root of the tree and vertices
correspond to sets of traces (languages).

We define a particular pair of functions 〈o, t〉 allowing us to switch perspective
from seeing a system as a set of traces to seeing it as a partial automaton. It
should be noted that such a pair of functions induces a unique tree, giving the
behavior of the automaton and the set of traces (see [14] and [12] for details).
Let C ∈ Sys, a ∈ A and σ ∈ A∞. First, define an auxiliary function test : Sys→
(A→ 2) as follows:

testa(C) =̂ ∃σ ∈ C . σ(0) = a.

Now, we can define the functions o and t as follows:

o(C) =̂ ε ∈ C t(C)(a) =̂

{
{σ′ | σ(0) = a} if testa(C)
⊥ if ¬testa(C).

Auxiliary definitions. We can straightforwardly extend test to an obvious
inductive definition of predicate test∗ : Sys → (A∗ → 2) on words. For a ∈ A,
w ∈ A∗ and ε the empty trace:

o(X)

test∗ε(X)

testa(X) test∗w(Xa)

test∗a·w(X)

We also need a coinductive definition of trace inclusion in trees:

o(S)
coind

ε ∈ S
testa(S) w ∈ Sa

coind

a · w ∈ S

Note that coinductive definitions are indicated as coind on the right side of their
respective inference rules.

Incremental Hyperproperties as Coinductive Predicates on Trees. Our
recent work [12] introduced and formalized the notion of incremental hyperprop-
erties. Such a hyperproperty is the greatest fixed point of a monotone function
over Sysn, given in a fragment of Least Fixed Point Logic called IL. More in-
formally, incremental hyperproperties are coinductive tree predicates or alter-
natively coinductively defined relations on the state space of the system. The
original notion of hyperproperties [2] is also formalized and called holistic hyper-
properties [12].

2.2 Motivation

Many typical security-relevant policies (for instance all the ones presented in [8])
reason about finite only traces. As a result, such definitions are termination in-
sensitive: informally, this implies that all diverging computations are considered
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to be “the same”. This is clearly not satisfactory when reasoning about poten-
tially infinite systems, such as servers, embedded systems, operating systems
etc. Moreover, the typical termination insensitive definitions allow leaks through
covert channels. For instance, consider the simple system S1 = {(hl)ω, l∗}, where
A = L ∪H, L = {l} and H = {h} (low and high events). Clearly, termination
insensitive definitions (such as NF o introduced in Section 3.1) distinguish this
system as trivially secure: as only one of the traces is in A∗ and it has low
events only. However, the system is intuitively not secure as termination is low-
observable. In general, theoretical machinery is needed in order to reason about
potentially infinite behaviors allowed by system specifications. Such machinery,
at least for reasoning about security-relevant hyperproperties in general, is cur-
rently lacking. This is the main motivation of this work.

3 Coinductive Interpretation of Security-Relevant
Hyperproperties

Security-relevant policies (notably notions of noninterference) have traditionally
been defined using a model of finite traces, as well as inductively defined relations
on those traces using existential and universal quantification. In order to be able
to reason about potentially infinite behavior, the above mentioned relations have
to be lifted to potentially infinite traces. Thus, a coinductive (re)interpretation
of the well-known notions of noninterference is needed in order to reason about
the same policies on (potentially) nonterminating systems. The reason is that
when computations do not terminate, there is no longer a well-ordering and
hence inductive definitions are ill-formed.

The coinductive interpretation of well-known, holistic, security hyperproper-
ties requires coinductively defined predicates on traces and sometimes functions
(often treated as relations). We start off by giving the needed definitions. Note
that set Z ⊆ A used below is assumed to be non-empty.
Definitions. Coinductively define predicate noZ : A∞ → 2 (parameterized by
set Z), which states that there are no events from set Z in a trace:

coind

noZ(ε)

a ∈ A \ Z noZ(x)
coind

noZ(a · x)

Note that noZ(t) is the coinductive version of predicate t|Z = ε. Next, inductively
define w Z a · w′ (w Z-reveals a with tail w′):

ε Z ε

a ∈ Z
a · w Z a · w

b ∈ A \ Z w Z a · w′

b · w Z a · w′

We also need a coinductive relation evZ , relating any trace to its projection onto
Z. Technically, the relation is a partial function, filtering out events from set Z,
and will be defined and used as one, mainly to keep the connection to t|Z .

coind

evZ(ε) = ε

w Z a · w′ evZ(w′) = u
coind

evZ(w) = a · u
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Finally, coinductively define weak bisimulation (parameterized by set Z) ≈Z :
A∞ ×A∞ → 2 as follows:

coind
ε≈Z ε

w Z a · w′ u Z a · u′ w′≈Z u′
coind

w≈Z u
Note that the inductive/coinductive part of the definition avoids the potential
fairness problem where τω is equivalent to any trace.

