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Abstract. In the multicore era, verification for concurrent programs
is increasingly important. Although state-of-the-art verification systems
ensure safe concurrent accesses to heap data structures, they tend to ig-
nore program variables. This is problematic since these variables might
also be accessed by concurrent threads. One solution is to apply the
same permission system, designed for heap memory, to variables. How-
ever, variables have different properties than heap memory and could
benefit from a simpler reasoning scheme. In this paper, we propose a
new permission system to ensure safe accesses to shared variables. Given
a shared variable, a thread owns either a full permission or no permission
at all. This ensures data-race freedom when accessing variables. Our goal
is to soundly manage the transfer of variable permissions among threads.
Moreover, we present an algorithm to automatically infer variable per-
missions from procedure specifications. Though we propose a simpler
permission scheme, we show that our scheme is sufficiently expressive
to capture programming models such as POSIX threads and Cilk. We
also implement this new scheme inside a tool, called Vperm, to auto-
matically verify the correctness of concurrent programs based on given
pre/post-specifications.

1 Introduction

Access permissions have recently attracted much attention for reasoning about
heap-manipulating concurrent programs [2, 4, 7, 9–12]. Each heap location is as-
sociated with a permission and a thread can access a location if and only if it
has the access permission for that location. Permissions can be flexibly trans-
ferred among callers and callees of the same threads or among different threads.
A thread needs a certain fraction of a permission to read a location but it has to
own the full permission in order to perform a write. This guarantees data-race
freedom in the presence of concurrent accesses to heap locations.

Program variables1 can also be shared among threads and are prone to data
races. Therefore, one may adopt a similar scheme, designed for heap locations,
to reason about variables. “Variables as resource” [3, 21] indeed uses such a per-
mission scheme for variables. Each variable x is augmented with a predicate

? This is an extended version of the paper published in the Proceedings of 14th In-
ternational Conference on Formal Engineering Methods (ICFEM), pp. 5–21, Kyoto,
Japan, Nov 12–16, 2012.

1 We mean either global variables or local variables; as distinct from heap locations.



Own(x, π) where π denotes the permission to access x. The permission domain
is either (0,1] for fractional permissions [4] or [0,∞) for counting permissions [2].
This allows variables to be treated in the same way as heap locations. However,
this permission scheme is more complex and places higher burden on program-
mers to figure out the fraction to be associated to a variable and how to perform
permission accounting properly [2]. To the best of our knowledge, we are not
aware of any existing verifiers that have fully implemented the idea. Small-
foot [1] uses side-conditions to outlaw conflicting accesses to variables. This,
however, requires subtle, global, and hard-to-check conditions that a compiler
should ensure [3, 22]. Similarly, Chalice [15, 16], a program verifier developed for
concurrency verification, does not support permissions for variables in method
bodies. Even Verifast [12, 13], a state-of-the-art verifier, still does not naturally
support concurrency reasoning using variables, though it has support for vari-
ables by simulating them as heap locations. Consequently, existing verification
systems narrow the programmers’ choice to heap locations instead of variables
for shared accesses by concurrent threads at the expense of losing the expressivity
and simplicity that variables provide.

In this paper, we argue that variables with their own characteristics could
be treated in a much simpler way than heap locations. Firstly, each variable is
distinct; therefore, aliasing issue required for heap locations can be ignored for
variables in most cases. Secondly, if several threads need to concurrently read
a variable, the main thread holding the full permission of the variable can just
give each child thread a copy of the variable through pass-by-value mechanism. If
concurrent threads require write access to the same variable, this shared variable
can be protected by a mutex lock whose invariant holds the full permission of the
variable. Lastly, if only one thread requires a write access to a given variable, we
can simply pass the full permission of the variable into the thread (through pass-
by-reference) whose permission is only returned when the child thread joins the
main thread. This scheme allows concurrent but race-free accesses to variables.

Nonetheless, there are two scenarios where the above scheme is inadequate.
The first scenario occurs in languages such as C/C++ when some variables can
be aliased through the use of the address-of operator &. The second scenario
occurs when concurrent threads require phased accesses to shared variables, e.g.
concurrent threads safely read prior to writing to shared variables. In both sce-
narios, we propose to automatically translate the affected variables into pseudo-
heap locations where a more complex heap permission scheme is utilized.

Because of the above observations, we propose to simply assign a permission
of either full or zero to a variable. We can utilize heap (or pseudo-heap) locations
to complement our concurrent programming model, where necessary, and also
readily use variables, where sufficient. The net result is a rich but still verifiable
programming paradigm for concurrent threads. We shall show that our treat-
ment of variable permissions is sound and expressive to capture programming
models such as POSIX threads [5] and Cilk [8]. To relieve programmers from
annotation efforts, we shall demonstrate an algorithm to automatically infer
variable permissions by only looking at procedure specifications. We shall also
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provide a translation scheme to handle the variable aliasing (that can also be
used for variables requiring phased accesses) and thus complement our treatment
of variable permissions.

Contributions. In this paper, we make the following contributions:

– A simpler treatment of variable permissions to ensure safe concurrent ac-
cesses to program variables, as distinct from heap locations (Section 2 and
4.1). We also demonstrate the applicability of our scheme to popular pro-
gramming models such as POSIX threads and Cilk (Section 5.1).

– An algorithm to automatically infer variable permissions from procedure
specifications. This helps to reduce program annotations (Section 4.2).

– A translation scheme to eliminate variable aliasing for the purpose of pro-
gram verification. (Section 4.3). We present how to translate programs with
pointers and address-of operator (&) into our core language (Section 3).

– A prototype system, Vperm2, to show that our variable permission scheme is
practical to be implemented and to automatically verify concurrent programs
such as parallel mergesort and parallel quicksort among others. Experimental
results show that our system minimizes user annotations that are typically
required in verification (Section 6).

