Abstract
This paper presents a novel method to organize a collection of images into a hierarchy of clusters based on image semantics. Given a group of raw images with no metadata as input, our method describes the semantics of each image with a bag-of-semantics model (i.e., a set of meaningful descriptors), which is derived from the image’s Object Relation Network [5] - an expressive graph model representing rich semantics for image objects and their relations. We adopt the class hierarchies in a guide ontology as different levels of lenses to view the bag-of-semantics models. Image clusters are automatically extracted by grouping images with the same bag-of-semantics viewed through a certain lens. With a series of coarse-to-fine lenses, images are clustered in a top-down hierarchical manner. In addition, given that users can have different perspectives regarding how images should be clustered, our method allows each user to control the clustering process while browsing, and thus dynamically adjusts the clustering result according to the user’s preferences.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bi, J., Chen, Y., Wang, J.Z.: A sparse support vector machine approach to region-based image categorization. In: CVPR (2005) 4
Bosch, A., Zisserman, A., Muñoz, X.: Scene Classification Via pLSA. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part IV. LNCS, vol. 3954, pp. 517–530. Springer, Heidelberg (2006) 1, 4
Cai, D., He, X., Li, Z., Ma, W.Y., Wen, J.R.: Hierarchical clustering of www image search results using visual, textual and link information. ACM Multimedia (2004) 1, 3
Chen, N., Prasanna, V.K.: A bag-of-semantics model for image clustering. Tech. rep., University of Southern California (August 2012), http://www-scf.usc.edu/~nchen/paper/bos.pdf 7
Chen, N., Zhou, Q.Y., Prasanna, V.: Understanding web images by object relation network. In: Proceedings of the 21st International Conference on World Wide Web (2012) 1, 2, 4
Chen, Y., Wang, J.Z.: Image categorization by learning and reasoning with regions. J. Mach. Learn. Res. (2004) 4
Chen, Y., Wang, J.Z., Krovetz, R.: Clue: Cluster-based retrieval of images by unsupervised learning. IEEE Transactions on Image Processing (2003) 1, 3
Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-scale hierarchical image database. In: CVPR (2009) 6
Everingham, M., Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL Visual Object Classes Challenge 2011 (VOC 2011) Results (2011), http://www.pascal-network.org/challenges/VOC/voc2011/workshop/index.html 6
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part based models. IEEE TPAMI 32(9) (2010) 6
Gao, B., Liu, T.Y., Qin, T., Zheng, X., Cheng, Q.S., Ma, W.Y.: Web image clustering by consistent utilization of visual features and surrounding texts. ACM Multimedia (2005) 1, 3
van Gemert, J.C., Geusebroek, J.-M., Veenman, C.J., Smeulders, A.W.M.: Kernel Codebooks for Scene Categorization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 696–709. Springer, Heidelberg (2008) 1, 4
Gordon, S., Greenspan, H., Goldberger, J.: Applying the information bottleneck principle to unsupervised clustering of discrete and continuous image representations. In: ICCV (2003) 1, 3
Jing, F., Wang, C., Yao, Y., Deng, K., Zhang, L., Ma, W.Y.: Igroup: web image search results clustering. ACM Multimedia (2006) 3
Li, F.F., Perona, P.: A bayesian hierarchical model for learning natural scene categories. In: CVPR (2005) 1, 4
Liu, Y., Chen, X., Zhang, C., Sprague, A.: Semantic clustering for region-based image retrieval. J. Vis. Comun. Image Represent. (2009) 4
Rodden, K., Basalaj, W., Sinclair, D., Wood, K.: Does organisation by similarity assist image browsing? In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (2001) 1, 3
Wang, X.J., Ma, W.Y., Zhang, L., Li, X.: Iteratively clustering web images based on link and attribute reinforcements. ACM Multimedia (2005) 1, 3
Zheng, X., Cai, D., He, X., Ma, W.Y., Lin, X.: Locality preserving clustering for image database. ACM Multimedia (2004) 3
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Chen, N., Prasanna, V.K. (2012). Semantic Image Clustering Using Object Relation Network. In: Hu, SM., Martin, R.R. (eds) Computational Visual Media. CVM 2012. Lecture Notes in Computer Science, vol 7633. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-34263-9_8
Download citation
DOI: https://doi.org/10.1007/978-3-642-34263-9_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-34262-2
Online ISBN: 978-3-642-34263-9
eBook Packages: Computer ScienceComputer Science (R0)