Next, we present definitions adopted from Mantel’s MAKS framework [8].
For a partition of alphabet A as A = Av ∪An ∪Ac, define a view to be a tuple
V = (Av, An, Ac) corresponding to visible, neither visible nor confidential (i.e.
neutral) and confidential events. Let H denote the view (L, ∅, H) where H and
L are the sets of high and low events, and the set of neutral events is empty.
Let sets I and O represent inputs and outputs such that I ⊆ A, O ⊆ A and
I ∩O = ∅. Let HI denote the view (L,H \HI ,HI ), where HI is the set of high
inputs, i.e. H ∩ I. Let the set of all views be V and ρ be a function from views to
subsets of A, i.e. ρ : V → 2A. An event is defined to be ρ-admissible in a tree T
after a possible finite trace β for some view V = (Av, An, Ac) if Admρ

V (T, β, e)
holds, where Admρ

V (T, β, e) is defined:

Admρ
V (T, β, e) =̂ ∃γ ∈ A∗.(γ · e ∈ T ∧ γ≈ρ(V ) β).

Intuitively, ρ can give a finer grained distinction of events than a view. For in-
stance, one policy might be defined as follows: given some view (Av, An, Ac)
and from observing events in Av one should not be able to deduce occur-
rence/nonoccurrence of ρ-admissible events in Ac (or some subset of it).

3.1 Coinductive view on some well-known holistic security-relevant
hyperproperties

The definitions presented next are well-known from the literature, but we present
their respective variants on potentially infinite systems (as hyperproperties).

Noninference This policy will be called NF o (original NF ) and is originally
defined on finite systems as follows [17]:

NF o(X) =̂ ∀x ∈ X. x|L ∈ X.

The coinductive variant of noninference is called NF and given using evZ :

NF (X) =̂ ∀x ∈ X. evL(x) ∈ X.

Generalized Noninference This policy is originally proposed by Zakinthinos
and Lee [17] and given as follows:

GNF o(X) =̂ ∀x0 ∈ X ∃x1 ∈ X. (x1|HI = ε ∧ x1|L = x0|L).

Our coinductive interpretation of generalized noninference GNF is given here:

GNF (X) =̂ ∀x0 ∈ X ∃x1 ∈ X. (noHI (x1)∧ x1≈L x0).

For the following policies, we only give the coinductive definitions.
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Generalized Noninterference Using coinductive relations on traces, we de-
fine generalized noninterference GNI as a hyperproperty:

GNI (X) =̂ ∀x1 ∈ A∗ ∀x2, x3 ∈ A∞ . [(x1 · x2 ∈ X ∧ x3≈A\HI x2)→
∃x4 ∈ A∞. (x1 · x4 ∈ X ∧ x4≈L∪HI x3)].

Note that the equality of projections is replaced by our coinductively defined
≈Z relation.

Perfect Security Property Finally, we present our coinductive variant of the
perfect security property PSP (proposed by Zakinthinos and Lee [17]):

PSP(X) =̂ (∀x ∈ X. evL(x) ∈ X) ∧ (∀α ∈ A∞∀β ∈ A∗.
[(β · α ∈ X ∧ noH(α))→ ∀h ∈ H. (β · h ∈ X → β · h · α ∈ X)]).

We have presented only a few of the information flow definitions in order to
illustrate what is needed to represent them as hyperproperties. It is relatively
straightforward to convert any of the ones not presented here. Nevertheless, the
examples are enough to cover a number of important BSPs and unwinding re-
lations, as well as to raise some interesting questions, which will be presented
in the following sections. Moreover, the examples suggest a possible technique
to adapt Mantel’s unwinding relations to reason about security-relevant hyper-
properties and a connection with incremental hyperproperties, namely that an
H ′-simulation [12], implying that an incremental hyperproperty H ′ holds, is a(n)
(conjunction of) unwinding relation(s). This is further elaborated in Section 4.