2 Motivating Example

This section illustrates our treatment of variable permissions to reason about
concurrent programs. Figure 1 shows an example illustrating the widely-used
task-decomposition pattern in concurrent programming. The main procedure
invokes the creator procedure to create a concurrent task and later performs a
join to collect its result. In this example, the main procedure creates two local
variables x and y and passes them to the creator. The creator forks a child
thread that increases x by 1, and itself increases y by 2. The identifier tid of the
child thread is returned to the main procedure which will later perform a join.

This example shows a fairly complicated inter-procedural passing of variables
between the main thread and the child thread. It poses two challenges: (i) how
to describe the fact that any accesses to x after forking the child thread and
before joining it are unsafe, and (ii) how to propagate this fact across procedure
boundaries. These issues can be resolved soundly and modularly by our proposed
variable permissions.

Modular reasoning is achieved by augmenting the specification of the program
with variable permissions: @full [...] and @value[...]. In pre-conditions (speci-
fied after requires keyword), @full [v∗] and @value[v∗] denote lists of pass-by-
reference and pass-by-value parameters respectively. If a variable is passed by
reference, the caller transfers the full permission of that variable to the callee. If
a variable is passed by value, only a copy of that variable is passed to the callee
and the caller still has the full permission of that variable. In post-conditions
(after ensures keyword), @full [v∗] specifies the transfer of full permissions from

2 The tool is available for both online use and download at
http://loris-7.ddns.comp.nus.edu.sg/˜project/vperm/.
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the callee back to the caller via pass-by-reference parameters. Note that callers
and callees can be in a single thread in case of normal procedure calls or in
different threads in case of asynchronous calls via fork/join.

void inc(ref int i, int j)
requires @full [i] ∧@value[j]
ensures @full [i] ∧ i′=i+j;
{ i = i + j; }

int creator(ref int x, ref int y)
requires @full [x, y]
ensures @full [y] ∧ y′=y+2 ∧ res=tid

and @full [x]∧x′=x+1∧thread=tid;
{
int tid = fork(inc, x, 1);
inc(y, 2);
return tid;
}

void main()
{
int id;
int x = 0, y = 0;
id = creator(x, y);
...
join(id);
assert (x′ + y′ = 3);
}

Fig. 1. A Motivating Example

In this example, the main proce-
dure transfers the full permissions
of x and y to the creator (specified
in its precondition as @full [x, y]).
When forking a new child thread
executing the inc procedure, the
main thread transfers the full per-
mission of x to the child thread (us-
ing pass-by-reference mechanism).
This effect can be seen in the post-
condition of the creator where we
have two concurrent threads sep-
arated by the and keyword: af-
ter giving up the full permission
of x, the main thread retains the
full permission of y (@full [y]) while
the child thread (with identifier
thread=tid) holds the full permis-
sion of x (@full [x]). Thus, prior to
invoking a join to merge back the
child thread, the main thread has
zero permission of x and is not al-
lowed to access it (neither read nor
write). This ensures data-race free-
dom since only one thread at a time
can have the full permission of x.

In the specification, we use the
reserved keyword thread to capture the identifier tid of a child thread and the
keyword res to represent the return value of a procedure call (in case of creator,
the return value is the thread identifier tid of the child thread). Additionally,
we use primed notation to handle updates to variables. The primed version x′ of
a variable x denotes its latest value; the unprimed version x denotes its initial
value (i.e. its value at the beginning of the procedure). Note that a variable x
and its primed version x′ can be related but are two different logical variables.

One may think that this treatment of variable permissions can be easily
captured through parameter passing, e.g. for each reference parameter v, just add
an @full [v] in the main thread of both pre- and post-conditions. However, this
simple assumption may not hold in the context of concurrency. The key question
is which thread holds full permission of a given variable. The full permission can
belong to the main thread in the pre-condition but later it is transferred to a
child thread in the post-condition and vice versa. For example, in the creator,
the main thread has @full [x] in the pre-condition but this permission is later
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transferred to the child thread in the post-condition. In summary, the goal of
our scheme is to succinctly manage the transfer of variable permissions among
threads in a sound and modular manner.

3 Programming and Specification Languages

P ::= data decl∗ global decl∗ proc decl∗ Program
data decl ::= data C { field decl∗ } Data declaration
field decl ::= type f; Field declaration

global decl ::= global type v Global variable declaration
proc decl ::= ret type pn(param∗) spec∗ { e } Procedure declaration

spec ::= requires Φpr ensures Φpo; Pre/Post-conditions
param ::= type v | ref type v Parameter

type ::= int | bool | C Type
e ::= v | v.f | k Variable/field/constant

stmt ::=
v = fork(pn,v∗)
| join(v) | pn(v∗) | . . . Statement

Fig. 2. Programming Language with Annotations and Concurrency

Our core programming language (Figure 2) is an imperative language with
fork/join concurrency for dynamic thread creation. We chose fork/join as con-
structs for concurrency because they are often used in concurrent program-
ming [17]. A program consists of a list of data declarations (data decl∗), a list
of global variable declarations (global decl∗), and a list of procedure declarations
(proc decl∗). Each procedure proc decl is annotated with pairs of pre/post spec-
ifications (Φpr/Φpo). A parameter param can be passed by value or by reference
(ref). A fork receives a procedure name pn, a list of parameters v∗, and returns
a unique thread identifier as an integer. A join requires a thread identifier to join
the thread back. The semantics of other program statements is standard as can
be found in well-known languages such as C/C++. Note that the core language
does not include program pointers and address-of operator (&). In Section 4.3,
we show how to translate those constructs into the core language.

Shape predicate spred ::= [self::]c[(f)]〈v∗〉 ≡ Φ [inv π0]
Separation formula Φ ::=

∨
(∃v∗ · µ[(and µ)∗])∗

Thread formula µ ::= κ ∧ ν ∧ γ ∧ φ
Heap formula κ ::= emp | ` | κ1 ∗ κ2

Atomic heap formula ` ::= p::c[(f)]〈v∗〉
Vperm formula ν ::= @zero[v∗] | @full [v∗] | @value[v∗]

| ν1 ∧ ν2 | ν1 ∨ ν2
Thread id formula γ ::= thread = v | true

Pure formula φ ::= ...