3.2 Coinductive view on BSPs

Mantel introduces the MAKS framework [8,7], which can represent most well-
known possibilistic security policies as conjunctions of Basic Security Predicates.
Mantel classifies his BSPs in two dimensions. In the first dimension fall BSPs
that essentially hide the occurrence of Ac-events, whereas in the second dimen-
sion are BSPs that hide the non-occurrence of Ac-events. Mantel’s BSPs and
security policies are defined on finite traces only. In this section we present a
coinductive perspective on a number of the BSPs, parameterized by a security
view (see Section 3). Although we have changed the definitions, we have kept
their original names. We start with some BSPs from the first dimension.

Removal of events. Predicate RV (T ) requires for any trace σ ∈ T the exis-
tence of another trace γ which has no events from Ac and which has the same
Av-events (essentially allowing “corrections” of An-events). Our definition is:

RV (T ) =̂ ∀σ ∈ T ∃γ ∈ T . (noAc
(γ) ∧ σ≈Av

γ).

Note that we have replaced the relations on traces in the original work with
coinductive ones, similarly to the modifications of the definitions from Section
3.1. Interestingly, such a straightforward modification will not be possible for
the rest of the BSP definitions we explore.
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Stepwise deletion of events. The original definition [8] changes any trace σ
in a candidate set T by deleting the last occurrence of a confidential event and
requires that the resulting trace can be corrected (by possibly inserting/deleting
events in An if it is not empty) resulting in a possible trace γ in T . If we naively
convert Mantel’s definition to potentially infinite traces, we get the following:

DNV (T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [(β · c · α ∈ T ∧ noAc
(α))→

∃α′ ∈ A∞, β′ ∈ A∗ . (β′ · α′ ∈ T ∧ α′≈Av
α ∧ noAc

(α′) ∧ β′≈Av∪Ac
β)].

This definition would work as expected on finite traces. Unfortunately, it is not
well-suited for infinite traces. To illustrate this, consider the following example:

Example 1. Let V = (Av, An, Ac) be a view such that Av = {l1, l2}, An = ∅
and Ac = {h1, h2}. Consider system S1 = {(l1h1h2l2)ω}. Intuitively system S1

is not secure, as every time l2 is observed it is clear that h1 and h2 must have
occurred. Unfortunately, the definition of DNV does not capture this intuition,
as system S1 is trivially secure w.r.t. the definition. The reason for this problem
is that confidential events appear infinitely often, thus there is no suffix t for
which noAc

(t) holds.

Potentially infinite traces are allowed in many useful systems (operating
systems, reactive and embedded systems etc.) and oftentimes there is no last
confidential event, as confidential events might occur infinitely often. Thus the
definition needs to be changed. The following definition fixes the problem:

DV (T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [β · c · α ∈ T →
∃α′ ∈ A∞, β′ ∈ A∗. (β′ · α′ ∈ T ∧ β′≈Av∪Ac

β ∧ α′≈Av∪Ac
α)].

This definition deletes any occurrence of a confidential event in a trace and then
perturbs the resulting trace. Unfortunately, on finite traces the definition is not
semantically equivalent to the original one. To see this consider the following:

Example 2. Let V = (Av, An, Ac) be a view such that Av = {l1, l2}, An = ∅
and Ac = {h1, h2}. Consider system S2 = {l1h1h2l2, l1h1l2, l1l2}. It is easy to
check that DV (S2) does not hold (because l1h2l2 has to be in S2, but it is not).
Nevertheless S2 is secure w.r.t. Mantel’s original definition, as well as w.r.t. our
naive definition DNV .

It should be noted that the definition DV (proposed here and used through-
out the work) is stronger (it requires more possible traces and hence higher
uncertainty for the attacker) than DNV . In other words, DV (X) → DNV (X).
Moreover, DV properly rejects systems exhibiting the pattern of S1 as insecure;
to see one reason why, note that l1h2l2(l1h1h2l2)ω 6∈ S1.
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Backwards strict deletion. The next BSP is called BSD . The intuitive idea
is that the occurrence of an Ac-event should not be deducible. The difference
with DV is that the part of the trace that has already occurred (β) cannot be
changed. Our coinductive definition of BSDV (T ) is given as:

BSDV (T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [β · c · α ∈ T →
∃α′ ∈ A∞. (β · α′ ∈ T ∧ α′≈Av∪Ac

α].

Note that a similar modification as to DV is needed here and the reason again
is to enable tackling systems which do not have a last confidential event.