Fractional permission variable f ∈ (0,1] v ∈ Variables
c ∈ Data or predicate names k ∈ Integer constants

Fig. 3. Grammar for Specification Language
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Figure 3 shows our rich specification language for concurrent programs ma-
nipulating variables and heap locations. For variables, we use variable permis-
sions. For heap locations, we support user-defined predicates spred [18] and frac-
tional permissions f [4]. Φ is a separation logic formula [23] in disjunctive normal
form. Each disjunct in Φ consists of a thread formula µ for a main thread and
a list of thread formulas (separated by the and keyword) to represent concur-
rent threads. Each thread formula µ contains four parts: a heap formula κ, a
vperm formula ν, a threading formula γ, and a pure formula φ . A heap for-
mula κ consists of multiple atomic heap formulas ` connected with each other
via separation connectives ∗ . An atomic heap formula p::c[(f)]〈v∗〉 represents
the fact that a thread has certain permission f to access a heap location of type
c pointed to by p. Vperm formula ν describes permissions of variables (Sec-
tion 4.1). A thread id formula γ specifies the identifier of a concurrent thread
using the keyword thread; a main thread has a thread id formula of true. A
pure formula φ consists of standard equality/inequality, Presburger arithmetic
and set constraints.

4 Variable Permissions for Safe Concurrency

4.1 Verification Rules

Our verification system is based on entailment checking:

∆A ` ∆C ; ∆R

Intuitively, the entailment checks if the antecedent ∆A is precise enough to imply
the consequent ∆C , and computes the residue for the next program state ∆R.

Formalism. In order to ensure safe concurrent accesses to variables, we use two
key annotations for variable permissions:

– @full [v∗] specifies the full permissions of a list of variables v∗. In pre-
conditions, it means that v∗ is a list of pass-by-reference parameters. In
post-conditions, it captures the return of permissions to caller.

– @value[v∗] only appears in pre-conditions to specify a list of pass-by-value
parameters v∗.

@full [S] ∧ v 6∈S ` @full [v] ; fail FAIL−1

@full [S] ∧ v 6∈S ` @value[v] ; fail FAIL−2

v ∈ S
@full [S] ` @full [v] ; @full [S−{v}] P−REF

v ∈ S
@full [S] ` @value[v] ; @full [S]

P−VAL

@full [S1] ∧@full [S2] ; @full [S1 ∪ S2] NORM−1

@full [S1] ∨@full [S2] ; @full [S1 ∩ S2] NORM−2

@full [S1] ∧@value[S2] ; @full [S1 ∪ S2] BEGIN

Fig. 4. Entailment Rules on Variable Permissions
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Variable permissions can be transferred among callers and callees of the same
thread, and among distinct threads. The verification rules for variable permis-
sions are shown in Figure 4. A main thread (or a caller) that does not have
full permission of a variable cannot pass that full permission to another thread
(or a callee) either by reference or by value (FAIL−1 and FAIL−2). After passing
a variable by reference, a main thread (or a caller) loses the full permission of
that variable (P−REF). However, for a pass-by-value variable, it will still retain
the full permission (P−VAL). The normalization rules NORM−1 and NORM−2

soundly approximate sets of full permissions. At the beginning of a procedure,
a main thread has full permissions of its pass-by-reference and pass-by-value
parameters (BEGIN). The rules presented are simple, and this is precisely how
we would like the readers to feel. Simplicity has its virtue and we hope that this
would encourage safer concurrent programs to be written.

In our implementation, we also support @zero[· · ·] as a dual to @full [· · ·]
annotation. The former denotes a set of variables that may possibly have zero
permission. This is useful for more concise representation since only a small
fraction of variables typically lose their permissions temporarily.

Forward Verification. Forward verification is formalized using Hoare’s triples
of the form {Φpr}P{Φpo}: given a program P beginning in a state satisfying
the pre-condition Φpr, if it terminates, it will do so in a state satisfying the
post-condition Φpo. Our forward verification rules are presented in Figure 5. We
only focus on three key statements that transfer variable permissions: procedure
call, fork and join. Note that the transfer of variable permissions is done via
entailments as illustrated in Figure 4. In our system, each program state ∆[∆∗t ]
consists of the current state ∆ of a main thread and a list of post-states ∆∗t of
child threads. Here post-states refer to states of child threads after they finish
execution. These post-states will be merged into the state of the main thread
when child threads are joined.

{P} pn(v∗) {Q} ∆ ` P ; ∆1 ∆2
∆
= ∆1 ∗ Q

{∆[∆∗t ]} pn(v∗) {∆2[∆∗t ]}
CALL

{P} pn(v∗) {Q} ∆ ` P ; ∆1

∆tnew
∆
= Q ∧ thread=unique id

∆2
∆
= ∆1 ◦{v} v′=unique id

{∆[∆∗t ]} v := fork(pn,v∗) {∆2[∆tnew::∆∗t ]}

FORK

(∆1 ∧ thread=id) ∈ ∆∗t
∆ ` v′ = id; ∆2 ∆3

∆
= ∆2 ∗ ∆1

∆∗tnew = ∆∗t−[∆1 ∧ thread=id]

{∆[∆∗t ]} join(v) {∆3[∆∗tnew]}

JOIN

Fig. 5. Forward Verification Rules for Concurrency

In order to perform a procedure call (CALL), a main thread should be in a
state ∆ that can entail the pre-condition P of the procedure pn. For clarity of
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presentation, we omit the substitutions that link actual and formal parameters
of the procedure prior to the entailment. After the entailment, the main thread
subsumes the post-condition Q of the procedure with the residue ∆1 to form a
new state ∆2. The list of concurrent threads ∆∗t remains unchanged.

Similarly, in order to fork a new child thread (FORK), a main thread should
be in a state ∆ that can satisfy the pre-condition P of the forked procedure pn.
Then a new thread ∆tnew with a unique identifier carrying the post-condition Q
of the corresponding forked procedure is created. The new thread is then added
to the list of child threads. The main thread keeps the identifier of the child
thread in its new state ∆2 via the return value v of the fork call.

In the opposite way, when joining a child thread with an identifier v (JOIN),
the main thread checks if v is a certain identifier in any child thread, merges the
post-state of the child thread ∆1 into its residue state ∆2 to form a new state
∆3, and removes the thread from the list of concurrent threads (denoted by the
subtraction “−”). The rest of verification rules used in our system only operate
on the state of the main thread and are standard as discussed in [18].

Theorem 1 (Soundness of Variable Permission Scheme) Given a pro-
gram with a set of procedures P i and their corresponding pre/post-conditions
(Φi

pr/Φi
po) enhanced with variable permissions, if our verification system derives

a proof for every procedure P i, i.e. {Φi
pr} P i {Φi

po} is valid, then the program is
free from data races.

Proof. By proving that the scheme maintains the invariant that the full permis-
sion of each variable belongs to at most one thread at any time. More details
are given in Appendix A. ut

4.2 Inferring Variable Permissions

In this section, we investigate inference for variable permissions. Approaches in
permission inference for variables [22] and heap locations [7, 10] require entire
program code and/or its specifications for their global analysis. The simplicity of
our variable permission scheme offers opportunities for automatically and mod-
ularly inferring variable permissions by only looking at procedure specifications.

Our inference is based on following key observations. Firstly, local vari-
ables of a procedure cannot escape from their lexical scope; therefore, they are
not allowed to appear in post-conditions. Secondly, scopes of pass-by-value pa-
rameters are only within their procedures; therefore, @value[...] only exists in
pre-conditions and updates to these parameters need not be specified in post-
conditions. Thirdly, for each procedure with its R-complete pre/post-conditions,
updates to its reference parameters must be specified in its post-condition via
primed notations. Lastly, because child threads carry the post-conditions of their
corresponding forked procedures, their states include information about updates
to variables that were passed by reference to their forked procedures.
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Definition 1 (Primed Notations and R-complete Specifications)
Primed notations represent the latest values of program variables; unprimed no-
tations denote either logical variables or initial values of program variables. A
procedure specification is R-complete if all updates to its pass-by-reference pa-
rameters are specified in the pre/post conditions using primed notations.

Algorithm 1 Inferring variable permissions from procedure specifications

Input: Φpr, Φpo: pre/post-conditions of a procedure without variable permissions
Input: Vref , Vval : sets of pass-by-reference and pass-by-value parameters
Output: Pre/post-conditions with inferred variable permissions
1: Vpost :=Vref

2: /*Infer @full [...] annotations for post-condition*/
3: for each thread ∆ in Φpo do
4: /*Set of free variables that are updated in ∆ using primed notations*/
5: Vm :={v : v ∈ FreeV ars(∆) ∧ isPrimed(v)}
6: if (Vm−Vpost) 6= φ then Error
7: else
8: ∆:=∆ ∧@full [Vm ]
9: Vpost :=Vpost−Vm

10: end if
11: end for
12: /*excluding reference parameters not updated in post-condition*/
13: Vpre :=Vref−Vpost

14: /*Infer @full [...] annotations for pre-condition’s child threads*/
15: /*in the same way as with those in post-condition but replace Vpost by Vpre*/
16: for each child thread ∆t in Φpr do
17: ...
18: end for
19: For the main thread ∆ in Φpr: ∆ := ∆ ∧@full [Vpre ] ∧@value[Vval ]
20: return Φpr,Φpo

We present our inference in Algorithm 1. For each procedure, the algorithm
starts inference for the post-condition first. For each thread in the post-condition
(either main thread or child thread), the full permissions are inferred by com-
puting those pass-by-reference parameters that are updated in each thread’s
specification via primed notations. The if statement in line 6 detects an error
if there are some primed variables that (1) are not reference parameters or (2)
belonged to other threads in the previous iterations. The subtraction in line 9
removes from the set of reference parameters Vpost those variables whose inferred
full permissions already belonged to the current thread. This ensures that only
one thread in the specification holds the full permission of a variable. Because
child threads in the pre-condition carry the post-conditions of their correspond-
ing forked procedures, we infer variable permissions for these child threads in
the same way as with those in the post-condition. Note that the main thread
is the currently active execution thread; therefore, its state in the pre-condition
does not include primed variables. The main thread of the pre-condition holds
full permissions of variables whose are updated (specified in the post-condition)
and do not belong to any child threads. The subtraction in line 13 is necessary
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because there are certain variables that are passed by reference but their full
permissions do not belong to any threads (see Section 5.1 for more discussions).
Finally, permission annotation @value[...] of pass-by-value parameters is added
into the main thread of the pre-condition. For illustration, we present a running
example in Table 1.

Table 1. Inferring variable permissions for procedure creator in Figure 1

Input Intermediate values Inferred

Vref :={x, y}, Vval :={}

Φpo:=
y’=y+2 ∧ res=tid Vpost :={y},Vm :={y} @full [y]
and x′=x+1 ∧ thread=tid; Vpost :={x, y},Vm :={x} @full [x]

Φpr:= true Vpre :={x, y} @full [x, y]

Corollary 2 (Soundness of Inference and Verification) Given a proce-
dure P with its R-complete pre/post-conditions (Φpr/Φpo) without variable
permissions, and our inference algorithm results in new pre/post-conditions
(Φ′pr/Φ′po) with inferred variable permissions, if our verification system derives
a proof, i.e. {Φ′pr} P {Φ′po} is valid, then the procedure P is free from data races.