Although the BSP definitions have changed, the following theorem establishes
a connection between the BSPs, familiar from Mantel’s work.

Theorem 1. Let V = (Av, An, Ac) be a view and T be a set of traces. Then the
following implications hold: BSDV (T )→ DV (T ) and DV (T )→ RV (T ).

Strict Deletion. Our version of this BSP is again different than Mantel’s: as
in the previous definition, it does not search for the last Ac-event, hence it works
on infinite traces. Our coinductive version of SDV (T ) is given next:

SDV (T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [β · c · α ∈ T → β · α ∈ T ].

The rest of the presented BSPs are from the second dimension, hiding the
non-occurrence of Ac-events.

Backwards strict insertion. This BSP is in a sense dual to BSDV — instead
of deleting an Ac-event, it requires the possible insertion of such an event. Of
course, we have again modified the definition to a coinductive one and it does
not search for the last Ac-event, hence it works on infinite traces. The same also
holds for all the following definitions. Our coinductive version of BSIV (T ) is:

BSIV (T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [β · α ∈ T →
∃α′ ∈ A∞. (β · c · α′ ∈ T ∧ α′≈Av∪Ac α)].

Backwards strict insertion of admissible events. This BSP is similar to
BSI V , but it hides the non-occurrence of admissible events only. Our coinductive
version of BSIAρ

V (T ) is given as follows:

BSIAρ
V (T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac .

[(β · α ∈ T ∧Admρ
V (T, β, c))→

∃α′ ∈ A∞. (β · c · α′ ∈ T ∧ α′≈Av∪Ac α)].

Strict Insertion. This BSP requires the possibility to insert any Ac-event at
any place in a stream, it is strict because neither the past nor the future part of
the trace may be changed. Our coinductive version of SIV (T ) is given as follows:

SIV (T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac . [β · α ∈ T → β · c · α ∈ T ].
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Strict Insertion of ρ-admissible events. This BSP requires the possibility
to insert any ρ-admissible Ac-event at any place (where admissible) in a stream.
Our coinductive version of SIAρ

V (T ) is given as follows:

SIAρ
V (T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac .

[(β · α ∈ T ∧Admρ
V (T, β, c))→ β · c · α ∈ T ].

Insertion of ρ-admissible events. This BSP is similar to SIAρ
V , except that

the definition is not strict (perturbations of the front and back parts of the trace
are possible). Our coinductive version of IAρ

V (T ) is given as follows:

IAρ
V (T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ Ac.
[(β · α ∈ T ∧Admρ

V (T, β, c))→
∃α′ ∈ A∞.∃β′ ∈ A∗. (β′ · c · α′ ∈ T ∧ α′≈Av∪Ac α ∧ β′≈Av∪Ac β)].

4 Coinductive interpretation of BSP unwinding relations

Instead of verifying BSPs directly or via global unwinding conditions, Mantel
proposes the use of local unwinding conditions [7]. Essentially, the existence
of an unwinding relation(s) satisfying a set of unwinding conditions has to be
shown in order to prove that a number of BSPs hold and hence a particular
policy is respected. In this section, we present a coinductive reinterpretation of
Mantel’s unwinding relations, which is needed in order for them to be suitable
for non-terminating systems. We also show that the relations are instances of
our H ′-simulation relations [12].

The coinductively defined unwinding relations are presented next. The first
relation is historically called output-step consistency and denoted oscV . Defined
coinductively, an oscV -simulation is a relation R such that for all X,Y ∈ Sys if
(X,Y ) ∈ R, then

o(X)↔ o(Y )
∧
∀a ∈ A \Ac. (testa(X)→

∃σ ∈ (A \Ac)∗.(test∗σ(Y ) ∧ σ≈Av a ∧ (Xa, Yσ) ∈ R)).

An oscV -simulation relation R is denoted oscV (R). We will often overload no-
tation and state oscV (X,Y,R) iff oscV (R) and (X,Y ) ∈ R.

Next, define an lrfV -simulation as follows: a relation R such that for all
X,Y ∈ Sys if (X,Y ) ∈ R, then

o(X)↔ o(Y )
∧
∀a ∈ Ac. (testa(X)→ (Xa, Y ) ∈ R).