Proof. We first prove that the inferred full permission of each variable belongs
to at most one thread in a procedure’s R-complete specification. Then we prove
that with the inferred variable permissions, the procedure is free from data races.
Details are given in Appendix B. ut

4.3 Eliminating Variable Aliasing

In this section, we investigate the problem of variable aliasing. Aliasing occurs
when a data location can be accessed through different symbolic names (i.e.
variable names). For example in C/C++, variables can be aliased by the use of
address-of operator (&). This poses challenges to program verification in general
and concurrency verification in particular. Figure 6a shows a problematic exam-
ple where p and x are aliased due to the assignment p=&x. After passing x by
reference to a child thread, although the main thread does not have permission
to access x, it can still access the value of x via its alias ∗p and therefore incurs
possible data races. Our goal is to ensure safe concurrent accesses to variables
even in the presence of aliasing, e.g. to outlaw racy accesses to the value of x.

We propose a translation scheme to eliminating variable aliasing by unify-
ing pointers to program variables and pointers to heap locations. The trans-
lation is automatic and transparent to programmers. We refer to each vari-
able (or parameter) whose &x appears in the program as an addressable vari-
able. Intuitively, for each addressable variable, our translation scheme trans-
forms it into a pointer to a pseudo-heap location by the following substitution
ρ=[int 7→ int ptr,&x 7→ x, x 7→ x.val]. Our approach covers values of any type
(including primitive and data types). For each type t, there is a corresponding
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void inc(ref int i, int j)
requires @full [i] ∧@value[j]
ensures @full [i] ∧ i′=i+j;
{ i = i + j; }

void main()
{

int x = 0;
int ∗ p = &x;
int id = fork(inc, x, 1);
...//accesses to *p are racy
join(id);

}
(a) Original Program

void inc(int ptr i, int j)
requires i::int ptr〈old i〉 ∧@value[i, j]
ensures i::int ptr〈new i〉 ∧ new i=old i+ j;
{ i.val = i.val + j; }

void main()
{

int ptr x = new int ptr(0);
int ptr p = x;
int id = fork(inc, x, 1);
...//accesses to p.val or x.val are illegal
join(id);
delete(x);

}
(b) Translated Program

Fig. 6. An Example of Eliminating Variable Aliasing

type t ptr to represent the type of pointers to pseudo-heap locations holding a
value of type t. The value located at a pseudo-heap location is accessed via its
val field (e.g. x.val).

Definition 2 (Pseudo-heap Locations) Pseudo-heap locations are heap-
allocated locations used for verification purpose only. Each pseudo-heap location
represents a transformed program variable and captures the original value of the
variable in its val field.

Our scheme also translates program pointers into pointers to heap-allocated
locations by the following substitution ρ=[int∗ 7→ int ptr, ∗p 7→ p.val]. For
pointers that point to another pointer, our translation is also applicable, e.g.
int∗∗ is translated into int ptr ptr. The translation scheme ensures that the
semantics of the translated program is equivalent to that of the original pro-
gram. By transforming addressable variables into pseudo-heap locations, rea-
soning about aliased variables has been translated to reasoning about aliased
heap locations which is easier to handle (i.e. using separation logic [23]). For
detailed formal discussions, we refer interested readers to Appendix C.

An example translation is shown in Figure 6b. The addressable variable x

of type int is transformed into a pointer to a pseudo-heap location of type
int ptr. The program pointer p becomes a pointer to the location which x

refers to. Variable x will then be passed to a child thread. The procedure inc

is also translated to reflect the fact that its reference parameter i has been
transformed. In the specification, i::int ptr〈old i〉 represents the fact that i is
a variable of type int ptr pointing to a pseudo-heap location containing certain
value old i. The original value of x is indeed captured in the value of the pseudo-
heap location. In the translated program, when the main thread passes variable
x to the child thread, the pseudo-heap location that x points to is also passed to
the child thread. Therefore, before the child thread joins, the main thread cannot
access the pseudo-heap location (e.g. via p.val) because it no longer owns that
location. Note that the pseudo-heap location is deleted at the end to prevent
memory leak.
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We propose this translation for verification purpose only and do not recom-
mend it for compilation use due to performance deficiency since accessing heap-
allocated locations are typically more costly than program variables. Variable
aliasing may also occur via parameter-passing when two reference parameters of
a procedure refer to the same actual variable. Our variable permission scheme
(as presented in Section 4.1) disallows the possibility because a caller cannot
have two full permissions of a variable to pass it by reference twice.

5 Discussion

5.1 Applicability of the Proposed Variable Permissions

In this section, we discuss the application of our variable permission scheme to
popular concurrent programming models such as POSIX threads and Cilk.

Pthreads is considered one of the most popular concurrent programming models
for C/C++ [5]. In Pthreads, when creating a new child thread, a main thread
passes a pointer to a heap location to the child thread. We model this argu-
ment passing by giving a copy of that pointer to the child thread. Furthermore,
Pthreads uses global variables to facilitate sharing among threads. If several
threads need to concurrently read a shared global variable, the main thread
holding the full permission of that variable can just give each child thread a
copy of that variable through pass-by-value mechanism. If concurrent threads
require write access to the same variables, these variables can be protected by
mutex locks whose invariants hold full permissions of the variables. This al-
lows concurrent but race-free accesses to shared global variables. In our system,
mutable global variables are automatically converted into pseudo reference pa-
rameters for each procedure (that uses them) prior to verification. For shared
global variables that are protected by mutex locks, although they are converted
into pseudo reference parameters, neither of concurrent threads has the variables’
full permissions. It is the locks’ invariants that capture the full permissions. Per-
mission annotations for these variables are automatically inferred as shown in
Section 4.2. Note that Pthreads’ mutex locks are heap-allocated and therefore
require reasoning over heap locations which is beyond the scope of this paper.
We refer interested readers to [9, 11, 12] for detailed discussions.

Cilk is a well-known concurrent programming model originally developed at
MIT and recently adopted by Intel [8]. In Cilk, the spawn keyword is used to
create a new thread and to return the value of the procedure call instead of a
thread identifier. Before the child thread ends, any accesses to that return value
are unsafe. Our fork can have the same effect by passing an additional variable
by reference to capture the return value. This guarantees data-race freedom
because only the child thread has the full permission of that variable. More
importantly, compared with Pthreads, Cilk provides more flexible parameter
passing when creating a child thread. Multiple variables can be passed to a child
thread either by value or by reference. This flexible passing can be naturally
handled by our pass-by-value and pass-by-reference scheme. To the best of our
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knowledge, our scheme is the first verification methodology for expressing such
a flexible parameter passing style.

5.2 Phased Accesses to Shared Variables

Our variable permission is designed as a simpler permission scheme that can
be used where sufficient. For immutable variables that are shared by concur-
rent threads, the general guideline is to pass copies of those variables to the
threads to enjoy safe accesses to those copies. Mutable variables can be shared
but should be protected by mutex locks to ensure race-freedom because there are
some threads mutating the variables. However, there is still a class of complex
sharing patterns that cannot be directly handled by our scheme. For example,
a thread holds a certain permission to read a shared variable and is guaranteed
that no other threads can modify the variable (read phase). Later, it acquires
additional permissions from other threads and/or lock invariants, and combines
them into a full permission to modify the shared variable (write phase). This
kind of phased accesses to shared variables cannot be verified without splitting
a full permission into smaller partial permissions. In this case, the thread can
hold a partial permission while the rest of permissions belong to other threads
and/or lock invariants.

Under this circumstance, we propose to detect those variables that are ac-
cessed in a phased way, and transform them into pseudo-heap locations where
a more complex reasoning scheme is utilized [9, 11, 12]. The translation is done
in a similar way as shown in Section 4.3. As a result, our general guideline is
to readily use variables in most cases where the proposed variable permission
scheme is sufficient, and to automatically and uniformly transform variables into
pseudo-heap locations where necessary, i.e. in complex scenarios such as aliasing
and phased accesses.

6 Experimental Results

We have integrated our variable permission scheme, inference algorithm, and
translation scheme into a tool called Vperm for verifying concurrent programs
(see Appendix D for detailed descriptions of these programs). Our variable per-
mission scheme is best compared with approaches in [3, 21, 22] but implemen-
tations of these approaches are not available. Therefore, we compare our sys-
tem with Verifast, a state-of-the-art verifier, in terms of annotation overhead
(LOAnn

LOC ) and verification time. Note that Verifast does not naturally support
permissions for variables but simulates shared variables as heap locations. All
experiments were done on a 3.20GHz Intel Core i7-960 processor with 16GB
memory running Ubuntu Linux 10.04. Table 2 shows that although slower than
Verifast, our system is more automatic in the sense that our system requires
significantly less annotation overhead. The annotation overhead does not grow
with more lines of code because we only require pre/post specifications at the
procedure boundary. On average, we require less than three lines of annotation
per procedure. This is important to reduce programmers’ efforts for annotation.
Verifast has higher annotation overhead because beside pre/post specifica-
tions, it requires additional annotations (such as which predicate to open/close
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Table 2. Annotation Overhead and Verification Time (Procs is the number of proce-
dures used in a program; LOC stands for “lines of code”; LOAnn stands for “lines of
annotation”; Times are in seconds)

Program Procs LOC
Verifast Vperm

LOAnn Overhead Time LOAnn Overhead Time

alt threading 3 17 23 135% 0.03 6 35% 0.18
threads 8 68 34 50% 0.04 18 26% 0.44

tree count 1 20 2 10% 0.31
tree search 1 23 We are not aware of 3 13% 1.17
task decompose 3 19 corresponding programs 6 32% 0.21
fibonacci 2 30 in Verifast distribution. 4 13% 0.29
quicksort 3 78 They could be coded but 10 13% 1.60
mergesort 6 104 require much annotation 12 12% 1.48

or which lemma to apply) for each non-trivial command, such as field-access, fork
and join. Although we attempted to write annotations for those programs that
are not present in Verifast distribution, they are by no means trivial. In many
cases, writing correct annotations is difficult and time-consuming. Therefore, we
believe that our system shows a decent trade-off where it takes longer verification
time (machine effort) but requires considerable less manual annotation (human
effort).

7 Related Work

In 1970s, Owicki-Gries [20] came up with the very first tractable proof method
for concurrent programs that prevents conflicting accesses to variables using
side-conditions. However, these conditions are subtle and hard for compilers to
check because it involves examining the entire program [3, 22]. Recently, con-
current separation logic (CSL) [19] has been proposed to nicely reason about
heap-manipulating concurrent programs but CSL still relies on side-conditions
for dealing with variables. Smallfoot verifier [1] uses CSL as its underlying
logic and therefore suffers from the same limitation. In contrast, our scheme
brings variable permissions into the logic and therefore makes it easier to check
for conflicting accesses to variables. “Variables as resource” [3, 21] has proposed
to apply permission systems [2, 4], originally designed for heap locations, to
variables. Recently, Reddy et. al. [22] reformulate the treatment of variables us-
ing the system of syntactic control of interference. They share the same idea
of applying fractional permissions [4] to variables. However, these more com-
plex permission schemes place higher burden on programmers to figure out the
permission fractions used to associate to variables. To the best of our knowl-
edge, we are not aware of any existing verifiers that have fully implemented the
idea. Chalice [15, 16] ignores the treatment of variables in method bodies while
Verifast [12, 13] simulates variables as heap locations. Although the underlying
semantics of Holfoot [24] formalizes “variables as resource”, its automatic ver-
ification system, which is based on Smallfoot, does not allow sharing variables
using fractional permissions. In contrast, our variable permission scheme is sim-
pler, using either full or zero permissions, but is expressive enough to support
popular programming models such as Pthreads [5] and Cilk [8]. Furthermore,
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while previous approaches assume theoretical programming languages without
dynamic thread creation [3, 21, 24] and procedure [22], our variable permission
scheme is more practical to be incorporated into Vperm tool and to verify con-
current programs with procedures and dynamic thread creation such as parallel
quicksort and mergesort. We also presented an algorithm to automatically infer
variable permissions and therefore reduce programmers’ efforts for annotations.
There is some work on automatic inference of access permissions in the liter-
ature [7, 10] but they only address permissions for heap locations. Reddy et.
al. [22] is the very first work on inferring permissions for variables. However,
their approach is different from ours. Firstly, while their approach is a two-pass
algorithm over entire program syntax tree and proof outline, our approach can
infer variable permissions directly from procedure specifications. Secondly, their
work targets programs written in a theoretical language without procedures and
dynamic thread creation while our approach supports more realistic programs
with procedures and fork/join concurrency. Lastly, most work on verification
has often disallowed variable aliasing by using side-conditions [19, 20] or via as-
sertions [3, 9]. Therefore, our presented translation scheme to eliminate variable
aliasing is orthogonal to their work since we provide a way to transform address-
able variables into pointers to pseudo-heap locations, and thus enable reasoning
about their behaviors in the same way as heap locations [9, 19]. In contrast to
several informal translation tools [6, 14] which attempt to translate C/C++ pro-
grams with pointers into Java, we present a translation scheme with its formal
semantics. Another difference is that while they focus on language translation,
we aim towards facilitating program verification.