Next, define an lrbV -simulation relation as follows: a relation R such that
for all X,Y ∈ Sys if (X,Y ) ∈ R, then

o(X)↔ o(Y )
∧
∀a ∈ Ac. (testa(Y ) ∧ (X,Ya) ∈ R).
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Next, define EnρV (X, s, a), saying whether event a is enabled in state s of
system X w.r.t. a set of admissible events given by function ρ (see Section 3):

EnρV (X, s, a) =̂ ∃β, γ ∈ A∗.[test∗β(X) ∧ s = Xβ ∧ o(s) ∧ γ≈ρ(V ) β ∧
test∗γ(X) ∧ o(Xγ) ∧ testa(Xγ) ∧ o(Xγ·a)].

Finally, define an lrbeρV -simulation relation as follows: a relation R such that if
(X,Y ) ∈ R, then

o(X)↔ o(Y )
∧
∀a ∈ Ac. (EnρV (T, Y, a)→ (testa(Y ) ∧ (X,Ya) ∈ R)).

Next, we show that the relations defined in this section are indeed H ′-
simulations. First, recall that incremental hyperproperties are coinductive pred-
icates on trees [12]. Formally, an H ′-simulation is an n-ary relation R such that
R ⊆ ΨH′(R). An H ′-simulation corresponds to a monotone operator ΨH′ whose
greatest fixed point is the coinductive predicate H ′. Hence showing the existence
of such a relation is sufficient to show that H ′ holds [12]. Because of the way the
relations are defined, it is obvious that R ⊆ ΨH′(R) holds; informally, ΨH′ is the
“step” of the relation. Thus, the relations are indeed H ′-simulation relations.

5 Coinductive interpretation of the theory

We have taken a coinductive perspective on Mantel’s unwinding relations [8]. The
high-level goal is to properly incorporate the unwinding relations in our frame-
work in order to facilitate the verification of security-relevant hyperproperties.
To show that we have succeeded in this, we present three types of theorems,
very similar to the ones initially introduced by Mantel in his framework: firstly,
theorems connecting unwinding conditions and BSPs, secondly, ones connecting
BSPs and holistic hyperproperties and finally, a version of Mantel’s unwinding
theorems.

The fact that we can prove these theorems implies that our definitions of
unwinding relations, BSPs and holistic hyperproperties are reasonable and, more
importantly, that our framework is suitable for the verification of a number of
security-relevant policies via unwinding.

5.1 Unwinding conditions to BSPs theorems

The following two lemmas prove the intuition of oscV -simulation relations: states
related by such a relation are indistinguishable to the Av part of the view.

Lemma 1. Let R ⊆ Sys×Sys be an arbitrary relation and T, S arbitrary systems.
If oscV (T, S,R) holds for some T, S ∈ Sys then we have

∀α1 ∈ (A \Ac)∗.(test∗α1
(T ) →

∃α2 ∈ (A \Ac)∗. (test∗α2
(S) ∧ α1≈Av

α2 ∧ (Tα1
, Sα2

) ∈ R)).
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Lemma 2. For all T, S ∈ Sys if there exists R ⊆ Sys × Sys s.t. oscV (T, S,R)
holds, then the following is valid:

∀α1 ∈ (A \Ac)∞.(α1 ∈ T → ∃α2 ∈ (A \Ac)∞.(α2 ∈ S ∧ α1≈Av α2)).

The next result gives logically sufficient conditions (conjunctions of unwinding
relations) for a number of BSPs. This is not surprising (Mantel presents a similar
result), but it is nevertheless important, because the definitions have changed.

Theorem 2. Let R ⊆ Sys × Sys be an arbitrary relation and T an arbitrary
system. The following implications are valid:

1. lrfV (T ,T ,R) ∧ oscV (T ,T ,R)→ BSDV (T )
2. lrfV (T ,T ,R) ∧ oscV (T ,T ,R)→ DV (T )
3. lrfV (T ,T ,R) ∧ oscV (T ,T ,R)→ RV (T )
4. lrbeρV (T ,T ,R) ∧ oscV (T ,T ,R)→ BSIAρ

V (T )
5. lrbV (T ,T ,R) ∧ oscV (T ,T ,R)→ BSIV (T ).

The following theorem gives a conditional completeness result (when An = ∅) for
some BSPs. Further results on this have been left out due to space limitations.

Theorem 3. Consider a view (Av, An, Ac) s.t. An = ∅. The following are valid:

1. BSDV (T ) implies there exists a relation R ⊆ Sys×Sys s.t. lrfV (T, T,R) and
oscV (T, T,R) hold.

2. BSIAρ
V (T ) implies there exists a relation R ⊆ Sys × Sys s.t. lrbeρV (T, T,R)

and oscV (T, T,R) hold.