8 Conclusion

We have proposed a new permission system to ensure data-race freedom when
accessing variables. Our scheme is simple but expressive to capture program-
ming models such as POSIX threads and Cilk. Through a simple permission
scheme for variables, we have extended formal reasoning to popular concurrent
programming paradigms that rely on variables. We have provided an algorithm
to automatically infer variable permissions and thus reduced program annota-
tions. We have also shown a translation scheme to eliminate variable aliasing and
to facilitate verification of programs with aliases on variables. Lastly, we have
implemented our scheme into a tool, called Vperm, for verifying concurrent
programs including parallel quicksort and parallel mergesort.
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A Soundness of Variable Permission Scheme

We sketch how our variable permission scheme (Section 4.1) ensures safe con-
currency (data-race freedom). We prove that our scheme maintains the invariant
that the full permission of each variable belongs to at most one thread at any
time.

Definition 3 (Data-race Freedom) A program is data-race free if there does
not exist two concurrent threads ∆t1 and ∆t2, and a variable x such that ∆t1 `
@full [x] and ∆t2 ` @full [x] at the same time.

Definition 4 (Permission Invariant) For every variable x, its full permis-
sion belongs to at most one thread at any time.

Theorem 3 (Non-duplicable Permissions) For every variable x, its full
permission cannot be duplicated.

Proof. By induction on entailment rules in Figure 4. ut

We prove the soundness of our variable permission scheme by contradiction.

Proof.

Hypothesis: There are data races, i.e. there are two threads that have full
permission of the same variable x at the same time.

The two threads can be: a main thread and a child thread (Case 1), or both
child threads (Case 2).

Case 1: A main thread and a child thread have the full permission of the same
variable.

Case 1.1: The child thread obtains the full permission after being forked by
the main thread. Therefore, the variable x has to be passed by reference to the
child thread (P−REF rule in Figure 4). Afterwards, the main thread loses the
full permission because the permission is non-duplicable. This contradicts to the
hypothesis.

Case 1.2: The child thread obtains the full permission from the lock invariant
after acquiring a mutex lock. In our scheme, if a variable is protected by a mutex
lock, the lock’s invariant holds the full permission of the variable. Therefore, if the
main thread has the full permission for x, it also has to acquire the full permission
from the lock invariant. This leads to contradiction because two threads are not
allowed to successfully acquire a lock at the same time.

Case 2: Two child threads have the full permission of the same variable.

Case 2.1: Child threads obtains the full permissions after being forked by an-
other main thread. This is impossible because a full permission is non-duplicable.

Case 2.2: Child threads obtains the full permission from the lock invariant
after acquiring a mutex lock. This is impossible because two threads are not
allowed to successfully acquire a lock at the same time. ut
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B Soundness of Inference Algorithm

In this section, we give the soundness sketch of our inference algorithm (Sec-
tion 4.2). We first prove that the inferred full permission of each variable belongs
to at most one thread in a procedure’s R-complete specification. Then we prove
that with the inferred variable permissions, the procedure is free from data races.

Theorem 4 (Precise Inference) The inferred full permission of each param-
eter belongs to at most one thread in a procedure’s R-complete specification.

Proof. We prove by contradiction.
Hypothesis: There exists a parameter x whose inferred full permission belongs
to more than one thread in the procedure’s pre/post-conditions.
Case 1: The parameter x is passed by reference.
Case 1.1: The parameter x is not protected by any mutex lock. Because the

specification is R-complete, by Definition 1, updates to x are specified in the
specification using primed notation.

Case 1.1.1: Inferring the permission of x in the post-condition.
Without lost of generosity, assuming that the full permission of x belongs to

two threads in the post-condition, i.e. @full [x] is in the state of the two threads.
Because the algorithm iterates over each thread in a sequential manner (line 3-
11), assuming that the two threads are visited in iterations i and j respectively
(i<j). Let Vpost

i and Vm
i denote the value of Vpost and Vm after i-th iteration.

Therefore, we have x ∈ Vm
i and x ∈ Vm

j with i<j. As a consequence, we have
x ∈ Vpost

j−1 (because Vm−Vpost=φ). By induction on the value of j, we have
x ∈ Vpost

i. This is impossible because of the subtraction in line 9.
Case 1.1.2: Inferring the permission of x in the pre-condition.
Similar to Case 1.1.1 but replace Vpost by Vpre .

Case 1.2: The parameter x is protected by some mutex lock.
In our scheme, if a variable x is protected by a mutex lock, only the lock’s

invariant holds the full permissions of x. This contradicts to the hypothesis.
Note that in this case, updates to variable x are captured in the lock invariant.
Therefore, neither threads hold the full permission of x. Formally, for every
iteration i, x /∈ Vm

i.
Case 2: The parameter x is passed by value.

Because the main thread is the main execution thread, the permission
@value[...] of pass-by-value parameters is trivially added to the main thread
of the precondition only (line 20). This contradicts to the hypothesis. Note that
@value[...] does not exist in the post-condition and updates to pass-by-value pa-
rameters are not allowed to be specified in the post-condition (to prevent them
from escaping from their lexical scope). ut

Corollary 5 (Soundness) With the inferred variable permissions, the proce-
dure is free from data races.

Proof. This follows from the preciseness of our inference algorithm (Theorem 4)
and the soundness of our underlying permission scheme (Theorem 1). ut
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C Translation Rules

Our translation rules are presented in Figure 7. As a part of the translation, we
first transform the program to ensure that variables are of distinct names. After-
wards, we analyze the program to identify a set V of addressable variables that
are passed by reference. Our translation starts with such a set of variables and
gradually adds more addressable variables in. We use the notation V |= e1↪→e2
to indicate that given the aforementioned set V, the translation rules transform a
program code e1 with pointers and & operators into a new program e2 express-
ible in our core language (Section 3). Most of the rules are straightforward. The
most difficult part is to translate addressable variables that are passed by ref-
erence. Because scopes of reference parameters are beyond their procedures, we
have to ensure that all instances of these variables are transformed into pseudo-
heap locations. This is to ensure that any possible effects on the original variables
can be entirely captured in the pseudo-heap locations.

[TRANS−EXP]

not(isProcCall(e1)) v ∈ FV (e1) ∩ V
ρ=[&v 7→ v, v 7→ v.val] e′1=ρ e1

V |= { e2} ↪→ {e′2}
V |= {e1; e2} ↪→ {e′1; e′2}

[TRANS−POINTER]

ρ=[∗p 7→ p.val] e1=ρ e

V |= {t∗ p; e} ↪→ {t ptr p; e1}

[TRANS−VAR−DECL]

(&v ∈ e ∨ v ∈ V ) V1=V ∪ {v} V1 |= e ↪→ e1

V |= {t v; e} ↪→ {t ptr v = new t ptr(0); e1; delete(v)}

[TRANS−PARAM−VAL]

&v ∈ e p fresh ρ=[v 7→ p] e1=ρ e
V1=ρ V V2=V1 ∪ {p} V2 |= e1 ↪→ e2

V |= t pn(t v, ...){e} ↪→ t pn(t v, ...){t ptr p = new t ptr(v); e2; delete(p)}

[TRANS−PARAM−REF]

v ∈ V V |= e ↪→ e1 (Φ′pr, Φ
′
po)=transSpec(v : t, Φpr, Φpo)

V |= t pn(ref t v, ...) requires Φpr ensures Φpo{e}
↪→ t pn(t ptr v, ...) requires Φ′pr ensures Φ′po{e1}

[TRANS−SPEC]

fresh old v, new v ρ=[v 7→ old v, v′ 7→ new v]
Φpr1=ρ Φpr Φ′pr=v::t ptr〈old v〉 ∗ Φpr1
Φpo1=ρ Φpo Φ′po=v::t ptr〈new v〉 ∗ Φpo
transSpec(v : t, Φpr, Φpo):=(Φ′pr, Φ

′
po)

[TRANS−CALL]

V |= t pn(..., t v, ..., ref t u, ...) requires Φpr ensures Φpo{e} ↪→
t pn(..., t v, ..., ref t u, ...) requires Φ′pr ensures Φ′po{e1}

v ∈ V ρ=[&v 7→ v, v 7→ v.val] v′=ρ v

V |= pn(..., v, ..., u, ...) ↪→ pn(..., v′, ..., u....)

Fig. 7. Translation Rules for Eliminating Variable Aliasing
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D Experimental Programs

In this section, we briefly describe concurrent programs used in our experiments
(Section 6). More examples can be found on our website3. These programs are
challenging because of safety of variables and their full functional correctness.
As mentioned in Section 3, our system supports verification of both variables
and heap-manipulating data structures such as linked lists and trees. Proof obli-
gations generated by our program verifier will be discharged by an entailment
checker. Using various external provers such as Z3, Omega and Mona, our entail-
ment checker is capable of verifying variety of constraints ranging from variable
permission constraints, separation logic constraints, numerical constraints, first-
order logic constraints to set constraints.

alt threading. This program demonstrates the passing of variable permissions
between a parent thread and a child thread. Verifast, in contrast, converts
variables into heap locations before passing them.
threads. In this program, threads concurrently manipulate different parts of a
tree and return the sum of factorials of all nodes in the tree. Verifast stores
the sum in heap memory while we can naturally capture that sum in a variable.
tree count. This program shows how to count the number of nodes in a tree
in parallel. Concurrent threads update the corresponding counts into variables.
Variable permissions, therefore, are used to prevent possible data races among
threads.
tree search. In this program, threads concurrently search for a node in a tree
in a divide-and-conquer manner. Variables are used to keep different parts of the
tree. We, therefore, ensure safety of variables using variable permissions. Besides,
we also have to keep track of elements of the tree in a set and use Mona prover
to discharge set constraints.
task decompose. This is the motivating example mention in Section 2. It
shows a fairly complicated inter-procedural passing of variables among concur-
rent threads.
fibonacci. This program shows a parallel implementation of Fibonacci pro-
gram.The para fib procedure creates two child threads to compute (n − 1)th

and (n− 2)th Fibonacci numbers in parallel. In order to optimize performance,
under a certain threshold (n < 10), the sequential algorithm (seq fib) is used.
We use reference parameters to capture the return values of concurrent threads.
Therefore, the proposed variable permission scheme is used to prevent possible
data races on these reference parameters.
mergesort, quicksort. In these programs, threads sort different parts of a
linked list in parallel. Program variables are used to keep different parts of the
list. Therefore, we use variable permissions to ensure safe accesses to these vari-
ables and at the same time have to maintain sorted-ness properties of the linked
list. Interestingly, even for these challenging parallel programs, our system re-
quires the same pre/post-conditions at procedure boundary as their sequential
counterparts.

3 http://loris-7.ddns.comp.nus.edu.sg/˜project/vperm/

21