5.2 Coinductive version of BSPs to holistic hyperproperties
theorems

This section presents useful results, relating BSPs and the holistic, security-
relevant hyperproperties, introduced in Section 3.1. First, recall that HI =
(L,H \HI ,HI ). The instantiation of BSDV with view HI is given as follows:

BSDHI(T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ HI . [(β · c · α ∈ T →
∃α′ ∈ A∞. (β · α′ ∈ T ∧ α′≈L∪HI α)].

The instantiation of BSI V with view HI is given as follows:

BSIHI(T ) =̂ ∀α ∈ A∞ ∀β ∈ A∗ ∀c ∈ HI . [(β · α ∈ T →
∃α′ ∈ A∞. (β · c · α′ ∈ T ∧ α′≈L∪HI α)].

The following result establishes the connection between certain BSPs and GNI .

Theorem 4. For all T ∈ Sys we have BSDHI(T ) ∧ BSIHI(T ) iff GNI (T ).

The next theorem establishes that the holistic hyperproperty noninference is
equivalent to the BSP removal of events, instantiated with view H.



Coinductive unwinding of security-relevant hyperproperties 13

Theorem 5. For all T ∈ Sys we have RH(T ) iff NF (T ).

The following result claims that the holistic hyperproperty GNF is equivalent
to the BSP removal of events, this time instantiated with view HI.

Theorem 6. For all T ∈ Sys we have RHI(T ) iff GNF (T ).

Finally, we have proven Theorem 7, representing PSP as a conjunction of BSPs.

Theorem 7. For all T ∈ Sys we have BSDH(T ) ∧ BSIAρA
H (T ) iff PSP(T ).

5.3 Coinductive version of Mantel’s unwinding theorems

Finally, we present the coinductive unwinding theorems for a number of known
security-relevant hyperproperties. These unwinding theorems allow the specifica-
tion and verification of the high-level policy by reasoning about the local states
of the candidate system. Interestingly, there is a completeness result only for the
definition of PSP . Similar theorems have been shown before, but for different
unwinding relation, BSP and hyperproperty definitions and different models (for
instance see the MAKS framework [8]).

Noninference NF We have proven an unwinding theorem for NF , giving
logically sufficient conditions. Because we only have an implication, there may
be secure systems for which the needed unwinding relation does not exist.

Theorem 8 (Unwinding of NF). If there exists a relation R ⊆ Sys×Sys such
that lrfH(T, T,R) ∧ oscH(T, T,R), we have that NF (T ) holds.

Generalized Noninference GNF Further, we have proven an unwinding
theorem for GNF , again giving logically sufficient conditions. Unfortunately,
such conditions are again not necessary.

Theorem 9 (Unwinding of GNF). If there exists a relation R ⊆ Sys × Sys
such that lrfHI(T, T,R) ∧ oscHI(T, T,R), we have that GNF (T ) holds.

Generalized Noninterference GNI We have also been able to prove an
unwinding theorem, giving logically sufficient conditions for GNI .

Theorem 10 (Unwinding of GNI ). If there exist relations R,Q ⊆ Sys× Sys
such that lrfHI(T, T,R)∧oscHI(T, T,R), as well as lrbHI(T, T,Q)∧oscHI(T, T,Q),
we have that GNI (T ) holds.
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Perfect Security Property PSP The Perfect Security Property is special, as
there are necessary and sufficient conditions. We have been able to show this in
our framework as well. First, let ρA(Av, An, Ac) = Av ∪An ∪Ac = A.

Theorem 11 (Unwinding of PSP). There exist relations R,Q ⊆ Sys × Sys
such that lrfH(T, T,R)∧oscH(T, T,R), as well as lrbeρAH (T, T,Q)∧oscH(T, T,Q),
iff PSP(T ) holds.

This theorem gives unwinding relations for PSP . Moreover (unlike for the other
definitions), for PSP we know that if no relations R,Q ⊆ Sys × Sys such that
lrfH(T, T,R) ∧ oscH(T, T,R) exist, the candidate system T is not secure.

6 Discussion

We have presented a new mathematical development enabling the application of
unwinding relations for the verification of security-relevant hyperproperties.

First, a novel coinductive perspective was taken on the security-relevant hy-
perproperties themselves, by adapting their definitions to allow reasoning about
nonterminating behavior. Such a modification is important not only from a the-
oretical point of view, but also in practice. As a motivating example, consider
systems with nonterminating behavior such that confidential events in all traces
occur infinitely often (this is a liveness property). In such situations it is impossi-
ble to declare a system secure by examining only finite prefixes. A typical policy,
for instance given by Mantel’s deletion of events [8] or a naive coinductive inter-
pretation of the latter (DNV from Section 3.2), would not be able to properly
reason about such systems. Such policies would simply accept systems having
only infinite behavior as being trivially secure (e.g. S = {(lhl)ω, (hll)ω, (llh)ω}).
Intuitively, this is not desirable. As systems, exhibiting infinite behaviors and
having no last confidential event, are abundant in practice (databases, operating
systems, reactive and embedded systems), they are important for both specifica-
tion and verification. Since hyperproperties are generic system specifications, it
is natural to address the above-mentioned problems by giving them a coinductive
semantics and use coinduction as a reasoning tool for such systems.

The only related paper that explores nonterminating behaviors and identifies
the need for a coinductive interpretation of noninterference for potentially non-
terminating systems is by Bohannon et al. [1]. They introduce the notion of reac-
tive noninterference and explore variants suitable for reactive systems. The main
similarity with our work is that they use coinductive and inductive/coinductive
definitions in order to define relations on streams. They convert their high-level,
holistic definition into a relation (called ID-bisimulation) on program states;
they show that their ID-bisimulation implies the high level, holistic policy. Their
ID-bisimulation is essentially an incremental hyperproperty.

Second, we have demonstrated the potential of a modular framework for
coinductive reasoning about hyperproperties. This is achieved by combining the
framework from our previous work [12] with a coinductive reinterpretation of
Mantel’s BSPs and unwinding relations. It should be noted that our proposed
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coinductive variants of the BSPs are not equivalent to Mantel’s on finite systems,
nevertheless their conjunctions still imply the desired high level policies.

Third, we present a coinductive reinterpretation of Mantel’s unwinding rela-
tions and argue that they are instances of our H ′-simulations [12]. More precisely,
an H ′-simulation is a (conjunction of) unwinding relation(s). This realizes a con-
nection between unwinding relations and incremental hyperproperties: incremen-
tal security hyperproperties can be seen as conjunctions of coinductively-defined
unwinding relations, or alternatively as (conjunctions of) ourH ′-simulations [12],
implying the respective high level policies. This is obvious if we consider some of
the incrementalizable classes of hyperproperties [12], particularly SHH and OHH.
Moreover, other interesting security-relevant hyperproperties, such as separabil-
ity [17], forward correctability [6], nondeducibility of outputs [4] etc., having
known representations as conjunctions of unwinding relations, can benefit from
the techniques presented here.

Finally, we have presented a number of unwinding theorems for our coinduc-
tive reinterpretation of well-known security-relevant hyperproperties.

7 Conclusion

We have proposed a framework suitable for coinductive reasoning about hyper-
properties in general and illustrated its usefulness by exploring a new coinduc-
tive reinterpretation of known noninterference policies as hyperproperties. The
framework is modular, as it permits expressing a number of security-relevant
hyperproperties as conjunctions of variants of Mantel’s BSPs. We have demon-
strated the usefulness of coinductive unwinding relations for reasoning about
hyperproperties. In particular, we have presented unwinding theorems for gen-
eralized noninterference [9], noninference [17], generalized noninference [17] and
the perfect security property [17]. Moreover, we have proven results connecting
unwinding relations and BSPs, relating different BSPs and relating BSPs and
holistic hyperproperties.

To the best of our knowledge, the results are novel in several ways. First
we further develop our recently proposed framework for reasoning about hyper-
properties [12] and establish a connection with the most relevant (in our opinion)
work on verification via unwinding [7]. We also identify and illustrate the poten-
tial of unwinding relations (which turn out to be instances of our H ′-simulations)
for generic verification of hyperproperties. Further, we argue that coinductively
defined hyperproperties are important not only from a theoretical standpoint,
but also in practice, due to the abundance of nontrivial reactive systems. Finally,
the results shed light on the significance of incremental hyperproperties.

In the future, we envision extending the work in two main directions: for-
mally characterizing the class of security-relevant incremental hyperproperties
and applying the framework for reasoning about reactive system security.
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